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1. INTRODUCTION

Motion control is the key building block in the
development of any control architecture for au-
tonomous vehicles involved in the execution of
realistic mission scenarios. Motion control systems
must yield good performance in the presence of
external disturbances and plant uncertainty. This
is specially relevant in the case of marine vehicles
operating in harsh environments, under the influ-
ence of wind, waves, and currents.

This paper addresses a specific problem of motion
control that is commonly referred to as path
following. Its main contribution is the derivation
of a nonlinear, adaptive controller for a fully-
actuated marine vessel to steer it along a desired

1 Research supported in part by project GREX / CEC-
IST (Contract No. 035223), project MAYA-Sub of the
AdI (PT), the FREESUBNET RTN of the CEC, and the
FCT-ISR/IST plurianual funding program (through the
POS-Conhecimento Program initiative in cooperation with
FEDER).

spatial path in the presence of unknown, constant
ocean currents and parametric model uncertainty.

In what follows we consider a general class of
vessels that can be modelled by equations of the
form (see Section 2)

ẋ1 = f1(x1) + G1(x1)x2 + φ1(x1)b1 , (1a)
ẋ2 = f2(x1,x2) + G2(x1,x2)u + φ2(x1,x2)b2 ,

(1b)
y = h(x1,x2) , (1c)

where x1, x2 are components of the state, u is
the control input, the functions f1, f2, and the
maps G1, G2 are smooth, and b1, b2 are unknown
constant biases or disturbances. It is assumed that
G1(x1) and G2(x1,x2) are nonsingular for all x1,
x2, and that all variables are of the same dimen-
sion, that is, x1, x2, u, b1, b2 ∈ Rn. The plant
is in strict feedback form (Krstić et al. 1995) and
represents a class of fully-actuated n-degrees-of-
freedom (n-DOF) mechanical systems. The biases
b1 and b2 are unknown in the sense that their
time evolution is neither known in advance, nor



can it be measured by sensors mounted on the
vessel. Equations (1a) and (1b) can be regarded
as the kinematics and dynamics of the vessel,
respectively, and (1c) represents the output of the
system. Since u has dimension equal to the degrees
of freedom of the vessel, the vehicle is said to be
fully-actuated.

One particular type of adaptive control problem
for model (1) consists in computing a state feed-
back controller of the form

u = u(x, b̂) , (control law) (2)
˙̂b = function of (x, b̂) , (adaptation law) (3)

(where x = (x1,x2), b = (b1, b2), and b̂(t) ∈
R2n denotes the estimate of b) whose goal is to
drive y(t) to zero or a small neighbourhood of
the origin, while keeping all closed-loop signals
bounded. For the case of surface vessels, the term
b1 captures the influence of the ocean current at
a kinematic level, while b2 represents unknown
disturbances.

To compensate for the effect of constant un-
known biases, it is common practice in linear time-
invariant control systems design to include an
extra integrator state for each unknown bias since
this will guarantee zero steady-state error (under
the assumption that the closed-loop system is
stable). However, for general nonlinear systems
a straightforward extension of this technique is
not available, and the adhoc inclusion of inte-
gral action in a feedback controller may lead to
unwanted oscillations in the closed-loop system
response (Skjetne and Fossen 2004).

In (Skjetne et al. 2005), the effect of ocean cur-
rents is modelled as a disturbance at the dynamic
level (b1 is considered zero). In this set-up, even
a constant current will show up as a time-varying
disturbance in the body-axis dynamic equations
of motion. For this reason, in this paper an ocean
current is modelled as a constant unknown bias in
the kinematic equations of motion of the vessel.

The above approach to current modeling is pur-
sued in (Aguiar and Pascoal 2002), where a non-
linear adaptive controller is presented for the
problem of dynamic positioning and way-point
tracking of an underactuated AUV (in the hor-
izontal plane) in the presence of a constant un-
known ocean current disturbance and paramet-
ric model uncertainty. An exponential kinematic
observer is designed for the current velocity and
convergence of the resulting closed-loop system
trajectories is proved. The present work departs
from that of (Aguiar and Pascoal 2002) in that
an adaptive backstepping strategy is used, rather
than an observer-based approach.

