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Abstract— This paper presents the distributed formation
control of a multi-agent system using graph theory with
emphasis on consensus and cooperation issues. The focal
point is to achieve and maintain a formation from any initial
condition, with and without a leader that the entire formation
must follow. Our analysis framework is based on tools from
algebraic graph theory, matrix theory and control theory.
We present a brief derivation of multi-agent consensus in
continuous-time and the corresponding iterative form stated
in discrete-time, because while the real scenario is continuous,
the implementation that we simulate is discrete. Based on the
discrete-time algorithm, we propose a solution to obtain and
uphold consensus when there is a leader to command the
entire network. Simulation results are presented, indicating
the capabilities and limitations of the algorithms.

I. INTRODUCTION

This paper presents consensus based algorithms for

the coordination of a networked multi-agent system that

aims at achieving and preserving a formation amongst

themselves.

A. Formation control

Networked Systems have lately been the focus of scien-

tific attention due to the boom in computation speed and

reliable communications. This provided a solid base for the

development of several applications like formation flight

control [1], [2], satellite clustering [3], and the control of

groups of unmanned vehicles [1], [4], [5].

Advantages of interconnected multi agent systems over

conventional systems include reduced cost, increased effi-

ciency, performance, reconfigurability, robustness, and new

capabilities.

A team of smaller robots to perform the same task of

a larger single robot is at a distinct advantage in case of

a malfunction. In one case the team of decentralized units

will adapt to the loss of a team member and continue

cooperating to accomplish the given task, on the other

case the single robot is surely doomed as well as its given

mission. Also, a space radar based on satellite clusters [6]

is estimated to cost three times less than currently avail-

able systems, increase geolocation accuracy by a factor

of 500, offer two-orders-of-magnitude smaller propulsion

requirement, and be able to track moving targets through

formation flight.

Undirected Graphs have been often picked to represent

formations due to the instinctive way they describe the

interconnection topology of a formation, e.g. in [6] and [7].

Moreover, directed graphs have been chosen to reflect the

control structure [8], the constraint feasibility [9], the infor-

mation flow [10], to quantify error propagation [11] and to

reflect leader following inter-agents control specifications

throughoutly scrutinized [12], [13], [14].
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The problem of coordination in multi-agent systems can

be characterized naturally by a finite representation of

the configuration space, namely by using graph-theoretic

models to describe the local interactions in the formation,

where nodes symbolize the physical entities (agents) and

the edges represent virtual entities that support the infor-

mation flow between the nodes.

B. Graph-based models to control a formation

This paper is mainly based on the notable results that

have arisen since 2001. The groundwork on stating and

solving consensus problems in networked dynamic systems

appeared in [15] and [16], results that were later used

in [17] and [18]. The issue of reaching an agreement

without computing any objective functions was initially

addressed in [19] and later extended in [20], [21]. These

main results, which have a well described summary in [22]

by Olfati-Saber et al., are the base that supports the

development in this work.

The problem of reaching a formation based on graph

theory was already solved by Fax and Murray [16]. This

theory consists on given an arbitrary initial position make

the agents reach a consensus on a final common point.

Then, a bias value is introduced, adding the feature that the

final positions of the agents will not be a common point

but a formation given by a desired geometric topology.

This framework, presented in Section II, consists in an

introduction to the main problem discussed on this paper

that consists on adding a leader to command the network

and maintain the formation while performing the leader

motion.

In the context of this paper, a formation is defined

by relative positions between vehicles in a network inter-

connected by inter-vehicle communications. Multi-vehicle

systems are an important category of networked systems

due to their commercial and military applications. There

are two broad approaches to handle distributed formation

control: i) representation of formations as rigid struc-

tures [7], [23] and ii) representation of formations using

the vectors of relative positions of neighboring vehicles and

the use of consensus-based controllers with input bias [22].

In this paper we discuss this latter approach.

We explore graph-based models to control a desired

formation, representing the interactions and the flow of

information between the multiple agents in the graph.

Graph and control theory support the formulation of the

problem and help propose an elegant solution for the cases

addressed in this paper.

C. Paper Organization

In Section II, we address the problem of reaching

consensus in a distributed network. We present important

theory results known from the literature. Section III solves

the problem on reaching consensus in the presence of a
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leader that the rest of the network must follow, this being

the paper’s main contribution. In Section IV we describe

simulation results that illustrate the behavior of the whole

network using the methodology proposed. Section V con-

cludes the paper and presents directions for future work.

