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Abstract—This work proposes a nonlinear observer for
position and attitude estimation on SE(3). Using a Lyapunov
function based on the landmark measurement error, almost
global exponential stability (GES) of the desired attitude and
position equilibrium points is obtained. It is shown that the
derived feedback law is an explicit function of the landmark
measurements and velocity readings, and that the landmark
geometry characterizes the asymptotic convergence of the closed
loop system solution. Almost global exponential stabilization in
the presence of biased velocity readings is also achieved. Simula-
tion results for trajectories described by time-varying linear and
angular velocities and for distinct initial conditions on SE(3) are
presented to illustrate the stability and convergence properties
of the observer.

I. INTRODUCTION

The classical problem of attitude and position estimation

is often subject to new advances and enriching insights,

despite its extensive historical background. Research on the

problem of deriving a stabilizing law for systems evolving

on non-Euclidean spaces, namely SO(3) and SE(3), can be
found in [3], [5], [7], [9], [13], where the discussion on

the topological characteristics and limitations for achieving

global stabilization on the SO(3) manifold provide important
guidelines for the design of observers.

Recently, nonlinear attitude observers on SO(3) have
been proposed. In [12] a locally exponentially convergent

attitude observer is proposed using a monocular camera and

inertial sensors, and observability conditions are studied. An

eventually globally exponentially convergent angular velocity

observer, expressed in the Euler quaternion representation,

is derived in [13] by exploiting attitude and torque mea-

surements. The nonlinear attitude observer proposed in [14]

also yields globally exponential convergence to the origin,

using attitude and inertial measurements. A nonlinear com-

plementary attitude filter is derived in [8], using the rotation

matrix parametrization and producing an almost globally

exponentially convergent estimator.

However, [8], [13], [14] assume that an explicit quater-

nion/rotation matrix attitude measurement is available, ob-

tained by batch processing sensor measurements such as

landmarks, image based features, and vector readings. This
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approach does not take into account the sensor characteris-

tics, and the impact of the sensed quantities geometry on

the estimation problem cannot be analyzed. Also, position

estimation is not addressed in these references.

In this work, the position and attitude of a rigid body

are estimated by exploiting landmark readings and velocity

measurements directly. Based on a conveniently defined land-

mark estimation error, a Lyapunov function is proposed and a

constructive derivation of the feedback law is presented. This

framework provides a geometric insight on the necessary and

sufficient conditions for attitude and position determination.

The derived output feedback architecture yields almost

global exponential stability (GES) of the desired equilibrium

point on SE(3). Almost global exponential stability is ex-
tended for the case of biased linear velocity readings. The

influence of the landmark configuration on the directions of

the closed-loop trajectories is also analyzed.

As pointed out in [7], [9], a topological obstacle to

continuous global stabilization arises from the fact that SE(3)
is not diffeomorphic to an Euclidean vector space, which

implies that there is no continuous state feedback law that

yields global asymptotic stability of an equilibrium point.

The relaxation from global to almost global stability adopted

in this paper provides a suitable framework for SE(3), where
convergence to the equilibrium point is guaranteed for any

initial condition outside a set of zero measure.

The paper is organized as follows. In Section II, the

position and attitude estimation problem is introduced and

the available sensor information is detailed. The attitude

and position observer is derived in Section III by crafting

a Lyapunov function based on the landmark measurement

error, and necessary and sufficient conditions for attitude

and position determination are discussed. The proposed Lya-

punov function is decoupled into independent position and

attitude components that are addressed separately, yielding

almost global exponentially stabilizing feedback laws. The

presence of unknown velocity sensor bias is also studied.

In Section IV the feedback law is expressed as a function

of the sensor readings (output feedback architecture) and

it is shown that the asymptotic convergence of the system

trajectories is determined by the landmark geometry. The

simulation results of Section V illustrate the observer proper-

ties for time-varying linear and angular velocities. Section VI

presents concluding remarks and comments on future work.