Other related work can be found in (Refsnes et
al. 2005), where a strategy for tracking control and
station keeping of a 6-DOF fully-actuated vehicle

is proposed. A more general type of dynamic
disturbance is considered, to take into account
slowly varying current forces and moments, and
unmodelled dynamics. The bias is modelled as
a random process driven by zero-mean Gaussian
white noise. The compensation of the bias involves
the use of an observer and ensures exponential
stability for the closed-loop system.

One particular type of motion control involves
steering vehicles to and along desired paths with-
out specifying a temporal law. This is known
as the path-following control problem. As shown
in (Encarnação and Pascoal 2001, Skjetne et al.
2005), the solution to this problem is commonly
divided into two tasks: a geometric task, where
the vehicle is required to converge and remain on
the desired path; a dynamic task, that specifies a
time, speed, or acceleration assignment along the
path. In this paper, the path-following problem
is solved for a class of fully-actuated vessels with
3-DOF, subjected to an unknown ocean current
(considered at a kinematic level) and paramet-
ric model uncertainty, using adaptive nonlinear
control based on Lyapunov techniques and back-
stepping. The same methodology can be employed
for the case of 6-DOF autonomous underwater
vehicles, as long as the fully-actuated condition
is verified.

The paper is organised as follows. Section 2 de-
scribes the dynamic model of the autonomous ve-
hicles considered. The problem of path-following
is formally stated in Section 3. In Section 4, a
strategy for path-following is developed. Section 5
gives an illustrative example where simulation re-
sults are presented. Finally, in Section 6 conclu-
sions and directions for future work are presented.

2. VEHICLE MODELING

A surface vessel is modelled as a rigid body
subject to external forces and torques. Let {I}
be an inertial coordinate frame and {B} a body-
fixed coordinate frame with its origin at the centre
of mass of the vehicle, as represented in Fig. 1.
The generalized position of the vehicle is η :=
(x, y, ψ), where (x, y) are the coordinates of the
origin of {B} in {I} and ψ is the orientation of
vehicle (yaw angle) that parameterizes the matrix
J(ψ), transforming body coordinates into inertial
coordinates, given by

J := J(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 .

Denote by ν := (u, v, r) the generalized velocity
of the vehicle relative to {I}, expressed in {B}.
In general, the fluid is in motion. To take into
account this motion, let νf = (uf , vf , rf ) be the
generalized velocity of the fluid relative to {I}
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Fig. 1. Inertial and body-fixed coordinate frames.

expressed in {B}. Because the fluid is assumed
to be irrotational, rf = 0. Let νc = (uc, vc, 0)
be the velocity of the ocean current, expressed
in {I}. The velocities νf and νc are related
by νf = J>νc. Assuming the ocean current is
constant, ν̇c = 0. Let νr := ν − νf denote the
relative velocity between the vessel and the fluid.
The following kinematic relations apply:

η̇ = Jνr + νc , (4a)

J̇ = rJS , (4b)

where S is the skew-symmetric matrix

S =

0 −1 0
1 0 0
0 0 0

 ; (S> = −S) .

In what follows, we consider a fully-actuated
vehicle with equations of motion of the form
(Fossen 1994),

M ν̇r = τ − C(νr)νr + f(νr) (5)

where M ∈ R3×3, M � 0 denotes a constant
symmetric positive definite mass matrix, C(νr)νr

captures Coriolis and centripetal effects, τ :=
(τu, τv, τr) is the generalized control input con-
sisting of forces τu, τv and torque τr, and f(νr)
represents the hidrodynamic damping forces and
torques acting on the body. For the special case
of surface vessels, M includes also the so-called
hydrodynamic added-mass MA, i.e., M = MRB +
MA, where MRB is the rigid-body mass matrix.
Equation (5) depends on a set of physical param-
eters, some of which are often only known with
great uncertainty. In fact, while the coefficients
of M and C(νr) can be determined with reason-
able accuracy, some of the coefficients related to
the hydrodynamic damping f(νr) are difficult to
measure, so they should be considered unknown
or uncertain and estimated by the adaptive con-
troller to be designed. Let np be the total number
of hydrodynamic coefficients or parameters, and
let ϕ ∈ Rnp be the vector that represents them.
It is assumed that these parameters are constant
(ϕ̇ = 0) and that f(νr) depends linearly on
ϕ. This implies that f(νr) can be expressed as