II. DISTRIBUTED CONSENSUS WITHOUT A LEADER

A. Problem Statement

Our goal is to be able to control the general movement

of a network of robots with only weak knowledge of other

agents (the position of its neighbors). Here, in Section II,

we analyze the consensus algorithm and how to achieve a

robot formation with it and in Section III we introduce

a leader that will control the general movement of the

network.

Consider the problem of n holonomic robotic agents,

moving in R
2. The state vector that represents each robot

location is a 2D space, because the knowledge of orienta-

tion is irrelevant from the view point of position control.

Therefore, the location of each agent is represented by

x̄i ∈ R
2, i = 1, 2, ..., n and the state of the network is

defined as x̄ = [x̄T
1 x̄T

2 ...x̄T
n ]T .

The assumption of the robotic agents to be holonomic

also allows the dynamics along each dimension to be

decoupled. Hence, each dimension can be considered in-

dependently, being sufficient to analyze the performance

along a single dimension. We will refer always just to

one coordinate of x̄i ∈ R
2, which we call xi, since both

coordinates can be described by similar equations. In this

framework we consider network elements as integrators

agents with dynamics ẋi = ui.

B. Consensus in Continuous-time

Graph theory can provide a variety of useful notations

and tools for analyzing some control strategies for such

a system [24]. The interaction topology of a network of

agents is represented using a directed graph G = (V,E)
with the set of nodes represented by V = 1, 2, ..., n and

with edges E ⊆ V × V . Fig. 1 shows a graph-based

representation for the interconnected system, considering

that the agents have the dynamics of a pure integrator.

The neighbors of agent i are denoted by

Ni = {j ∈ V : (i, j) ∈ E} and the elements aij of

the adjacency matrix A are 1 or 0 according to whether i
and j are adjacent or not [24].

Fig. 1. Graph-based representation of the network of agents with
integrator dynamics (reprinted from [22]).

A widely adopted distributed control strategy for driv-

ing n integrators agents to a desired formation can be

expressed as an nth-order linear system on a graph, [16],

ẋi(t) = ui(t) =
∑

j∈Ni

(xj(t) − xi(t)) + bi(t) (1)

where j ∈ Ni encodes the fact that the information is

only allowed to flow from adjacent agents j and i, xi(0)
is the initial position of the agent i and the bias value

bi(t) provides information about the desired formation.

If bi(t) = 0, the n integrator agents will be driven to

a common point that corresponds to the average of all

agents’ positions. Otherwise, the agents will reach the

consensus not at a single point but in relative positions

between each other, assuming a formation with a desired

geometric topology encoded on bi(t).
In the first part of this section we consider bi(t) = 0,

and the agents are driven to a common point. In the last

part bi(t) �= 0, we expose how the bias value encodes the

geometric topology, leading to a given formation.

Fig. 2. Block diagram of the collective networked system (reprinted
from [22]).

The collective dynamics of the group of agents following

equation (1) can be written as

ẋ = −Lx (2)

where L in (2) is the graph Laplacian of the network with

elements defined as
{

−1, j ∈ Ni

|Ni| , j = i
(3)

with |Ni| the number of neighbors of node i.
Fig. 2 illustrates the consensus algorithm described

by (1) and (2) as a multiple-input multiple-output (MIMO)

linear system. The uniqueness and asymptotical stability of

the equilibrium point of this consensus algorithm is proven

in [23].

C. Discrete-time Consensus Algorithm

The equivalent consensus algorithm in discrete-time can

be stated as

xi(k + 1) = xi(k) + ε
∑

j∈Ni

(xj(k) − xi(k)). (4)

The collective dynamics of entire network under (4) can

be written as

x(k + 1) = Px(k) (5)

where P = I−εL with ε > 0 the step size in the discretiza-

tion. With this algorithm formulation, it is demonstrated

in [22], that we need to guarantee that

• 0 < ε < 1/∆, where ∆ is the maximum degree of

the network and

• the digraph is strongly connected [24],

for the consensus to be asymptotically reached for all initial

states.

A strongly connected digraph is a directed graph in

which it is possible to reach any node starting from any

other by traversing edges in the directions they point to.
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This means that the second condition is not reached when a

leader is introduced in the network since a leader ”doesn’t

care” about the rest of the network, but the entire network

must follow it. This is the main contribution of this paper.

