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Abstract— This paper addresses the problem of coordinated
path-following of networked autonomous vehicles with discrete-
time periodic communications. The objective is to steer a group
of autonomous vehicles along given spatial paths, while holding
a desired inter-vehicle formation pattern. For a class of vehicles,
we show how Lyapunov based techniques, graph theory, and
results from networked systems can be brought together to yield
a decentralized control structure where the dynamics of the co-
operating vehicles and the constraints imposed by the topology
of the inter-vehicle communications network are explicitly taken
into account. Vehicle coordination is achieved by adjusting the
speed of each vehicle along its path according to information
exchanged periodically on the positions of a subset of the
other vehicles, as determined by the communications topology
adopted. Stability and convergence of the overall system are
guaranteed and a criterion for selecting the coordination gains
is presented.

I. INTRODUCTION

Coordination of multi-agent systems is a topic of great

interest in a wide range of scientific and technological areas

that include biological and biologically inspired systems,

artificial intelligence, and mobile robotics, to name but a

few. Sharing information over a communication network

is vital to achieving coordination, which brings about a

number of challenging problems that arise from such practi-

cal constraints as limited bandwidths, time delays (latency),

transmission noise, and intermittent failures. These problems

are at the core of recent research efforts that aim to develop

efficient multiple vehicle coordination systems in the pres-

ence of severe communication constraints.

In this paper, as a contribution to the study of general

coordination systems, we address the problem of coordinated

path following (CPF) where multiple vehicles are required to

follow pre-defined spatial paths while keeping a desired inter-

vehicle formation pattern in time. This problem arises, for

example, in the operation of multiple autonomous underwater

vehicles for fast acoustic coverage of the seabed. By im-

posing constraints on the inter-vehicle formation pattern, the

efficacy of the task can be largely improved. In this case, the

bandwidth available for communications is severely reduced.

This, coupled with energy constraints and the need to avoid

inter-vehicle message collisions, require that communica-

tions take place in the form of short and not too frequent burst
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sequences. A number of other realistic vehicle operation

scenarios can also be envisioned that require coordinated

motion control of marine or other types of vehicles, and

where the inter-vehicle communications are naturally discrete

in time [1].

We solve the CPF problem for a class of fully-actuated

autonomous vehicles moving in two-dimensional space.

Nevertheless, the results derived can be extended to the

three-dimensional case. The solution adopted is based on

Lyapunov stability theory and addresses explicitly the ve-

hicle dynamics as well as the constraints imposed by the

topology of the inter-vehicle communications network. The

latter are tackled in the framework of graph theory, which

allows for the consideration of communication topologies

that contain unidirectional links. Each vehicle is equipped

with a controller that makes the vehicle follow a predefined

path. The speed of each vehicle is then adjusted so that

the whole group of vehicles will keep a desired formation

pattern. A supporting communications network affords the

vehicles the medium over which information is exchanged to

achieve synchronization. Because of bandwidth constraints,

the information exchange between vehicles takes place at

discrete time instants which, in this paper, we assume to

occur at a fixed frequency. We further assume that the com-

munication links established among vehicles are directed: a

vehicle sends information to its neighbors but does not nec-

essarily receive information back. We also assume that the

transmission delay is negligible and that there are no packet

collisions when the vehicles communicate simultaneously.

Due to the absence of information in the intervals between

transmission times, the control action of each vehicle runs

in open loop, based on a simple model that predicts the

evolution of the vehicle’s neighbors. At transmission times,

each vehicle sends information through the network that

is used to achieve coordination and to update the models.

This idea builds on previous work by Montestruque and

Antsaklis on model-based networked systems [2]. With the

control structure adopted, path-following (in space) and inter-

vehicle coordination (in time) become essentially decoupled.