Φ(νr)ϕ with Φ(νr) ∈ R3×np . Therefore, (5) can
be rewritten as

M ν̇r = τ − C(νr)νr + Φ(νr)ϕ . (6)

Define ϕk ∈ Rnk as the vector of known param-
eters and ϕu ∈ Rnu as the vector of uncertain or
unknown parameters, such that np = nk+nu, and

Φ(νr)ϕ = Φk(νr)ϕk + Φu(νr)ϕu , (7)

where Φk(νr) ∈ R3×nk and Φu(νr) ∈ R3×nu .
Replacing (7) in (6) yields

M ν̇r = τ − C(νr)νr + Φk(νr)ϕk + Φu(νr)ϕu .

To summarise, the equations of motion of a vessel
with parametric model uncertainty, subject to an
ocean current, are

η̇ = Jνr + νc , (8a)

M ν̇r = τ − C(νr)νr + Φk(νr)ϕk + Φu(νr)ϕu .

(8b)

System (8) belongs to the class of systems that
can be written as in (1) by making x1 = η and
x2 = νr. In this case, one has φ1(x1) = I3,
b1 = νc, φ2(x1,x2) = Φu(νr), and b2 = ϕu.

3. PROBLEM STATEMENT

Before stating the path-following problem, define
the estimate of the ocean current, expressed in
{I}, as ν̂c := (ûc, v̂c, 0), where only the first
two components need to be estimated since the
fluid is assumed irrotacional. The estimates of the
uncertain parameters are represented by ϕ̂ ∈ Rnu .
The adaptation laws for ν̂c and ϕ̂ are chosen as
functions of state variables, in order to guarantee
that the vehicle follows the desired path. It is not
required that the estimates converge to the actual
values of the associated variables. The problem of
path-following is stated formally as follows:

Path-following problem: Let ηd(γ) ∈ R3 be a de-
sired path parameterized by a continuous variable
γ ∈ R and υd(γ) ∈ R a desired speed assignment.
Suppose also that ηd(γ) is sufficiently smooth and
its derivatives (with respect to γ) are bounded.
Design a control law for τ and adaptation laws
for ν̂c and ϕ̂, such that: all closed-loop signals
are bounded; the position of the vehicle converges
to the desired path, i.e, ‖η(t)− ηd(γ(t))‖ → 0 as
t→ +∞ (geometric task); and the vehicle satisfies
the desired speed assignment along the path, i.e,
|γ̇(t)− υd(γ(t))| → 0 as t→ +∞ (dynamic task).

4. PATH-FOLLOWING

The path-following controller developed here is
inspired by the work in (Encarnação and Pascoal
2001) and (Skjetne et al. 2005). However, it goes



one step further in that it allows for the con-
sideration of unknown ocean currents together
with parametric model uncertainty. Backstepping
techniques are used to derive the controller, by it-
eratively introducing control-Lyapunov functions
(Krstić et al. 1995).

Step 1. Coordinate transformation: Define the
position error in the body-fixed frame as z1 :=
J>(η − ηd) and the current estimation error as
ν̃c := νc − ν̂c. The dynamic equation of z1 is

ż1 = J̇>(η − ηd) + J>(η̇ − ηγ
d γ̇)

=−rSJ>(η − ηd) + J>(Jνr + νc − ηγ
d γ̇)

=−rSz1 + νr + J>(ν̂c − ηγ
d γ̇) + J>ν̃c , (9)

where ηγ
d = ∂ηd/∂γ. Let ζ := γ̇− υd(γ) represent

the “along-path” speed tracking error and rewrite
(9) as

ż1 = −rSz1+νr +J>(ν̂c−ηγ
dυd)+J>(ν̃c−ηγ

dζ).
(10)

Step 2. Convergence of z1: Define a first control-
Lyapunov function as

V1 :=
1
2
z>1 z1 ,

whose time derivative is

V̇1 = z>1
(
νr +J>(ν̂c−ηγ

dυd)
)
+z>1 J

>(ν̃c−ηγ
dζ),
(11)

where the fact that z>1 Sz1 = 0 for all z1 is used.
Define the velocity error z2 := νr − α, where
α := −J>(ν̂c−ηγ

dυd)−K1z1 and rewrite (11) as

V̇1 = −z>1 K1z1 + z>1 z2 + z>1 J
>(ν̃c − ηγ

dζ) .