A solution to this problem is discussed in the next section.

Differently from the problem addressed before when

the consensus leads to a common point (the mean of the

starting positions), for a formation to be obtained, a bias

is added to (4) resulting in:

xi(k + 1) = xi(k) + ε
∑

j∈Ni

(xj(k) − xi(k) − rij). (6)

The value rij represents the desired inter-agent relative

position between i and the neighbor j (example provided

in Section IV). The collective dynamics can be written as

x(k + 1) = Px(k) + ε diag(AR). (7)

The matrix R is composed by the elements rij that con-

tain information about the formation and A is the adjacency

matrix that constrains the information flow between agents.

A is a global matrix, is considered static for the purposes

of this paper and encodes what in a real application would

be the inability of some robots to determine another robot’s

position. The operator diag(AR) represents the vector

whose elements are those in the diagonal of the matrix

AR. The network is still driven to form around the mean

point of the initial positions.

III. LEADER-BASED MULTI-AGENT COORDINATION

When a leader is inserted into the network, the digraph

is no longer strongly connected, as shown in Fig. 3, but

the consensus algorithm presented in (6) remains valid in

the sense that, when the leader stops, the formation will

be reached, and until then, the followers will always try to

form up, using their current relative position to the leader

and among each other to correct their locations. However,

it is evident that the performance will degrade relative to

the problem addressed in Section II due to the lack of

information about the existence of a leader imposing a

motion to the group of agents.

In this section we address a different problem, now

with n + 1 agents. We consider that there is an agent

called ”leader” whose movement is not determined by the

consensus equation but instead by an external input or

a predefined velocity and/or path pattern. The remaining

n agents, named ”followers” are ruled by the consensus

equation and must follow the leader while preserving a

formation. Therefor, with the introduction of the leader

we gain the possibility to move the formation.

As in the previous section, we consider that the net-

work may have any initial configuration, and therefore

the followers must reach and maintain a formation while

following the leader. As in general it is not possible to

inform the followers of the leader’s motion we continue to

assume that the only information an agent collects is the

position of its neighbors, since that can be easily obtained,

for example, by communications or vision.

The solution proposed for this new problem is that

every agent in the network will learn the average network

velocity, which will converge to the average leader velocity.

Arbitrating that the leader is node n+1, this learning

procedure is implemented, following the lines in [25],

Fig. 3. Illustration of the problem caused by the insertion of a leader
to the network.

through the inclusion of a new term in (6) and (7) leading

to

xi(k + 1) = xi(k) + ε
∑

j∈Ni
(xj(k) − xi(k) − rij)

+ξi(k + 1), i = 1, 2, ..., n
(8)

xn+1(k + 1) = xn+1(k) + vleader (9)

where Ni in (8) is evaluated for all the n + 1 agents.

The collective dynamics of the followers can be written

as

xF (k + 1) = PxF (k) + ε diag(AR) + ξ(k + 1) (10)

where xF (k) are the first n elements of x(k) ∈ R
n+1 and

the matrices A, R and P are the same as in (7). ξ ∈ R
n

encodes the average velocity of the network and follows

the dynamics

ξ(k + 1) = ξ(k) + γ [PxF (k) + ε diag(AR) − xF (k)] .
(11)

With some analysis we can verify that ξi is the av-

erage velocity of the neighbors for node i. Each node

i = 1, 2, ..., n will attempt to match its own velocity with

that of its neighbors, which will cause the convergence

of all agent’s velocity to the same value. Since the leader

disregards all this but the followers still see him as a fellow

node, this referred value is ξi and moreover it converges

to vleader.

By analyzing the system in steady state we explain

in the sequel why ξi converges to the leader’s

velocity. When consensus is reached, we have
∑

j∈Ni
(xj(k) − xi(k) − rij) = 0, which causes (8) to be

simplified into xi(k + 1) = xi(k) + ξi(k + 1). Likewise

(10) will be reduced to xi(k + 1) = xi(k) + ξi(k + 1),
i = 1, 2, ..., n. Finally (11) becomes ξ(k + 1) = ξ(k),
which means that ξ has converged to a constant δ, and

therefore xi(k + 1) = xi(k) + δ.