The system that is obtained by putting together the path-

following and vehicle coordination strategies takes a cascade

form, where the output of the latter is an input to the former

subsystem. The main result in this paper is that under mild

assumptions on the connectivity of the graph induced by the

communications network, and assuming periodic communi-

cations, stability and convergence of the proposed combined

path-following/coordination system are guaranteed. We also

suggest a design criterion to aid in the selection of the coordi-



nation control gains. In the proposed technique, the gains of

the distributed coordination controller are found by solving

an optimization problem where the objective is to maximize

the rate of convergence of the coordination subsystem. The

paper builds upon and combines previous results on Path-

Following control [3], Coordinated Path-Following [4], [5],

[6], [7] and Networked Control Systems [2].

The paper is organized as follows. Section II describes

the dynamic model of the autonomous vehicles considered.

The coordinated path-following problem is formally stated

in Section III. Section IV introduces the general structure

of the proposed controller. Section V presents a solution

to the path-following problem. Section VI offers a solution

to the coordinated path-following problem with periodic

communications. A gain selection criterion is also described

for the coordination subsystem. Section VII gives an il-

lustrative example where simulation results are presented.

Finally, Section VIII contains the conclusions and directions

for future work.

II. VEHICLE MODELING

The kinematic and dynamic equations of a large class of

vehicles are summarized next [8]. To this effect, consider

an autonomous vehicle modeled as a rigid body subject to

external forces and torques moving in a two dimensional

space, as, for example, a surface vessel moving at sea.

Let {I} be an inertial coordinate frame and {B} a body-

fixed coordinate frame whose origin is located at the center

of mass of the vehicle. The generalized position of the

vehicle is η = (x, y, ψ), where (x, y) are the coordinates

of the origin of {B} in {I} and ψ is the orientation of the

vehicle (yaw angle) that parameterizes the body-to-inertial

coordinate transformation matrix

J := J(ψ) =





cosψ − sinψ 0
sinψ cosψ 0

0 0 1



 .

Denoting by ν := (u, v, r) the generalized velocity of the

vehicle relative to {I} expressed in {B}, the following

kinematic relations apply:

η̇ = Jν , J̇ = rJS , (1)

where S is a skew-symmetric matrix. We consider fully-

actuated vehicles with dynamic equations of motion of the

form [8]

M ν̇ = f(ν,η) + τ (2)

where M ∈ R
3×3 denotes a constant symmetric positive

definite mass matrix, τ = (τu, τv, τr) is the generalized

control input, and f(ν,η) represents all the remaining

equivalent forces and torques acting on the body, related to

Coriolis, centripetal and hidrodynamic damping effects. For

marine vessels, M also includes the so-called hydrodynamic

added-mass MA, i.e., M = MRB +MA, where MRB is the

rigid-body mass matrix.

III. PROBLEM STATEMENT

We now consider the problem of coordinated path-

following (CPF). In the most general setup, we are given a

set of n ≥ 2 autonomous vehicles and a set of n spatial paths

ηdi = (xdi, ydi, ψdi) for i = 1, 2, . . . , n. Each path ηdi(γi) is

parameterized by a continuous variable γi and it is required

that vehicle i follow path ηdi. Following [5], the CPF

problem is separated in two subproblems: a path-following

problem for each vehicle, where we require the vehicle to

follow a predefined desired spatial path, and a coordination

problem for all vehicles addressing the constraints imposed

by communication network topology.

The problem of path-following is formally stated next.

Path-following problem: Let ηdi(γi) ∈ R
3 be a desired

smooth path parameterized by a continuous variable γi ∈ R

and υdi ∈ R a desired speed assignment for vehicle i. For

each vehicle with equations of motion given by (1) and (2),

design a feedback control law for τ i such that all closed-

loop signals are bounded and as t → +∞ the position of

the vehicle: i) converges to the desired path, i.e., ‖ηi(t) −
ηdi(γi(t))‖ → 0; and, ii) satisfies a desired speed assignment

along the path, i.e., |γ̇i(t) − υdi(t)| → 0.

For the coordination problem, we start by introducing a

measure of the degree of coordination of a fleet of vehicles.