Step 3. Backstepping for z2: First, the time
derivative of α is decomposed in three terms

α̇ = σ + αγ γ̇ −K1J
>ν̃c ,

where the functions σ and αγ are defined as

σ :=−K1(νr − rSz1 + J>ν̂c)

+ rSJ>(ν̂c − ηγ
dυd)− J> ˙̂νc , (12)

αγ :=K1J
>ηγ

d + J>(ηγ2

d υd + ηγ
dυ

γ
d ) , (13)

with ηγ2

d = ∂2ηd/∂γ
2 and υγ

d = ∂υd/∂γ. Notice
that σ depends on ˙̂νc that is still undefined. The
dynamic equation of z2 is then

M ż2 = τ − Cνr + Φkϕk + Φuϕu −M (σ + αγ γ̇)

+MK1J
>ν̃c .

The uncertain parameters estimation error is de-
fined as ϕ̃ := ϕu − ϕ̂. Define a second control-
Lyapunov function as

V2 = V1 +
1
2
z>2 Mz2 =

1
2
z>1 z1 +

1
2
z>2 Mz2 ,

whose time derivative is

V̇2 =−z>1 K1z1 + z>1 J
>(ν̃c − ηγ

dζ) + ϕ̃>Φ>
u z2

+ z>2
(
z1 + τ − Cνr + Φkϕk + Φuϕ̂ (14)

−M(σ + αγυd)
)
− z>2 Mαγζ + z>2 MK1J

>ν̃c.

Using the feedback law

τ = −z1−K2z2+Cνr−Φkϕk−Φuϕ̂+M(σ+αγυd)
(15)

with K2 � 0, and substituting in (14), yields

V̇2 = −z>1 K1z1 − z>2 K2z2 + ρ>ν̃c + π>ϕ̃ + µζ,
(16)

where the following auxiliary functions are used:
µ = −(ηγ

d)>Jz1 − (αγ)>Mz2, π = Φ>
u z2 and

ρ = J(z1 +K1Mz2).

Step 4. Feedback law for γ̈: Define a third control-
Lyapunov function

V3 := V2 +
1

2λβ
ζ2 =

1
2
z>1 z1 +

1
2
z>2 Mz2 +

1
2λβ

ζ2,

(17)
where λ, β > 0. Its time derivative is

V̇3 =−z>1 K1z1 − z>2 K2z2 + ρ>ν̃c + π>ϕ̃

+
(

1
λβ

ζ̇ + µ

)
ζ . (18)

Making
ζ̇ = −λζ − λβµ (19)

and replacing in (18), yields

V̇3 = −z>1 K1z1 − z>2 K2z2 + ρ>ν̃c + π>ϕ̃− 1
β
ζ2.

(20)
Taking into account that ζ̇ = γ̈−υγ

d γ̇, the feedback
control law for γ̈ becomes

γ̈ = −λζ − λβµ+ υγ
d γ̇. (21)

Step 5. Adaptation laws for ν̂c and ϕ̂: Define a
fourth control-Lyapunov function as

V4 = V3 +
1
2
ν̃>c Σ+ν̃c +

1
2
ϕ̃>Γ−1ϕ̃

=
1
2
z>1 z1 +

1
2
z>2 Mz2 +

1
2λβ

ζ2 +
1
2
ν̃>c Σ+ν̃c

+
1
2
ϕ̃>Γ−1ϕ̃ , (22)

where Γ � 0 and Σ+ is the pseudoinverse of

Σ =
[
Σ1 0
0 0

]
with Σ1 ∈ R2×2 and Σ1 � 0. The last row
and column of Σ are both zero because the last
component of νc is always zero (irrotacional fluid).
From ˙̃νc = − ˙̂νc and ˙̃ϕ = − ˙̂ϕ, the time derivative
of (22) becomes

