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Abstract

This paper describes the development and design of vision-
based remote controlled cellular robots. Cellular robots
have numerous applications in industrial problems where
simple inexpensive robots can be used to perform different
tasks that involve covering a large working space. These
robots are controlled based on the visual input from one
or more cameras that monitor the working area. As a
result, a robust control of the robot trajectory is achieved
without depending on the camera calibration. The remote
user simply specifies a target point in the image to indicate
the robot final position.

We describe the complete system at various levels: the vi-
sual information processing, the robot characteristics and
the closed loop control system design, including the stabil-
ity analysis when the camera location is unknown. Results
are presented and discussed.

1 Introduction

The remote surveillance of a working space is a prob-
lem often found in many applications (surveillance, in-
spection, mine localization, space exploration, underwa-
ter, etc). We describe the design of simple and inexpensive
cellular robots that can operate individually or coopera-
tively, in a remote area [14].

Each robot has a very simple and inexpensive design and
communicates via radio to a central processing unit, where
all the costly system components are installed. We as-
sume that a surveillance camera is available that allows
the remote user to visualize the operation scenario. The
user specifies commands simply by indicating in the im-
age, the desired end position or trajectory for each robot.
The robot is controlled through visual feedback [5], and
all the problems related to the camera calibration (intrin-
sic and extrinsic parameters) are embedded in the control
system, in a way transparent to the user. This simpli-
fies the installation and system operation by not requiring
the calibration of the camera coordinate system relative
to that of the workspace. This general setup is illustrated
in Figure 1.
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Figure 1: Overall system setup

We can extend this paradigm to the case where a robot is
capable of several local autonomous behaviors that may
be launched or coordinated by a remote user. In this way,
the user is not subject to long, tedious, routine opera-
tions which can be performed by autonomous behaviors
[12]. On the other hand, with this supervised autonomy
mode, the whole system [2, 10] can benefit from the pres-
ence of an operator in the loop, in terms of security and
performance.

Currently, we control the vehicle angular velocity to drive
the robot towards a goal point, while the linear velocity
is kept constant during the entire path.

Another aspect worth mentioning is related to the cam-
era (sensor) and ground plane (world) coordinate systems.
The overall goal is to control the vehicle towards a given
scene point or to follow a pre-specified trajectory. How-
ever, all the measurements (e.g vehicle position and ori-
entation) are taken on the image plane, thus consisting of
projections of the vehicle real position and orientation.

One could determine the relationship between image mea-
surements and the real variables and always transform
these measurements into the vehicle, or ground plane coor-
dinate system. However, image measurement errors would
be projected onto the ground plane in a non uniform man-
ner, as each image pixel subtends a different area of the
ground plane. The alternative solution is to control the ve-
hicle based on the image measurements directly, without
explicitly performing coordinate transformations. Then,
the system performance would no longer depend on the
calibration parameters. In our system, we can use both
control alternatives, but direct image based control is the
preferred choice.



Each robot, controlled via a radio link from a PC. Each
robot is identified by a 4 bit address and hence, we can
control up to 16 cellular vehicles. There are no on-board
sensors. See [1] for more details.

The host computer executes the tasks of determining the
robot position and orientation in the image coordinates,
and generates the proper control signals. The visual track-
ing system runs at about 8Hz, without using any special
image processing hardware.

We describe thoroughly the problem of designing a digital
control for the system, and a robust tracking procedure.
Additionally we show that the system is (locally) stable
independently of the unknown camera position and orien-
tation.

2  Visual Sensing

The system described in this paper involves two coordi-
nate frames. The world frame is used to describe the robot
position on the ground plane. The camera coordinate sys-
tem is required to express the robot position on the image
plane.

One way to develop the control system for the robot tra-
jectory, is to convert all the image measurements back
to the world coordinate frame. Alternatively, we can use
the image measurements directly to control the motion,
without an intermediate step of coordinate transforma-
tion. This latter approach avoids the need for estimat-
ing the projective transformation between the image and
ground planes.