II. PROBLEM FORMULATION

Landmark based navigation, illustrated in Fig. 1, can be

summarized as the problem of determining attitude and posi-



Fig. 1. Landmark Based Navigation

tion of a rigid body using landmark observations and velocity

measurements. The rigid body kinematics are described by

˙̄R = R̄ [ω̄×] , ˙̄p = v̄ − [ω̄×] p̄,

where R̄ is the shorthand notation for the rotation matrix
L
BR from body frame {B} to local frame {L} coordinates, ω̄
and v̄ are the body angular and linear velocities, respectively,

expressed in {B}, p̄ is the position of the rigid body with
respect to {L} expressed in {B}, and [a×] is the skew
symmetric matrix defined by the vector a ∈ R

3 such that

[a×]b = a × b, b ∈ R
3. Without loss of generality, the

local frame is defined by translating the Earth frame {E} to
the landmarks centroid, as depicted in Fig. 1.

The body linear and angular velocities are measured by a

Doppler sensor and a rate gyro sensor triad, respectively

ωr = ω̄, vr = v̄. (1)

The landmark measurements, illustrated in Fig. 1, are ob-

tained by on-board sensors that are able to track terrain

characteristics, such as CCD cameras or ladars,

qr i = q̄i = R̄′Lx̄i − p̄, (2)

where Lx̄i represent the coordinates of landmark i in the

local frame {L}. By the definition of the frame {L} origin,
the coordinates of the landmarks centroid are invariant with

respect to the frame {B} orientation, that is,

n
∑

i=1

Lx̄i = 0 ⇒
n

∑

i=1

R′Lx̄i = 0. (3)

The proposed observer which estimates the position and

attitude of the rigid body takes the form

˙̂
R = R̂ [ω̂×] , ˙̂p = v̂ − [ω̂×] p̂,

where ω̂ and v̂ are the estimated body angular and linear

velocity, respectively.

The position and attitude errors are defined as p̃ :=
p̂ − p̄ and R̃ := R̂R̄′, respectively. The Euler angle-axis

parametrization of the rotation error matrix R̃ is described
by the rotation vector λ ∈ S(2) and by the rotation angle

θ ∈
[

0 π
]

, yielding the DCM formulation [11] R̃ =
rot(θ,λ) := cos(θ)I + sin(θ) [λ×] + (1 − cos(θ))λλ

′. The

attitude and position error dynamics are a function of the

linear and angular velocity estimates and given by

˙̃R = R̃
[

R̄(ω̂ − ω̄)×
]

, (4)

˙̃p = (v̂ − v̄) − [ω̄×] p̃ + [p̂×] (ω̂ − ω̄). (5)

The attitude and position feedback laws are obtained by

defining ω̂ and v̂ as a function of the velocity readings (1)

and landmark observations (2), so that the closed loop po-

sition and attitude estimation errors converge asymptotically

to the origin, i.e. R̃ → I, p̃ → 0 as t → ∞.

III. OBSERVER SYNTHESIS

The proposed candidate Lyapunov function is character-

ized by the estimation error of the landmark readings

V =
1

2

n
∑

i=1

‖q̂i − qr i‖
2. (6)

where q̂i := R̂′Lx̄i− p̂ denotes the coordinates of landmark

i computed from the observer estimates R̂ and p̂, and the

known vector Lx̄i. The landmark geometry is considered

to yield sufficient information about attitude and position if

the Lyapunov global minimum at q̂i = qr i, i = 1..n is
equivalent to R̃ = I, p̃ = 0, i.e. the landmark measurements
in the body frame correspond to a single attitude and position

configuration.

In this section, the attitude and position feedback laws

are formulated. It is shown that the Lyapunov function is a

linear combination of two independent position and attitude

Lyapunov functions, which allows for the separate derivation

of the position and attitude feedback laws. The closed loop

system is demonstrated to have an almost GES equilibrium

point R̃ = I, p̃ = 0. The compensation of velocity sensor
bias is also addressed.

