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Abstract: This paper presents a Vehicle Dynamics (VD) aiding technique to
enhance position, velocity, and attitude error estimation in low-cost Inertial
Navigation Systems (INS), with application to Underwater Vehicles (UV). The VD
model is directly embedded in an Extended Kalman Filter (EKF) and provides
specific information about the rigid body tridimensional motion unavailable from
the INS computations, thus allowing for a comprehensive improvement of the
overall navigation system performance. A tightly-coupled inverted USBL is also
adopted to enhance position and attitude estimation using range measurements to
transponders in the vehicle’s mission area. The overall Navigation System accuracy
improvement is assessed in simulation using a nonlinear model of the Infante UV.
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1. INTRODUCTION

Recent technological developments and environ-
mental research have boosted the use of Under-
water Vehicles (UV) to ensure the fulfillment of
several tasks at sea. The missions to be carried out
include environmental monitoring, geological and
biological surveys, and inspections of several un-
derwater structures such as harbors and pipelines
(Pascoal et al., 2000). The execution of these tasks
often requires high accuracy instrument position-
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ing at affordable costs, and consequently the use
of compact, low-cost, high performance, robust
positioning and navigation systems that can accu-
rately estimate the UV position and orientation.

Performance degradation and limitations inherent
to low-cost Inertial Navigation Systems (INS),
associated to open-loop unbounded estimation er-
rors, uncompensated sensor noise, and bias effects,
are often tackled by merging additional informa-
tion sources using nonlinear filtering techniques.
Among a diverse set of techniques, the Extended
Kalman Filter (EKF) in a direct-feedback config-
uration (Brown and Hwang, 1997) is commonly
adopted to estimate and compensate the INS in-
tegration errors buildup.

Previous work by the authors has focused on solv-
ing the sensor fusion problem using an Ultra-Short
Baseline (USBL) array of receivers to compute the
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Fig. 2. Navigation system block diagram

position of one or more transponders placed at
known positions in the UV mission area. A tightly-
coupled solution was presented in (Morgado et
al., 2006) in which the set of range measurements
(from the transponders to each receiver) available
at the USBL array is directly embedded in the
EKF instead of using the transponders position
estimates as measurements (loosely-coupled solu-
tion).
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Fig. 1. Mission scenario

The scientific community striving to improve low-
cost navigation systems accuracy has directed
much of the efforts towards the inclusion of Vehi-
cle Dynamics (VD) model in the INS (Bryson and
Sukkarieh, 2004; Koifman and Bar-Itzhack, 1999;
Julier and Durrant-Whyte, 2003). The vehicle
model dynamics yield unique data that provides
a comprehensive set of observations of the inertial
system errors and allows for enhanced INS error
compensation. Moreover, the vehicle model is a
software based, passive information source valid
for most operating scenarios, that is not subject to
interference and jamming as generic aiding sensors
are.

In this paper we present a VD model inclu-
sion technique for underwater vehicles inspired on
the embedding methodology recently proposed in
(Vasconcelos et al., 2006). Simulation results are
presented using a VD model of the Infante UV
developed at ISR (Silvestre and Pascoal, 2004).
The considered mission scenario is illustrated in
Figure 1, where the vehicle is equipped with an
INS and an USBL array, in an inverted USBL
configuration (Vickery, 1998), that interrogates

transponders located in known positions of the
vehicle’s mission area.

The paper is organized as follows: the main as-
pects of the navigation system and the proposed
architecture are reviewed in Section 2. Section 3
describes the USBL system and the integration of
the sensors information into the navigation system
structure. The VD model integration technique is
brought to full detail in Section 4, to improve UV
navigation systems accuracy. Simulation results of
the overall navigation system are presented in Sec-
tion 5. Finally, Section 6 draws some concluding
remarks and comments on future work.

2. NAVIGATION SYSTEM ARCHITECTURE

The proposed navigation architecture is depicted
in Figure 2. The INS is the backbone algorithm
(Savage, 1998a; Savage, 1998b) that performs at-
titude, velocity and position numerical integration
from rate gyro and accelerometer triads data,
rigidly mounted on the vehicle structure (strap-
down configuration). The non-ideal inertial sen-
sor effects due to noise and bias are dynami-
cally compensated by the EKF that estimates
position, velocity, attitude and bias compensation
errors, according to the direct-feedback configura-
tion shown in the figure. Given the control inputs,
the VD equations are implemented in the EKF
state model and merged with the INS data, which
allows for a significant improvement of the INS
error estimates accuracy.