For the sake of completeness, we describe the calibration
procedure in Appendix A. The first problem now is to
determine the vehicle position and velocity in the image.

2.1 Visual Tracking : the a — 3 tracker

To control the robot motion, we must sense its position
and heading direction over time, using the camera mon-
itoring the work space. These measurements must be
processed at a frequency allowing the closed loop control
strategy [4].

Since the camera is fixed, the vehicle image position is es-
timated by computing the differences between two consec-
utive images and computing the centroid of the detected
region. In addition, an adaptive window is used and this
operation is only performed in a small neighborhood of
the actual vehicle position. Whenever the vehicle is lost
by the tracking system, the adaptive window is progres-
sively enlarged thus covering a wider part of the visual
field. In general, the tracking system runs at a frequency
of about 8 Hz and is robust against multiple moving ob-
jects since the processing is done locally.

The visual process provides estimates of the vehicle im-
age position over time. These measurements have to be

used to estimate the vehicle heading direction. Estimat-
ing the trajectory direction from a set of densely sampled
position measurements is rather noisy. For small image
displacements the uncertainty on the angular orientation
is extremely high due to the discrete nature of the image
coordinates. The solution is to use a filter to estimate the
trajectory heading from position observations.

We model the target as a dynamical system where the
state vector is composed both of the vehicle position and
velocity, and the observations consist of the target position
over time:!

X(k)=[z T Z(k) =z (1)

The dynamic state-space model, assuming constant veloc-
ity, is given by:

X(k+1)

PX (k) + Yw(k)

Z(k) = CTX(k)+n(k)
= [ 0JX(k) +n(k) (2)

where 7 is the measurement uncertainty noise, assumed
to be a zero-mean white stationary process; w(k) is the
unknown target maneuver; ¢ and 1 are the state and
maneuver-state transition matrices:

1 T T?%/2

where T denotes the sampling period.

Under closed loop control, the target maneuvers may be
known, at least partially. The reason to consider the tar-
get maneuver as an unmodeled perturbation, is that there
are various unknown parameters and non linearities in the
real robot, that would need to be identified for a more ac-
curate system model.

The problem then, is to estimate the state vector using the
set of observations available up to the current sampling
instant:

X(klk) = F{Z(n) :n=0,1,...k}, 6,¢)
that minimizes the covariance matrix, P of state estima-
tion error, X (k):
X(k) = X(k)— X(klk)
P(klk) = E{XXT}
where we assume that the estimation error is zero mean.
In the ultimate case, the error covariance matrix is a func-

tion of the estimation process itself and of the measure-
ments and maneuvering noise variations, 0,27 and o2

P(k|k) = P(F, 0'2,0'12”).

IFor the sake of simplicity we represent the vehicle position by
x, even if it actually consists of both horizontal and vertical coor-
dinates. Hence the state is a 4-tuple vector and the observations a
2-tuple vector. Since the motion model along the x and y directions
is decoupled, we can apply the a — [ filter independently in both
directions.



Since the system is linear and the noise processes are
white, the optimal mean-squared-error (MSE) filtering is
the Kalman filter [7]. We can now use the tracking index,
introduced in [9], that characterizes the general tracking
problem and further simplifies the optimal tracking solu-
tion.

The tracking index, A, is defined as the ratio between the
position uncertainty due to the target maneuvers, and the
sensor measurement noise, and it is proportional to the
tracking period:

2
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The tracking index completely describes the tracking so-
lution since once A is determined, the optimal filter is im-
plicitly defined, together with the tracking performance

criterion:

Popi(klk) = Pope(k, X).