A. Lyapunov Function Properties

The proposed Lyapunov function can be described as a

linear combination of distinct position and attitude compo-

nents, V = VR + Vp, given by

VR =
1

2

n
∑

i=1

‖x̂i − x̄i‖
2 = tr

[

(I − R̃)XX′
]

= (1 − cos(θ))λ
′
Pλ, Vp =

n

2
p̃′p̃, (7)

where x̂i := R̂′Lx̄i, x̄i := R̄′Lx̄i, X :=
[

Lx̄1 · · · Lx̄n

]

∈ M(3, n) and P := tr(XX′)I−XX′ ∈
M(3). The time derivatives of proposed Lyapunov functions
are expressed by

V̇R =
[

XX′R̃ − R̃′XX′⊗
]′

R̄(ω̂ − ω̄)

= λ
′
PQ(θ,λ)R̄(ω̂ − ω̄), (8)

V̇p = np̃′([p̂×] (ω̂ − ω̄) + (v̂ − v̄)), (9)

where Q(θ,λ) = sin(θ)I + (1 − cos(θ)) [λ×] and ⊗ is the
unskew operator such that [[a×]⊗] = a,a ∈ R

3.



The decoupling property of the Lyapunov function allows

for the attitude and position estimation problems to be

addressed separately [4]. The feedback law for the attitude

dynamics (4) is derived using the Lyapunov function VR,

while the position feedback law is obtained by studying the

position error (5) using Vp.

B. Attitude Feedback Law

In this section, the feedback law for the estimation of atti-

tude is derived. To that end, the conditions which guarantee

that ‖Bx̂i−
Bx̄i‖ = 0 if and only if R̃ = I are presented. The

geometric placement of the landmarks is required to satisfy

the following assumption:

Assumption 1 (Landmark Readings): There are at least

three noncolinear landmarks.

From (3), the condition of Assumption 1 can be expressed

as ∃i6=j∀α∈R : Lx̄i 6= αLx̄j or rank(X) ≥ 2. As shown in
the next lemma, Assumption 1 is equivalent to VR > 0.
Lemma 1: The Lyapunov function VR has a unique global

minimum if and only if Assumption 1 is verified

∀R̃6=I
VR > 0 if and only if ∃i6=j∀α∈R : Lx̄i 6= αLx̄j .

Proof: See Appendix A.

It is instructive to analyze why rank(X) = 1 is not

sufficient to determine attitude. If ∀i,j

L
xi

‖Lxi‖
= ±

L
xj

‖Lxj‖
,

simple algebraic manipulations show that any attitude error

R̃ = rot(θ,λ) such that λ =
L
xi

‖Lxi‖
implies VR = 0. This is

related to the well known fact that a single vector observation

(such as the Earth’s magnetic field) yields attitude informa-

tion except for the rotation about the vector itself [15], that

is, λ =
L
xi

‖Lxi‖
.

Given the Lyapunov function derivatives along the system

trajectories (8), a feedback law is defined to drive the attitude

error to zero,

ω̂ = ωr − Kωsω, (10)

where the feedback term is given by

sω :=R̄′
[

XX′R̃ − R̃′XX′⊗
]

= R̄′Q′(θ,λ)Pλ, (11)

and Kω is a positive scalar. The attitude feedback yields an

autonomous closed loop attitude dynamics

˙̃R =Kω(XX′ − R̃XX′R̃), (12)

and a negative semidefinite derivative for VR given by V̇R =
−Kωs′ωsω ≤ 0. It is immediate that the attitude feedback
law produces a Lyapunov function that decreases along the

system trajectories and, by LaSalle’s invariance principle,

guarantees global convergence to the largest invariant set

contained in the set defined by V̇R = 0.
Lemma 2: Under Assumption 1, the set of points where

V̇R = 0 is given by

CVR = {R̃ ∈ SO(3) : R̃ = I ∨ R̃ = rot(π, λ ∈ eigvec(P))}

= {(θ, λ) ∈ Dλ : θ = 0 ∨ (θ = π, λ ∈ eigvec(P))},

where Dλ =
ˆ

0 π
˜

× S(2) .

Proof: See Appendix A.

The open loop dynamics of the Euler angle-axis repre-

sentation [2] are given by θ̇ = λ
′R̄(ω̂ − ω̄), and λ̇ =

1
2

(

I − sin(θ)
1−cos(θ) [λ×]

)

[λ×] R̄(ω̂ − ω̄). The closed loop dy-

namics are straightforward from (10)

θ̇ = −Kω sin(θ)λ′
Pλ, (13a)

λ̇ = Kω [λ×] [λ×]Pλ, (13b)

where it is clear that the dynamics of λ are autonomous.