If the leader is standing still, reaching consensus means

that the network agreed upon a final standing still position

that can only be sustained if δ = ξ = 0, which leads to

xi(k + 1) = xi(k). If the leader is moving with a

constant velocity, in order to
∑

j∈Ni
(xj(k) − xi(k) − rij)

remain equal to zero, each agent must be moving

at the same speed, the leader’s speed. Henceforth,

xi(k + 1) = xi(k) + δ implies that δ, and therefore ξ, has

converged to the leader’s velocity.

ξ being the average velocity of the network forcibly

means that the followers will lag behind the leader until

they learn the referred term. If the leader moves with

constant velocity, ξ will be well learnt and consequently

the followers will act as if the leader is stopped (because

all agents will be moving with the same average speed) and

will converge to the desired formation as in Section I-B.
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The network dynamics in (7) can be considered as a

particular case of (10) with ξ = 0. This makes sense since

the network aims to converge to a stationary configuration.

Now ξ is different from zero and is defined in such a way

as to encode information about the leader velocity when

its dynamics is constant.

In Section IV, results of simulation are presented show-

ing that a high value for γ leads to undesired oscillations

in the followers’ movement.

IV. RESULTS

In this section we present and discuss simulation results

that illustrate the various aspects addressed in the previous

sections. In Subsection IV-A, we present experiments that

illustrate the behavior of the agents when trying to reach

consensus without a leader. In Subsection IV-B we show

the performance of the new consensus equations proposed

in (8), (9) and (10). Then, in Subsection IV-C we discuss

the influence of the parameters and their sensitivity. Finally,

in Subsection IV-D we describe the relative location error

that occurs when the leader has a non-constant velocity.

A. Distributed Consensus without a Leader

To present the results of the simulations, it is necessary

to state the network configuration used in the experiments.

In Fig. 4 the initial positions of the agents are represented

by dots, expressing the nodes of the graph, and the arbi-

trarily chosen possible flows of communication between

the nodes are represented by arrows, expressing the edges

of the graph.

Fig. 4. Graph representation of the network placed in the initial position.

In Fig. 5 we represent the simulated results using

the graph presented in Fig. 4. Equation (4) defines the

distributed consensus algorithm used to drive the agents to

the common final location, at (0.5,−1), the mean point of

the agents’ initial position. Each agent’s path is represented

by the small dots, each dot representing a node at a certain

time instant.

This is the simplest case, where the formation resumes

to a single common point. Fig. 6 shows the geometry of a

desired formation to the network. This topology is achieved

using the elements rij :

Fig. 5. Driving the agents to a common point. ε = 1/15∆

Rx =









0 1 2 0
−1 0 1 −1
−2 −1 0 −2
0 1 2 0









Ry =









0 2 0 −2
−2 0 −2 −4
0 2 0 −2
2 4 2 0









(12)

Fig. 6. Target relative positions of the formation.

Fig. 7 illustrates the time behavior of the system until

it reachs the final formation in Fig. 6, using the consensus

algorithm presented in (6) and (7). Note that the topology is

centered at the mean point of the agents’ position, which

is independent from the topology of the network or its

movement.

Fig. 7. Reaching a formation. Big dots are initial and final positions.
ε = 1/15∆
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B. Leader-Based Multi-Agent Coordination

The main goal in these experiments is to present results

of the consensus algorithm with different motions of the

leader. The final formation that the network has to reach

and maintain while following the leader is the one pre-

sented in Fig. 6.

In Figs. 8 to 12 particular positions of the agents are

represented for given time instants with a square, for the

leader, and big dots for the followers. In Fig. 8 the leader

is moving with constant velocity and the final position is

shown at instant 75. The agents in the network reach the

desired formation and follow the leader. Using γ = 0.6, a

low settling time is achieved with some oscillations.

Fig. 8. Leader with a linear trajectory and constant velocity. γ = 0.6

This is a simple case, since the leader has a constant

velocity along a linear trajectory. Fig. 9 presents the

network’s behavior when the leader is performing a non-

linear trajectory, again with constant speed. The followers

attempt to reach the formation and reproduce the same

motion of the leader, with good results. Again a good

balance between settling time and oscillations is achieved

using γ = 0.6.

Fig. 9. Circular trajectory with γ = 0.6.

The final case considers a leader with constant speed

along a sinusoidal trajectory as displayed in Fig. 10. The

faster the variation of the movement direction, the harder

it is for the network to maintain the formation. Still using

γ = 0.6, and in spite of the oscillations of the sinusoidal

trajectory, the constant changing of leader velocity, the

followers are able to maintain the formation.