The INS multi-rate approach, based on the work
detailed in (Savage, 1998a; Savage, 1998b), com-
putes the dynamic angular rate/acceleration ef-
fects using high-speed, low order algorithms,
whose output is periodically fed to a moderate-
speed algorithm that computes attitude/velocity
resorting to exact, closed-form equations. The nu-
merical integration performed by the INS algo-
rithms takes into account the angular and linear
velocity and position high-frequency motions, re-
ferred to as coning, sculling, and scrolling respec-
tively, to avoid estimation errors buildup.

The inputs provided to the inertial algorithms
are the accelerometer and rate gyro readings,



corrupted by zero mean white noise n and random
walk bias, b = ny, yielding

Bagp =8 5+Bg—(5ba+na, w=w—0b,+n,

where 6b = b — b denotes bias compensation
error, b is the nominal bias, b is the compensated
bias, Bg is the nominal gravity vector, and the
subscripts a and w identify accelerometer and rate
gyro quantities, respectively.

The moderate-speed inertial algorithms attitude
output is represented in Direction Cosine Ma-
trix (DCM) form, and velocity and position are
expressed in Earth frame coordinates, v and p
respectively. For further details on the INS al-
gorithm adopted in this work, see (Morgado et
al., 2006) and references therein.

The EKF error equations, based on perturbational
rigid body kinematics, were brought to full detail
by Britting (Britting, 1971), and are applied to lo-
cal navigation by modeling the position, velocity,
attitude and bias compensation errors dynamics,
respectively

op = ov

6v = —Réb, — [RPagrx]dA + Rn,
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5ba = —1y,
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where the position and velocity linear errors are
defined respectively by

w

‘p=p—p,0v=v-—V, (1)

matrix R is the shorthand notation for Body to
Earth coordinate frames rotation matrix, R, p
is the nominal Body frame origin position relative
to the Earth coordinate frame, v is the nominal
linear velocity, the attitude error rotation vector
S is defined by R(6A) = RR/, bearing a first
order approximation
R((SA) ~T3y3 + [(SAX] = [(5}\)(] ~RR — Is.3
(

2)
of the Direction Cosine Matrix (DCM), where R
represents nominal rotation matrix.

The EKF error estimates are fed into the INS error
correction routines as depicted in Figure 2. The
INS attitude estimate, R, , is compensated using
the rotation error matrix R(6A) definition, which
yields X
Ry =R (6A)R;,

where R}, (6Ak) is parameterized by the rotation
vector A according to the DCM form. The re-
maining state variables are linearly compensated
using

P; =p, —6Pr . Vi =vi—6%
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After the error correction procedure is completed,
the EKF error estimates are reset maintaining the
filter linearization assumptions valid.

3. USBL SYSTEM

The USBL sensor consists of a small and compact
array of acoustic transducers that allows for the
computation of a transponder position in the
vehicle coordinate frame, based on the travel time
of acoustic signals emitted by the transponder.
The measurements provided by these systems
have very low update rates (typically below 1
Hz) imposed by physical limitations and mission
specific constraints (velocity of acoustic waves
in the water, multi-path phenomena, and other
disturbances), with a performance that degrades
as the transponder /USBL distance increases.

The measurement of travel time is obtained from
the round trip travel time of the acoustic signals
between the USBL array and the transponder.
Taking into account the quantization performed
by the acoustic system, the travel time measure-
ments for receiver ¢ are given by

t; +€c:|
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where ¢, is the nominal travel time, e, repre-
sents the common mode noise for transponder j
(common to all receivers - includes transponder-
receiver relative motion time-scaling effects and
errors in sound propagation velocity), Ts is the
acoustic sampling period and [] represents the
mathematical round operator. The travel time
measurements are considered to be approximately
described by

ti—T€|:

t,=t, +mn, (4)
where 7, represents the measurement noise for
receiver ¢ (corresponds to the differential quanti-
zation error induced by the acoustic system sam-
pling frequency and the digital implementation of
the detection algorithms).

The measurement of distance obtained from the
round trip travel time of the acoustic signals
between the USBL array and the transponders,
is given by

Pii = Pji T 0 = V5 + 0 (5)
where p;; and ¢,; represent, respectively, the nom-
inal distance and travel time from transponder j
to receiver i, and v, represents the propagation
velocity of acoustic waves underwater.