The closed loop dynamics (13) show that CVR is invariant

and, from LaSalle’s invariance principle, the attitude error

converges to the set CVR . To show that, in fact, the trajec-

tories of the closed loop converge to the origin R̃ = I for

any initial condition outside a zero measure set, the notion

of stability is relaxed by introducing the definitions of region

of attraction and almost global stability [1], [6].

Definition 1 (Region of Attraction): Consider the autono-

mous system ẋ = f(x) evolving on a smooth manifoldM,
where x ∈ M and f : M → TM is a locally Lipschitz man-

ifold map. Suppose that x = x∗ is an asymptotically stable

equilibrium point of the system. The region of attraction for

x∗ is defined as

RA = {x0 ∈ M : φ(t,x0) → x∗as t → ∞},

where φ(t,x0) denotes the solution of the system with initial
condition x = x0.

For any continuous state feedback law, the region of

attraction of a stable equilibrium point is homeomorphic to

some Euclidean vector space [7]. A topological limitation

to global stability stems from the fact that SO(3) is not
homeomorphic to any Euclidean vector space, which implies

that RA 6= SO(3) for any equilibrium point candidate.
Definition 2 (Almost GAS / GES [1], [6]): Consider the

autonomous system ẋ = f(x) evolving on a smooth man-
ifold M, where x ∈ M and f : M → TM is a locally

Lipschitz manifold map. The equilibrium point x = x∗ is

said to be almost globally asymptotically stable if it stable

and M \ RA is a set of zero measure. If x = x∗ is

also exponentially stable, it is almost globally exponentially

stable.

It is also necessary to define the distance on SO(3),
inherited by the Euclidean norm [10], d(R1,R2) := 1

2‖R1−
R2‖2. The distance of R̃ to the identity matrix I, denoted

as lI(R̃) := d(R̃, I), is given by l2I(R̃) = 2(1 − cos(θ)).
Almost global exponential stability of the origin is shown in

the following theorem.

Theorem 3: The closed-loop system (12) has an almost

GES equilibrium point at R̃ = I, that is, for any R̃(t0) ∈
RA there exist positive constants kR and λR such that the

solution of the system (12) satisfies

lI(R̃(t)) ≤ kRe−λR(t−t0)lI(R̃(t0)). (14)

The region of attraction is given by

RA = SO(3) \ {R̃ ∈ SO(3) : tr(I − R̃) = 4}

= {(θ,λ) ∈ Dλ : θ < π}.



Proof: Define the Lyapunov function

WR :=
1 − cos(θ)

2
, ẆR = −

Kω

2
sin2(θ)λ′

Pλ. (15)

The set of points where ẆR = 0 is given by

CW = {R̃ ∈ SO(3) : R̃ = I ∨ R̃ = rot(π,λ)}.

Since ẆR ≤ 0, the set contained in a Lyapunov function
surface

Ωρ = {R̃ ∈ SO(3) : WR ≤ ρ}

is positively invariant [3], [6], that is, any trajectory starting

at t0 in Ωρ satisfies R̃(t) ∈ Ωρ for all t > t0, where the time

variable t is explicitly denoted for the sake of clarity.

Note that WR < 1 ⇒ θ < π. For any ρ < 1, the
Lyapunov function is strictly decreasing in Ωρ, which implies

that − [1 + cos(θ(t))] < − [1 + cos(θ(t0))] < 0. Rewriting
the Lyapunov function time derivative as ẆR = −Kω(1 +
cos(θ))λ′

PλWR, and applying the comparison lemma [6]

yields

Ẇ (R̃(t)) ≤ −Kω [1 + cos(θ(t0))] σ1(P)W (R̃(t)) ⇒

W (R̃(t)) ≤ e−2λR(t−t0)W (R̃(t0))

where λR = 1
2Kω [1 + cos(θ(t0))] σ1(P), and σ1(P) is the

smallest singular value of P. Using WR = 1
4 l2I(R̃) produces

(14) for θ(t0) < π.