As in [6], this is done by reparameterizing each path ηdi(γi)
in terms of a conveniently defined variable ξi such that

coordination is said to be achieved along the paths if ξ1 =
ξ2 = . . . = ξn. At this point, we formally define the “along-

path” distances between vehicle i and j as ξi,j = ξi − ξj .

Then, coordination is achieved if and only if ξi,j = 0 for all

i, j ∈ {1, 2, . . . , n}. Let the reparameterization of the path

be represented by γi = γi(ξi) and define Ri(ξi) := ∂γi/∂ξi,
which is assumed to be positive and bounded for all ξi. The

dynamics of ξi and γi are related by

γ̇i = Ri(ξi)ξ̇i . (3)

Suppose one vehicle, henceforth referred to as vehicle L,

is elected as the “leader” and let the corresponding path ηdL

be parameterized by γL = ξL. For this vehicle, RL(ξL) = 1.

Let υL be the desired constant speed assigned to the leader

in advance, that is ξ̇L = υL in steady-state, known to all

vehicles. From (3), it follows that the desired “along-path”

speed of each vehicle equals Ri(ξi)υL. It is important to

point out that L can always be taken as a “virtual” vehicle

that is added to the set of “real” vehicles as an expedient to

simplify the coordination strategy.

So far, the problem of coordination has been reduced to

that of “aligning” the coordination states ξi. To go from

this alignment to a more complex, possibly time-varying,

spatial configuration, we introduce appropriate offsets in the

desired positions of the vehicles relative to the mean point

of the formation as defined with respect to the paths. To this

effect, let ξ := [ξi]n×1 and define the formation mean point

and offsets as ξ̄ := 1
n
1
⊤ξ and δ := ξ − ξ̄1, respectively.

Notice that 1
⊤δ = 0. Let φ = φ(t) ∈ R

n represent a

desired formation pattern, which might be time dependent
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Fig. 1. Proposed control structure for coordinated path-following, repre-
sented for vehicle i.

and that verifies 1
⊤φ = 0. The problem of coordination with

time-varying pattern tracking is reduced to that of making

(δ − φ) → 0 as t → +∞. The speed assignment is now
˙̄ξ = υL ⇔ ξ̇i − φ̇i = υL. Again from (3), it follows

that the desired “along-path” speeds for the vehicles are

υdi := Ri(ξi)(υL + φ̇i).
From a graph theoretical point of view, each vehicle is

represented by a vertex and a communication link between

two vehicles is represented by an arc (See [9] for an in-depth

presentation of this subject). The communication links are

assumed unidirectional, thereby inducing a directed graph.

We consider time-invariant communication topologies and

assume that the induced graph has at least one globally

reachable vertex. The flow of information in an arc is directed

from its head to its tail. The set of neighbors of vertex i
is represent by Ni and it contains all vehicles from which

vehicle i receives information.

For design purposes, we will take each ξ̇i as a control

input of the coordination dynamics (3). In order to satisfy

the constraints imposed by the communication network, the

control law for vehicle i must be decentralized, i.e, it may

only depend on local states and/or on information exchange

with its neighbors as specified by Ni. The coordination

problem is formulated as:

Coordinated problem: Design a decentralized feedback

control law for ξ̇ such that δ−φ tend asymptotically to zero

and all vehicles travel at the desired “along-path” speed, that

is, γ̇i → υdi for all i.
The coordination part of our CPF problem is closely

related to agreement problems (see, e.g., [10]). In our case,

all vehicles must agree on a common value, the mean point

of the formation pattern, while they follow a desired speed

profile under the constraint that the communications between

vehicles be discrete-time periodic.

IV. CONTROL STRUCTURE (CPF)

In this section, we propose a control structure for the CPF

problem. It is based on the work presented in [5] and is

illustrated in Fig. 1 for the ith vehicle. The structure proposed

shows a cascade of two subsystems: the path-following (PF)

subsystem and the coordination control (CC) subsystem.

The PF subsystem is formed by the vehicle and a feedback

controller designed to guide the vehicle to the desired path.