The distance between transponder j and receiver
i is given by

- —p—Rp,.

J i

= *p.

p;i =\ "P., — "Pn,

(6)
where “p.. and “p,, represent the position of
transponder j and receiver i respectively in Earth
coordinate frame, and ”p,. is the position of
receiver ¢ in Body coordinate frame.

Using the position error definition (1) and the
approximation (2) in (6) yields (Morgado et al.,
2006)
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which is integrated into the EKF as observations
for each receiver by linearizing p,; about the
filter state space variables and the INS estimated
quantities.

4. VEHICLE AIDING

Merging the VD model information with the INS
enhances the overall navigation system observabil-
ity, since the vehicle model provides redundant
angular and linear velocities estimates given the
control inputs to the vehicles actuators (thrusters,
control surfaces deflection angles, etc). The VD
aiding architecture adopted in this paper is in-
spired on the work presented in (Vasconcelos et
al., 2006). As depicted in Figure 2, the vehicle
model dynamic equations are directly integrated
in the filter state space and are used to propagate
the INS quantities, allowing the EKF to estimate
and compensate for the inertial errors.

Consider the VD equations for a generic UV
= fu (@, 0, R,S8) (8)
u=f, (w,u,R,Ss) (9)

where @ is the vehicle nominal angular velocity,
1 is the nominal linear velocity, R represents the
vehicle orientation relatively to the Earth coordi-
nate frame (rotation matrix from Body to Earth
coordinate frame expressed in DCM format), §
represents the control input vector, and the func-
tions f,, f. describe the vehicle dynamics.

e

The VD equations are linearized about the INS
states using the first order terms of the Taylor
expansion series of (8-9), and integrated in the
filter state space model. Approximation of the VD
equations by the first order terms of the Taylor
series expansion yields

w=f,(@,u,R,s) (10)
%.fw (w7u7R7s) - aa% dw—
Ofw Ofe dfw
a=f,(w,1,R,s) (12)
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where dw = w — w is the angular velocity error,
du = u — u is the linear velocity error, A\ is the
attitude error, ds is the control input error which
is considered to be ds = 03y since the control
input s is known, and z = (w,v,R) denotes the
INS state estimates. The body linear velocity error

ou is then expressed in terms of the INS state
errors as

Su=R'v-RVx~RIv+R [vx]dX (14)
and is plugged in (11) and (13) along with the

angular velocity error definition dw = —déb,, + n,,
bearing
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(8]::, Z’R’ [vx] — % m) O+
g{jwébw— %{:gﬁnw (15)
u= f, (w,u,R,s)— % wRI(SV—
(85'{1: R [vx] — g({;\ z) O+
% g, 2% 0, s

Equations (15-16) bear a first order approxima-
tion of the VD equations as a function of the INS
estimates. Equations (8-9) are numerically inte-
grated using the inertial quantities as an initial
condition, and described in the state space model
of the EKF using (15-16). The filter observations
are obtained from the INS estimates

Zy = w
=w —db, +n, (17)

2y =R'v (18)
~ R (1= [Ax]) ¥ + R'6v
~u+R'6v+R [vx]dA (19)

which are compared to the angular and linear
velocities obtained from the integration of (8-9).

The filter update equations are reformulated to
account for the correlation between process and
observations noises introduced by the observation
of the INS estimated angular velocity in (17)
(Gelb, 1974). In the prediction step, the EKF
and the INS propagate the inertial states using
the VD and INS equations, respectively. In the
update step, the filter computes the inertial errors
estimates, which are used to correct the INS and
inertial sensors according to the direct-feedback
structure.

5. SIMULATION RESULTS

The VD integration scheme proposed in this paper
was assessed in simulation using a nonlinear model
of the Infante UV developed at ISR, illustrated
in Figure 3. For details on the Infante vehicle
dynamic model the reader is referred to (Silvestre
and Pascoal, 2004).