V̇4 =−z>1 K1z1 − z>2 K2z2 −
1
β
ζ2

+ ν̃>c
(
ρ− Σ+ ˙̂νc

)
+ ϕ̃>(

π − Γ−1 ˙̂ϕ
)
.(23)

Using the laws
˙̂ν = Σρ , (24a)
˙̂ϕ = Γπ , (24b)

in (23) yields

V̇4 = −z>1 K1z1 − z>2 K2z2 −
1
β
ζ2 . (25)



As noted before, the function σ depends on ˙̂νc.
Replacing (24a) in (12) gives

σ =−K1(νr − rSz1 + J>ν̂c) + rSJ>(ν̂c − ηγ
dυd)

− J>Σρ .

Using (22) as candidate Lyapunov function, which
has a negative semidefinite time derivative (25),
and resorting to LaSalle’s invariance principle
(see, e.g., (Khalil 2002)), it is possible to prove
global asymptotic stability of the closed-loop sys-
tem. This is formally stated next.

Theorem 1. The controller formed by the control
law (15) and the adaptation laws (24), solves the
path-following problem. Moreover, ν̂c(t) tends to
νc asymptotically.

PROOF. Let q := (z1,z2, ν̃c, ζ) and z :=
(q, ϕ̃). Showing that q tends asymptotically to
zero and that ϕ̃ is bounded (in fact it tends to a
constant value) for the closed-loop system, proves
the theorem. The closed-loop system dynamics of
z1 and z2 are

ż1 =−rSz1 + z2 −K1z1 − J>ηγ
dζ

+ J>ν̃c , (26a)

M ż2 =−z1 −K2z2 −Mαγζ +MK1J
>ν̃c

+ Φuϕ̃ . (26b)

Let V (z) = V4(z1,z2, ν̃c, ϕ̃, ζ), where V4(·) is
defined in (22), be a candidate Lyapunov function.
The function V : Rp → R, where p = 9 + nu (ν̃c

has dimension two), is a differentiable, radially
unbounded and positive definite function. The
time derivative of V (z) is given by (25) which
is a negative semidefinite function. Therefore, it
can be concluded that the closed-loop system
is stable, that is, all variables are bounded. To
guarantee convergence of q to zero, it is necessary
to analyse the set of points where V̇ (z) is zero.
Let Ωc = {z ∈ Rp : V (z) ≤ c} be a sublevel set
of V (z). Because V̇ (z) ≤ 0 and V (z) is radially
unbounded, the set Ωc is compact and positively
invariant, i.e., a solution that starts in Ωc stays
in Ωc for all t ≥ 0. Let E = {z ∈ Ωc : V̇ (z) =
0} = {z ∈ Ωc : z1 = z2 = 0 ∧ ζ = 0} be
the set of points where V̇ (z) is zero, and let z(t)
be a solution that belongs to E . By definition,
z2(t) ≡ 0 implies νr ≡ α. Also, z1(t) ≡ 0 implies
ż1(t) ≡ 0. Replacing in (26a), yields J>ν̃c(t) ≡
0 ⇒ ν̃c(t) ≡ 0 because rank J = 3. On the other
hand, z2(t) ≡ 0 implies ż2(t) ≡ 0. Replacing
in (26b), gives Φu(α(t))ϕ̃(t) ≡ 0. Using (24b),
yields ˙̂ϕ(t) ≡ 0 which implies ϕ̂(t) ≡ constant.
Therefore, ϕ̃(t) ≡ constant. Hence, only solutions
that belong to the set M = {z ∈ Ωc : q = 0 ∧
ϕ̃ = a}, where a ∈ Rnu is a constant vector that
verifies Φu(α(t))a = 0, can remain identically
in E . Notice that a is not necessarily the zero
vector because Φu(α(t)) may not be full rank.