Given the closed loop dynamics (13b), it is straightforward

to show that θ(t0) = π ⇒ θ̇ = 0 so the set CW \ {I}, which
corresponds to the boundary of RA, is positively invariant.

C. Position Feedback Law

The methodology adopted to derive the attitude feedback

law is repeated for the position case. It is immediate that Vp

is positive definite and Vp = 0 if and only if p̃ = 0. The
position feedback law for the system (5) is defined as

v̂ = vr + ([ωr×] − KvI)p̃ − [p̂×] (ω̂ − ωr)

= v̄ + ([ω̄×] − KvI)sv + Kω [p̂×] sω, (16)

where the feedback term is

sv :=p̃, (17)

and Kv is a positive scalar. The position feedback law

produces a closed loop linear time-invariant system

˙̃p = − Kvp̃, (18)

and the exponential stability of the origin is straightforward.

Theorem 4: The equilibrium point p̃ = 0 of the position
error dynamics (18) is globally exponentially stable in R

3.

Proof: Exponential convergence to the origin is imme-

diate from the solution of the linear time invariant system

(18), given by p̃(t) = e−λp(t−t0)p̃(t0), where λp = Kv .

In some applications, it is necessary to estimate the

position with respect to the origin of a specific coordinate

frame {E}, described by Bp̂E = p̂ + E
BR̂′EtL, where

EtL

represents the coordinates of the origin of {L} with respect

to {E}, expressed in {E}. Without loss of generality, the
orientations of {E} and {L} satisfy E

BR̂ = L
BR̂.

As presented in the following proposition, the estimation

error Bp̃E = p̃ + E
BR̄′(I− R̃′)EtL converges exponentially

fast to the origin. The proof is based on well known

properties of the Euclidean norm, and omitted due to space

constraints.

Proposition 5: The position estimation error Bp̃E con-

verges to the origin, and is bounded by an exponentially

decreasing term

‖Bp̃E(t)‖ ≤ e−λ1(t−t0)c1

where λ1 = min{λp, λR} and c1 = ‖p̃(t0)‖+lI(R̃(t0))‖
EtL‖.

D. Velocity Bias

In this section, we extend the previous results for the case

where the velocity sensor readings are corrupted by a bias

term. In this setup, the velocity readings are described by

vr = v̄ + b̄v

where the nominal bias is considered constant, ˙̄bv = 0. The

proposed Lyapunov function (6) is augmented to account for

the effect of the velocity bias

Vbv
=

n

2
p̃′p̃ +

1

2
b̃′

vWbv
b̃v,

where b̃v = b̂v−b̄v is the bias compensation error, b̂v is the

estimated bias andWbv
is a positive definite matrix. Clearly,

Vbv
has an unique global minimum at (p̃, b̃v) = (0, 0).
The feedback law for the linear velocity is given by com-

pensating the bias of the velocity reading in (16), producing

v̂ = vr − b̂v + ([ωr×] − KvI)p̃ − [p̂×] (ω̂ − ωr)

= v̄ − b̃v − Kvsv + [p̂×] sω + [ω̄×] p̃. (19)

Using the linear velocity feedback law (19), the augmented

Lyapunov function dynamics are

V̇bv
= −Kvnp̃′p̃ + (

˙̃
b′

vWbv
− np̃′)b̃v.

Noting that
˙̂
bv =

˙̃
bv , the bias feedback law is defined as

˙̂
bv = Kbv

p̃ = Kbv
sv,

and Wbv
= n

Kbv
I where Kbv

is a positive scalar. The

resulting closed loop dynamics are autonomous and given

by

˙̃p = −b̃v − Kvp̃,
˙̃
bv = Kbv

p̃. (20)

and the Lyapunov function dynamics are described by V̇bv
=

−Kvnp̃′p̃ < 0.
Theorem 6: The equilibrium point (p̃, b̃v) = (0, 0) of the

closed-loop position and bias error dynamics (20) is globally

exponentially stable.