The PF controller drives the vehicle through its command

inputs τ i using a control law that depends on the vehicle’s

position ηi and velocity νi, and on signals provided by the

CC subsystem.

The CC subsystem handles all the communications with

neighboring vehicles and provides the PF subsystem with the

inputs γi, υdi, and υ̇di. The exchange of information occurs

at discrete-time instants {tk}, that will henceforth be referred

to as update times, of the form {tk = hk+t0 : k ∈ N} where

h is the communication period in seconds. At these update

times, a certain information variable χi, to be defined later,

is sent by vehicle i to its adjacent vehicles and information

variables χj : j ∈ Ni from its neighbors are received. This

information variables are the only data necessary to exchange

among vehicles to achieve coordination.

The PF subsystem will be shown to be input-to-state stable

(ISS) with respect to the input γ̇i − υdi that, although not

explicit in the structure, is present in the control laws used.

A sampled-data based approach to the problem of co-

ordinated path-following was proposed in [11], where the

variables parameterizing the paths (γi) evolve in a discrete

fashion, and therefore the coordination control problem is

posed in discrete-time. The authors also consider two dif-

ferent structures: a cascade connection similar to ours and a

feedback interconnection where the CC subsystem receives

a path error feedback from the PF subsystem. However, the

types of communication links considered in [11] are only

bidirectional.

V. PATH-FOLLOWING

Central to the development of CPF strategies is the deriva-

tion of appropriate path-following control laws for each

vehicle. In this section, we briefly describe a path-following

controller for autonomous vehicles. See, for example, [12]

and [3] for background material. The controller here pre-

sented is local to each vehicle so the index i will be omitted

for the sake of simplicity.

Define the position error in the body-fixed frame as z1 :=
J⊤(η − ηd), and let ζ := γ̇ − υd denote the “along-path”

speed tracking error. Path-following is equivalent to driving

z1 and ζ to zero. Applying backstepping design procedures,

we obtain the feedback control law

τ = −z1 −K2z2 − f +M(αt + αγυd) ,

where z2 := ν − α is the velocity error of the vehicle and

α := J⊤η
γ
dυd −K1z1 , αγ := K1J

⊤η
γ
d + J⊤η

γ2

d υd ,
αt := −K1(ν − rSz1) − rSJ⊤η

γ
dυd + J⊤η

γ
d υ̇d ,

for which the time derivative of the Lyapunov function

V :=
1

2
z⊤

1 z1 +
1

2
z⊤

2 Mz2 ,

along the solutions of (1) and (2), takes the form

V̇ = −z⊤
1 K1z1 − z⊤

2 K2z2 + µζ ,

where µ := −(ηγ
d)⊤Jz1 − (αγ)⊤Mz2 admits the bound

|µ| ≤ β1‖z1‖ + β2‖z2‖ for some positive constants β1 and

β2.

Lemma 1: The PF subsystem described is ISS with re-

spect to input ζ.



VI. CPF WITH PERIODIC COMMUNICATION

We now offer a solution to the coordination problem.

We start with a control law for ξ̇i adapted from [7] and

[6] that solves the coordination problem under continuous

communication:

ξ̇i = υL + φ̇i − kci

∑

j∈Ni

(ξi − φi − ξj + φj) , (4)

where kci > 0 is an adjustable control gain and φi are the

components of desired formation pattern represented by φ.

Notice that the information required by vehicle i about its

neighbors is χj := ξj − φj , that we refer to as information

state, and not the coordination state ξj itself. The control law

(4) can be rewritten as

χ̇i = υL − kcidiχi + kci

∑

j∈Ni

χj (5)

where di is the number of neighbors of vehicle i (out-degree

of vertex i). When using periodic communications, vehicle

i does not receive χj : j ∈ Ni between update times, so

it needs to model their evolution in that interval. Let χ̂i
j

represent local “replicas” of each χj as seen by vehicle i,
that we refer to as predictor states. Analyzing (5), we see

that if a steady-state condition is achieved, then χ̇i = υL for

all i. This suggests that the dynamics of χj can be predicted

as ˙̂χi
j = υL, thus yielding the controller

χ̇i = υL − kcidiχi + kci

∑

j∈Ni

χ̂i
j (control law) , (6)