Fig. 10. Sinusoidal trajectory with γ = 0.6.

C. Parameters Influence and Sensitivity

A good value of the parameter γ in (11), that balances

settling time and oscillations, was experimentally found to

be 0.6. Fig. 8 and Fig. 9 show a good compromise between

oscillation and settling time thanks to the tuning of γ.

Fig. 11 and Fig. 12 illustrate the effect of a lower value

of gamma, in this case γ = 0.03, with little to none

oscillations but a higher settling time. The difference in the

settling time is highlighted in Fig. 13, where we compare

the settling of the circular trajectory with γ = 0.6 and

γ = 0.03.

Fig. 11. Linear trajectory with a leader at constant velocity. γ = 0.03

Since (10) is a model of a constant velocity moving

network, if the settling time increases so does the difficulty

to adjust to non-linear trajectories. This is illustrated in

Fig. 12, where the followers’ delay trying to catch up to

the leader is visible. And in Fig. 13 there is a clear non-null

error due to this delay.

The higher the gamma’s value, the larger the oscillations

will be. In fact, a value of gamma larger than 1 causes the

agents to diverge, due to the role it plays in (11).
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Fig. 12. Circular trajectory with γ = 0.03.

Fig. 13. Positional error comparison. Above: Positional error (13) of
Fig. 9. Below: Positional error (13) of Fig. 12.

In (5) we needed to guarantee that 0 < ε < 1/∆. The

experimental value that provides a good balance between

oscillations and settling time was ε = 1/1.05∆. The

previous experiments (Fig. 8 up to Fig. 12) use this value.

Lower values of ε lead to smaller step sizes and higher

settling times as illustrated by the comparison of Fig. 7

and Fig. 14.

Fig. 14. Reaching a formation. ε = 1/2∆.

In a similar way to the experiments with a variable

gamma, larger settling times lead to poorer performance

from the network, as we can see in Fig. 15.

Fig. 15. Linear trajectory with constant velocity. γ = 0.6, ε = 1/3∆

Values of ε larger than 1/∆ cause immediate divergence,

as it was predicted in [22]. This is due to the fact that

epsilon needs to be in a certain range in order to uphold

the necessary properties of the Perron matrix, P .

D. Position Error

Position error was calculated like this:

e =
4

∑

i=1

∑

j∈Ni

(|xj − xi|) − rij (13)

Because (10) only models the first order motion, there

is still an error in position associated with acceleration.

Using the linear trajectory with different accelerations, the

average position error converges to the results in Table I.

TABLE I

POSITION ERROR DUE TO NON-NULL ACCELERATION IN THE LEADER.

Acceleration Position Error

0,1 0,175

1 1,75

10 17,5

As it was expected, our experiments suggest that this

error is proportional to the leader’s acceleration.

Fig. 16. Frequency response of the formation error when leader is excited
sinusoidally. w ∈ [0, π]

Experimental results also show that there is an upper

bound to the error when leader is excited with different
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frequencies. Figure 16 pictures that situation, representing

the frequency response of the error when the leader’s

velocity variation is sinusoidal.

V. CONCLUSION

Previously published works have shown how to use

the undirected and directed graphs to represent multi-

agents networks, their topology and communication. It has

also been studied how to control formations and achieve

consensus using graph-theoretic models. Our work takes

the research one step further, with the introduction of a

moving leader into 2D formations of holonomic agents.

Based on the previous results, we had to look at the

behavior of the network when adding a new element, that

does not care about consensus. The solution presented is to

add a learning term that gives a first order approximation

of the general movement, that is, a velocity estimation of

the leader.

The results show that it is possible to maintain a

formation sharply when the leader moves smoothly, with

constant speed, thanks to the first order approximation

that allows velocity learning. However, when there are

variations in velocity a position error proportional to the

acceleration appears.

In the future, there are a few improvements to be made.

First, tuning the algorithm for different kinds of non-

holonomic agents. This will increase the complexity of

the program, since the dimensions are not independent any

more. Second, take into account movement restrictions, the

rotation of the robots and obstacle avoidance. And third,

extending it to different dynamics besides ẋ = u, since real

robots will have dynamics modeled by different equations.

Also, this approach does not incorporate the expected

uncertainties on the determination of robots position, so as

additional future work would be the introduction of noise

in the robots positions and the confirmation that asymptotic

convergence is maintained as long as connections are not

permanently lost.
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