The USBL array is composed of five acoustic re-
ceivers, installed on the nose cone of the vehicle



according to the configuration depicted in Figure
3 and detailed in Figure 4, and interrogates one
transponder located at the origin of the Earth co-
ordinate frame. The maximum distance between
the receivers is 20 cm, and there are no more than
three coplanar hydrophones. The Time-Of-Arrival
(TOA) of the acoustic waves arriving at the re-
ceivers are considered to be disturbed by zero
mean Additive White Gaussian Noise (AWGN)
with a variance of (100us)? prior to the quan-
tization procedure (note that this AWGN is the
same for all receivers and that the differential
disturbance is induced by the quantization). The
TOA at the receivers are generated in simulation
using (3) whereas the respective observations are
modeled in the EKF using (4). The quantization
was performed with a sampling frequency of 400
kHz.
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Fig. 4. Receivers installation geometry

The INS high-speed algorithm is set to run at 100
Hz and the normal-speed algorithm is synchro-
nized with the EKF, both executed at 50 Hz. The
USBL array provides measurements at 1 Hz, and
the VD corrections are performed at each execu-
tion of the EKF. The white Gaussian noise and
bias characteristics of the sensors are presented
in Table 1. A magnetometer is also used in the
proposed solution, as presented in (Morgado et
al., 2006), to provide measurements of the Earth
Magnetic Field and yielding attitude observability
improvements. In the simulations performed in
this section, the bias calibration error is of one
third of the nominal bias value on all inertial
Sensors axes.

The vehicle follows a path composed of an initial
straight line with a velocity of 2 m/s followed by
a dive to 10 meters and a series of 90 degrees

Table 1. Sensor errors

Sensor Bias Noise Variance
Rate gyro 0.05 °/s (0.02 °/s)?
Accelerometer 10 mg (0.6 mg)?
Magnetometer - (1 pG)?

left turns while performing a dive to 100 meters,
as illustrated in Figure 5. The improvement of
the VD inclusion is clearly verified in this figure,
where the trajectory estimated by the navigation
system running with the vehicle dynamics aiding
follows closely the real trajectory.
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Fig. 5. Infante Vehicle trajectory

Interestingly enough, a 4th order Runge - Kutta
(RK4) numerical integration method was found to
be suitable for solving the discretized VD equa-
tions without loss of accuracy on the overall navi-
gation system when compared to other higher or-
der discrete integration schemes, and thus suitable
for implementation on low power consumption

DSP hardware.

The costless software based VD aiding technique
contributes much to the enhancement of the ve-
hicle linear and angular velocities estimation, as
it can be evidenced by Figure 6 where the lin-
ear velocity estimation error is depicted. Indeed,
this contribution is also positively reflected on
improved position and attitude estimates as it
can be seen from the RMS values of the position,
velocity and attitude estimation errors (computed
after the initial 20 seconds transient is surpassed)
presented in Table 2, where dv, §0, and d¢ rep-
resent respectively the Yaw, Pitch, and Roll angle
estimation errors. Figure 7 clearly evidences the
enhancement in the vehicle position estimates.

Table 2. Summary of estimation errors

(RMS)
Position Opx [m] opy [m] 0pz [m]
Without VD 0.4075 0.7144 0.6454
With VD 0.0728 0.1940 0.1455
Velocity | dvx [m/s] | dvy [m/s] | v, [m/s]
Without VD 0.0579 0.0844 0.0429
With VD 0.0075 0.0141 0.0040
Attitude 51 [°] 60 [°] 8¢ [°]
Without VD 0.0694 0.0710 0.0706
With VD 0.0553 0.0546 0.0581




— — — Without VD
- — WithVD |

v, [m/s]

I I I I I I I 1
0 20 40 60 80 100 120 140 160 180 200
t[s]

Fig. 6. Velocity estimation errors
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Fig. 7. Position estimation errors

Despite the promising results, the use of the VD
model in real navigation systems must be ad-
dressed with appropriate care. As convincingly
discussed in (Julier and Durrant-Whyte, 2003;
Bryson and Sukkarieh, 2004), vehicle modeling
errors (model simplification assumptions, over-
parametrization of the model, unmodeled time-
varying parameters), unmodeled dynamics, and
perturbations such as vehicle load and underwa-
ter currents, may degrade the navigation system
performance if not correctly taken into account.

6. CONCLUSIONS

A vehicle dynamics inclusion technique was suc-
cessfully adopted in this paper to enhance posi-
tion, velocity and attitude estimates of Inertial
Navigations Systems. This type of INS aiding
techniques step forward as an inexpensive soft-
ware based solution that allows for a significant
enhancement of the inertial estimates, as it was
verified by the results of simulations performed.
Future work on this subject will have its main
focus on the implementation of the specific VD
aiding solution developed in this paper on the

on-board navigation system of the Infante vehicle
property of ISR.
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