˙̂χi
j = υL , for each j ∈ Ni (model) . (7)

However, this is not sufficient to achieve coordination due

to initial conditions that do not match the desired formation

pattern. To overcome this problem, a reset is made to the

predictor states when information is exchanged. We therefore

add the following condition to the controller:

χ̂i
j(tk) = χi

j(t
−
k ), for each j ∈ Ni (update) , (8)

where the notation x(t−) stands for the left limit or limit

from below, i.e., x(t−) = limsրt x(s). Because all χ̂i
j

are initialized with the same value χj(t0), and because we

assume there is absolute synchronization with respect to

update times, vehicles that model the same predictor state

have equal values, i.e, χ̂i1
j = χ̂i2

j for all i1, i2 and j.

Therefore, we do not need to refer to χ̂i1
j and χ̂i2

j as different

states, we simply refer to them as χ̂j .

Defining χ̂ := ξ − φ = [χ̂i]n×1, and the diagonal matrix

Kc := diag[kci]n×n (where kcr = 0 if dr = 0 for some

1 ≤ r ≤ n), (6)-(8) can be written in vector form as

χ̇ = υL1 −KcDχ +KcAχ̂ (control law) , (9a)

˙̂χ = υL1 (model) , (9b)

χ̂(tk) = χ(t−k ) (update) , (9c)

where D = diag[di]n×n and A are the out-degree and

adjacency matrices associated to the communications graph,

respectively.

A. Error space and dynamics

The Laplacian of a graph is defined as L := D − A.

If a graph contains a globally reachable vertex, then L can

be decomposed as L = FG where F ∈ R
n×(n−1), G ∈

R
(n−1)×n, rankF = rankG = n − 1 and G1 = 0 (See

[13] for algebraic properties of the Laplacian). We define

the coordination error as

θ := G(ξ − φ) = Gχ ∈ R
n−1 .

Since G1 = 0 and using the definitions of formation mean

point and offsets of Section III, we have

G(ξ − φ) = G(δ + ξ̄1 − φ) = G(δ − φ) .

Because 1
⊤δ = 1

⊤φ = 0, δ−φ is normal to the null space

of G. We conclude that θ = 0 if and only if (δ − φ) = 0.

Let

χ̃ := χ − χ̂ ∈ R
n

represent the predictor state error. If χ̃ = 0, then the

information states are coherent, i.e, the predictor states equal

the actual states. Considering (9), the error dynamics for θ

and χ̃ are given by

˙̃χ = −KcDχ +KcAχ̂ = −KcDχ +KcA(χ − χ̃)
= −KcLχ −KcAχ̃ = −KcFθ −KcAχ̃ ,

θ̇ = G(−KcLχ −KcAχ̃) = −GKcFθ −GKcAχ̃ ,

where we used the fact that Lχ = FGχ = Fθ. Defining

the aggregated state variable z := (θ, χ̃), the above error

dynamics can be written as
{

ż = Λz, t ∈ [tk, tk+1)
z(t) = (θ(t−),0), t = tk

(10)

where

Λ :=

[

−GKcF −GKcA
−KcF −KcA

]

. (11)

The dynamic system (10) is a linear impulsive system, whose

time response is given in the next proposition.

Proposition 1 ([2]): The system described by (10) with

initial conditions z(t0) = (θ(t0),0) has the time response

z(t) = eΛ(t−tk)Φkz(t0)

for t ∈ [tk, tk+1), where

Φ :=

[

In−1 0
0 0

]

eΛh

[

In−1 0
0 0

]

. (12)

Note that if

eΛh =

[

E11 E12

E21 E22

]

, then Φ =

[

E11 0
0 0

]

,

with E11 ∈ R
(n−1)×(n−1). Therefore n of the eigenvalues of

Φ are 0, while the remainder correspond to the eigenvalues of

E11. The next theorem establishes a sufficient and necessary

condition for asymptotic stability of (10).