Proof: The set of points where V̇bV
= 0 is given by

CVb v
= {(p̃, b̃v) ∈ R

3 × R
3 : p̃ = 0}. To show asymptotic

stability, we apply LaSalle’s invariance principle [6]. The

closed loop system (20) satisfies p̃ ∈ CVb v
⇒ ˙̃p = 0 ⇒

b̃v = 0, so the largest invariant set in CVb v
is {(0, 0)}.

Exponential stability of the origin is a direct consequence

of the solution of linear time-invariant systems [6].



IV. OBSERVER PROPERTIES

This section points out important characteristics of the

observer. Namely, it is shown that the position and attitude

feedback laws can be expressed as an explicit function of the

sensor readings. To gain further insight on how the solutions

of the attitude system evolve, we analyze the closed-loop

trajectories of the attitude error dynamics in the Euler angle-

axis representation.

A. Output Feedback

The feedback terms formulated in (11) and (17) are

functions of the nominal attitude R̄ and position p̄, which

are not available directly from the landmark readings. In this

section, it is shown that the position and attitude feedback

laws can be expressed as an explicit function of the landmark

readings.

Theorem 7: The feedback laws (10) and (19) are explicit

functions of the sensor readings and state estimates

ω̂ = ωr − Kωsω,

v̂ = vr − b̂v + ([ωr×] − KvI)sv + Kω [p̂×] sω,

where sω =
∑n

i=1 (x̂i × qr i) and sv = p̂ + 1
n

∑n
i=1 qr i.

Proof: Using the centroid invariance with respect to

coordinate frame orientation (3), it is straightforward to show

that sv = p̂ + 1
n

∑n
i=1 q̄i.

Using R [K⊗] = [RKR′⊗], where K = −K′, and the

rotation error definition yields sω =
[

BX̄BX̂′ − BX̂BX̄′⊗
]

,

where BX̂ := R̂′X and BX̄ := R̄′X. Using
∑n

i=1 x̂iq̄
′
i =

BX̂BX̄′ and q̄ix̂
′
i − x̂iq̄

′
i = [(x̂i × q̄i)×] yields sω =

∑n
i=1 (x̂i × q̄i).

B. Euler Angle-Axis Parametrization Dynamics

The closed loop trajectories of the system in the Euler

angle-axis parametrization are analyzed.

Theorem 8: The origin of the system (13a) is asymptot-

ically stable, with region of attraction described by {θ ∈
[0, π] : θ < π}, and θ decreases monotonically.
Assuming that the singular values of P satisfy σ1(P) <

σ2(P) < σ3(P), the asymptotic convergence of the Euler
axis is described by

(

λ(t) → sgn(u′
1λ(t0))u1 as t → ∞, if u′

1λ(t0) 6= 0

λ(t) → {u2,u3} as t → ∞, if u′
1λ(t0) = 0

.

where ui is the unitary eigenvector associated with σi(P).
Proof: The region of attraction of θ = 0 is immediate

from Proposition 3. The Lyapunov function (15) is strictly

decreasing in RA, and ∀t2,t1 W (R̃(t2)) < W (R̃(t1)) ⇒
θ(t2) < θ(t1), so θ(t) converges monotonically to the origin.
The rotation vector dynamics (13b) are autonomous. De-

fine the Lyapunov function

Vs = 1 + su′
1λ, V̇s = su′

1λ (λPλ − σ1(P)) ,

in the domain S(2), where s ∈ {−1,+1}. From the Schwartz
inequality, the Lyapunov function is positive definite and

Vs = 0 ⇔ λ = −su1. Assuming that the eigenvalue has

multiplicity 1, the set of point where V̇s = 0 is given by

CVs
= {λ ∈ S(2) : λ = ±u1 ∨ u′

1λ = 0}.

The Lyapunov time derivative V̇+1 and V̇−1 is indefinite in

the domain S(2). For the initial conditions su′
1λ(t0) < 0

define 0 < β < 1 such that su′
1λ(t0) ≤ β−1. The level sets

Ωs
β = {λ ∈ S(2) : Vs(λ) ≤ β} are positively invariant. The

unique points where V̇s = 0 in Ωs
β , given by λ = −su1, are

asymptotically stable.