Table 1. Physical parameters.

Type of parameter Symbol Value Units

Mass* mu 421.8 Kg
mv 1008.1 Kg

Moment of Inertia* Ir 690.5 Kgm2

Hydrodynamic Xu −0.5 Kgm/s
Damping X|u|u −0.5 Kg/m

Y|r|v −339.0 Kg

Yvv −121.2 Kg/m
Nr −0.26 Kgm2/s
N|r|r −1764.2 Kgm2

*added mass terms included.

Using (Khalil 2002, Theorem 4.4), we conclude
that any solution starting in Ωc approximates M
when t → ∞, hence ‖q(t)‖ → 0 when t → ∞.
Because V (z) is radially unbounded, the result
is global, since given an initial state z(t0), the
constant c can be chosen arbitrarily large so that
z(t0) ∈ Ωc. Since ‖η(t)−ηd(γ(t))‖ = ‖z1(t)‖ → 0
and |γ̇(t) − υd(γ(t))| = |ζ(t)| → 0, the path-
following problem is solved. Moreover, because
ν̃c(t) tends to zero asymptotically, the estimate
ν̂c(t) tends asymptotically to νc. 2

5. AN ILLUSTRATIVE EXAMPLE

Consider a vehicle whose equations of motion can
be written as in (8), with

M =

mu 0 0
0 mv 0
0 0 Ir

 , C(νr) =

 0 −mvr 0
mur 0 0

0 0 0

 ,
ϕ =

(
Xu, X|u|u, Y|r|v, Yvv, Nr, N|r|r

)
,

Φ(νr) =

ur |ur|ur 0 0 0 0
0 0 |r|vr vrvr 0 0
0 0 0 0 r |r|r

>.
Matrices Φk and Φu are partitions of Φ com-
patible with the choice of uncertain parameters
ϕu = (X|u|u, Y|r|v, Yvv, N|r|r). The physical pa-
rameters of the vessel are given in Table 1. In
the simulation presented, the desired path is a
lemniscate centered at the origin and has “width”
a = 40 m. The path-following controller gains
are K1 = 0.04I3, K2 = 200I3, λ = 0.05 and
β = 0.01. The initial conditions of the vehicle are
(x, y, ψ) = (30m, 0, π/2 rad) and u = v = r = 0
(vehicle at rest). The desired speed assignment is
given by υd(γ) = 0.5 − 0.2 sin(2γ/a)[m/s]. The
ocean current is set to νc = (1,−1, 0)[m/s]. The
adaptation gains are Σ = diag(10−3, 10−3, 0) and
Γ = diag(10, 104, 2×102, 107). The estimates of
both the current and the parameters are initialised
with a 30% error around their true values. Fig. 2
illustrates the trajectory of each vehicle. As can
be seen, the vehicle converges to the desired path,
thus compensating the effect of the ocean current.
This is corroborated in Fig. 3 where the position
and orientation errors given by ‖p(t) − pd(γ(t))‖
and ψ(t)−ψd(γ(t)), respectively, converge asymp-
totically to zero. As mentioned before, the esti-
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mate of the ocean current converges asymptoti-
cally to its actual value as shown in Fig. 4. Fig. 5
shows the temporal evolution of the (signed) rela-
tive parameter estimation error ϕ̃rel = [ϕ̃rel

i ]nu×1,
where each component is defined as

ϕ̃rel
i :=

ϕ̃i

ϕui
× 100 [%] for i = 1, 2, . . . , nu .

As noted earlier, the estimation errors of some
uncertain parameters do not tend to zero.

6. CONCLUSIONS AND FUTURE WORK

A nonlinear adaptive control law was derived for
a class of fully-actuated vehicles in the presence of
constant unknown ocean currents and parametric
model uncertainty. Controller design was rooted
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Fig. 5. Temporal evolution of the relative param-
eter estimation error.

in Lyapunov based techniques and backstepping.
Convergence of the closed-loop system was for-
mally proved and an illustrative example with
simulation results was presented and discussed.
Further work is required to extend the results to
the case of time-varying ocean currents and to
underactuated vehicles.
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