Theorem 1 ([2]): For the system described by (10), the

origin is a globally exponentially stable equilibrium point if

and only if Φ is a convergent matrix (all its eigenvalues are

strictly inside the unit circle).



B. Main result

We start by showing that the interconnection of the n
CC subsystems is globally asymptotically stable (GAS). This

proof involves checking that the condition of Theorem 1 is

always satisfied.

First, a closed-form expression for E11 is derived by

showing that Λ is similar to a diagonal matrix, which allows

us to easily compute the matrix exponential eΛh.

Lemma 2: Consider the matrix Λ defined in (11). Let

P,∆ ∈ R
n×n be defined as

∆ :=

[

−KcD 0n×(n−1)

0(n−1)×n 0n−1

]

, P :=

[

G In−1 −GD+F
In −D+F

]

.

where D+ = diag(d+
1 , . . . , d

+
n ) stands for the pseudoinverse

of D and

d+
i :=

{

d−1
i , if di > 0
0, if di = 0

for i = 1, 2, . . . , n.

Then P is nonsingular with inverse given by

P−1 =

[

D+F In−1 −D+(D −A)
In−1 −G

]

and Λ = P∆P−1.

Using Lemma 2, the matrix exponential results in

eΛh = Pe∆hP−1 = P

[

e−KcDh 0n×(n−1)

0(n−1)×n In−1

]

P−1

which gives the following closed-form expression for E11:

E11 = In−1 −G
(

In − e−KcDh
)

D+F .

Theorem 2: For any communication graph with at least

one globally reachable vertex, fixed period h > 0, and

controller gains kci > 0 for all i, the matrix Φ defined in

(12) is a convergent matrix.

The next theorem states that the control structure proposed

in Section IV, together with the control laws developed in

Sections V and VI, solve the CPF problem presented in

Section III.

Theorem 3: The overall system formed by the intercon-

nection of the n combined PF/CC systems is GAS.

C. Gain Selection

The proof of Theorem 2 shows that as kci → +∞, the

eigenvalues of E11 tend to the eigenvalues of In − D+L
apart from the zero eigenvalue. When kci = 0 for all i,
then E11 = In−1 and all eigenvalues are one. Due to the

continuity of the eigenvalues of a matrix with respect to its

entries, we conclude that the eigenvalues of E11 start off

from one and tend to “limit” values. Let ρ(E11) represent

the spectral radius of E11. The spectral radius of a non-

symmetric matrix is a continuous function of its entries but

is neither convex nor locally Lipschitz. Minimizing ρ(E11)
is equivalent to maximizing the rate of convergence of the

coordination system at update times. To this effect, define

kc := diag(Kc) ∈ R
n. We then formulate the optimization

problem
k∗

c = arg min ρ
(

E11(kc)
)

kc > 0
. (13)

Because of the properties of ρ(E11), there is no efficient

way of solving this problem. However, we present a possible

method for handling this difficulty by considering a simpli-

fication of the optimization variable kc. Given the special

structure of E11, a simplification can be made that reduces

the complexity of (13). The gain matrix Kc is restricted to

the be of the form Kc = kch
−1D+, where kc > 0. For

this type of gain matrix, the eigenvalues of E11 move along

straight lines from their initial to their final positions. Using

the change of variables y = 1− e−kc , the optimal gain kc is

obtained by solving

y∗ = arg min ρ(E11(y))
E11 = In−1 − yGD+F

0 ≤ y ≤ 1
. (14)

Due to the special structure of E11, Problem (14) is equiv-

alent to

y∗ = arg min t
|1 − yλi| ≤ t, i = 1, 2, . . . , n− 1

0 ≤ y ≤ 1
(15)

where λi ∈ 1 − σ(D+L)\{0}. The optimal gain is given

by k∗c = min{− ln(1− y∗), kmax} where kmax is a positive

constant used to limit the value of k∗c when y∗ is close to

one. Problem (15) belongs to a class of problems known as

second-order cone programming (SOCP, see, e.g, [14]) for

which a global minimum can easily be computed.