To analyze the case u′
1λ(t0) = 0, the property u′

1λ =
0 ⇒ u′

1λ̇ = 0 shows that the set defined by u′
1λ = 0

is positively invariant. The trajectories of λ (and hence the

positive limit set) are independent of θ, so Lemma 2 implies

that λ(t) → {u2,u3} as t → ∞.
The asymptotic convergence for the specific case

∃i6=jσi(P) = σj(P) can be obtained by following the same
steps of the proof of Theorem 8. In particular, if ∃σP = σI,

then the solution to (13b) is given by λ(t) = λ(t0).

V. SIMULATIONS

In this section, the proposed attitude and position ob-

server properties are illustrated in simulation. The landmarks

are placed on the xy plane Lx̄1 =
[

0 1 0
]′
, Lx̄2 =

[

1
2 − 1

2 0
]′
and Lx̄3 =

[

− 1
2 − 1

2 0
]′
, which satisfies

the conditions expressed in Assumption 1. The singular

values of P are all distinct. The smallest one is characterized

by σ1(P) = 0.5 and is associated with the eigenvector u1 =
[

0 1 0
]′
. The feedback gains are given by Kp = Kω = 1,

and the rigid body trajectory is computed using oscillatory

angular and linear rates of 1Hz.
As shown in Fig. 2(a), the attitude error converges expo-

nentially to R̃ = I. The attitude error trajectory is below the

exponential bound (14), that is more conservative for larger

values of θ(t0).
The position estimation error p̃ decays exponentially, as

illustrated in Fig. 2(b), and the position estimation error with

respect to Earth frame Bp̃E is bounded by an exponentially

decaying term. Using the bias feedback gain Kbv
= 0.5, the

bias compensation error converges to the origin, as depicted

in Fig. 2(c).

The Euler axis trajectories in the hemisphere u′
1λ ≥ 0,

depicted in Fig. 3, illustrate the asymptotic convergence

discussed in Section IV-B. Clearly, λ(t) → u1 as t → ∞
for u′

1λ > 0 and the border u′
1λ = 0 is an invariant set.

VI. CONCLUSIONS

A nonlinear observer for position and attitude estimation

on SE(3) was proposed and almost global exponential sta-
bility (GES) of the origin was obtained. The results were

extended for the case of biased linear velocity readings.

The proposed Lyapunov function defined by the landmark

measurement error allowed for i) deriving independent po-

sition and attitude feedback laws ii) gaining a geometric

insight on the required landmark configuration for attitude

determination. Future work will focus on the exact discrete

time implementation of the algorithm.
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APPENDIX

A. Definitions and Proofs

In this section, the sets referenced in this work are defined,

and the properties of VR are derived. The set of n × m

matrices with real entries and the subset of square matrices

are denoted byM(n,m) and M(n) := M(n, n), respectively.
The sets of orthogonal, special orthogonal and special Eu-

clidean matrices are respectively defined as O(n) = {U ∈
M(n) : U′U = I}, SO(n) = {R ∈ O(n) : det(R) = 1},
SE(n) is the product space [11, p.35] of SO(n) with R

n,

SE(n) = SO(n)×R
n, and the n-dimensional sphere is given

by S(n) = {x ∈ R
n+1 : x′x = 1}.

Proof: [Lemma 1] From (7), the zeros of VR are θ = 0
or λ ∈ N (P). The singular value decomposition of X yields
P = Udiag (s2

22 + s2
33, s

2
11 + s2

33, s
2
11 + s2

22)U
′, whereU ∈

O(3) and s11 > s22 > s33 are the singular values ofX. Then

P > 0 if and only if {s11, s22} 6= 0, i.e. rank(X) ≥ 2.

Proof: [Lemma 2] The points where V̇R = 0 are given
by sω = 0 ⇔ Q′(θ,λ)Pλ = 0 ⇔ sin(θ)Pλ − (1 −
cos(θ)) [λ×]Pλ = 0. For any x ∈ R

3, x and [λ×]x are
noncolinear, so sω = 0 if and only if θ ∈ {0, π}. For the
θ = π case, [λ×]Pλ = 0 ⇔ ∃αPλ = αλ, so V̇R = 0 if
and only if θ = 0 ∨ (θ = π ∧ λ ∈ eigvec(P)).
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