VII. ILLUSTRATIVE EXAMPLE

We consider a group of 3 identical vehicles whose kine-

matics and dynamics equations of motion can be written as

in (1)-(2), with

M = diag(mu,mv, Ir), f(ν,η) = D(ν)ν + C(ν)ν

D(ν) = diag(Xu +X|u|u|u|, Yv + Y|v|v|v|, Nr +N|r|r|r|),

C(ν) =





0 −mvr 0
mur 0 0

0 0 0



 .

In the simulations presented, the physical parameters are

Xu = −1 kg/s Y|v|v = −200 kg mu = 500 kg
X|u|u = −25 kg/m Nr = −0.5 kgm2/s mv = 1000 kg
Yv = −10 kg/s N|r|r = −1500 kgm2 Ir = 700 kgm2

The communications graph is a directed circular graph

and h = 10 s. Each vehicle is required to follow a “U”

like path formed by three different sections: i) a straight

line with an orientation of 0◦; ii) a half circumference

arc traversed clockwise; iii) and, a straight line with an

orientation of −180◦. The vehicles are required to keep an

in-line formation pattern, φ0 = (0, 0, 0) until t1 = 150 s
when the formation starts to change into a triangle like shape

φ1 = 1
3 (5,−10, 5).The initial conditions of each vehicle

are η1(t0) = (−5,−5, π/3), η2(t0) = (−5, 15,−π/4),
η3(t0) = (5, 17, 2π/3), ui(t0) = vi(t0) = 0m/s and

ri(t0) = 0 rad/s for i = 1, 2, 3. The initial condition for γ is

chosen so that for each vehicle i, γi yields the closest point

on the respective path. This gives γ(t0) = (−5,−5, 5) [m].
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Fig. 2. Trajectory of each vehicle in the 2D-plane.
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Fig. 3. Time evolution of the path-following position errors.

The reference speed is set to υL = 1 s−1. The scale radii

are Ri = 1m for the straight lines and Ri = im for the

half circumferences. The PF gains are K1 = 0.15I3 and

K2 = 200I3. The optimum gain is k∗c = 0.6931, yielding

the eigenvalues σ(E∗
11) = {0.25 ± 0.433i}, with spectral

radius ρ(E∗
11) = 0.5, and K∗

c = 0.0693I3. Fig. 2 illustrates

the trajectories of the vehicles in the two-dimensional space.

Fig. 3 shows the time evolution of the position errors of

each vehicle, given by ‖pi(t) − pdi(γi(t))‖, where pi(t) =
(xi(t), yi(t)) and pdi(t) = (xdi(γi(t)), ydi(γi(t))). The

small peaks at t = 60 s and t = 125 s steam from the fact that

the path is not differentiable when changing from straight

line to circumference and vice-versa. Fig. 4 presents the time

evolution of the “along-path” distances. As can be seen, the

evolution of ξi,j agrees with the initial in-line formation and

after t = t1 tends to the triangle formation defined by φ1.

VIII. CONCLUSIONS AND FUTURE WORK

We addressed the problem of coordinated path-following

(CPF) for a group of autonomous vehicles using periodic

communications. We proposed and analyzed a decentralized

control structure formed by a cascade of two subsystems

named path-following (PF) and coordination control (CC).

Stability and convergence of the overall system are guaran-

teed for any fixed update period, as long as the graph induced

by the communication network has at least one globally

reachable vertex. We also suggested a criterion for selecting

the coordination control gains.
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Fig. 4. Time evolution of the “along-path” distances.

Future work includes the study of the applicability of the

proposed control structure to address coordination problems

involving time delays, communication failures, and asyn-

chronous updates. The study of an interconnected control

structure with a feedback term from the PF subsystem to the

CC subsystem will also be studied, as it makes the overall

system more robust to isolated vehicle failures and yields

smoother convergence of the vehicles to the paths.
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