Now that the system model has been defined and the
tracking index introduced, the optimal steady-state filter
is given by:

Ifrediction P
X(klk—1)=¢X(k—-1]k—-1)

Filtering
X(klk) = X(k—1]k—1)+ K {Z(k) — CX(klk - 1)} where
K is the steady-state gain vector given by:

K =[a B/1)"

Given the tracking index, the optimal gains can be com-
puted in a straight forward manner, yielding:

A8 (A+4)VAZ 8
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Even in the cases when the vehicle maneuverability is not
known a priori, a smooth trajectory can be obtained using
low values for A. Since we have a constant sampling period
and the position measurement noise is about one pixel,
we can change the value of A, thus modifying the filter
bandwidth.

3 Robot Kinematics and Dynamics

To control the robots, we must define the various coor-
dinates systems attached to the robot - kinematics - and
provide a dynamic model to be used for controller design.

3.1 Kinematics

The vehicle has differential architecture where two DC
motors drive directly the left and right wheels, as shown
in Figure 2.
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Figure 2: Vehicle Kinematics

We consider a coordinate frame attached to the mid-point,
C in the wheels axis, as shown in Figure 2. The linear
and angular velocities of C, V., and w,, can be expressed
as a function of the angular velocities of the left and right
wheels wy, and wg; the half-distance between the wheels,
D, and the radius of the wheels R, according to :

Vc R/2 R/2 wr,

= (3)
We —R/D R/D WR

This jacobian matrix allows us then to determine the ve-
locity of the vehicle reference point, as a function of the
velocity of the wheels, and vice-versa.

3.2 Dynamics

The robot is equipped with DC motors and we assume
that the electrical pole can be discarded in comparison
with the dominant mechanical pole. The transfer function
relating the motor shaft velocity and the input voltage is
well approximated by a first-order dynamic system[11] :

K,
Ts+1

w(s) =

Uls) (4)

where 7 is the mechanical time constant, and K, is the
steady state gain.

Using the kinematic model, we obtain transfer functions
relating the left /right motor input voltages and the angu-
lar and linear velocities of the vehicle reference point:

wols) = 2 T Us(s), Uals) = Unls) ~ Un(s)
Vols) = 5 22Uu(9), Uels) = Un(s) +Uils) ()

In conclusion, we obtain two decoupled single-input-single-
output systems that can be controlled separately. We can
now design a control system for the vehicle heading (ac-
tuating on the differential voltage) and linear speed (ac-
tuating on the common voltage).



4 Control System Design

We consider only the design of the heading control system.
The control strategy consists in dynamically orienting the
vehicle heading towards the desired final point, with con-
stant linear velocity.

The digital controller [11] takes the vehicle position and
orientation as the input and generates the appropriate
differential voltages to control the trajectory heading, as
shown in Figure 3 (including an impulsive sampling block,
and a zero-order-hold circuit at the controller output).
The transfer function G(s) relates the vehicle heading to
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Figure 3: Control system
the differential voltage Uy:

K,

R
Gls) = D s(ts+1)

(6)

The impulsive transfer function including the Zero Order
Hold circuit and the process G(s) can be computed from
the Z-transform of the sampled input and output signals:

1—eTs R K,
Geal2) = T2 { s "Ds(rs+1) }
_ RK,7 AZ + B 1)
B D (Z-1)(Z—-eT/7)

where we have defined

A=e 1" 41/7 -1 B=1—-1+T/r)e 1"

An additional delay of one sampling period is introduced
by the image processing. Thus, the discrete open loop
transfer function is the following:

RK,7 AZ+ B
Gor(Z) = —p Z(Z —1)(Z — e TI7)

(®)

The root-locus corresponding to this transfer function is
shown on the left plot of Figure 42. Hence, for a certain
range of the gain, the system is stable and becomes un-
stable for large gains. Inserting an integral action would
make the system unstable, as there already is an integrator
in the loop. We have used a PD (proportional derivative

2We have used T = 0.125s and the system pole at 2H z, yielding
7 = 0.08. The open loop poles are located at {0,1,0.08} and the
zero at {—0.4487}.

controller) controller, with a pole at the origin and a zero
on the right hand side of the Z plane. The PD controller
improves the system stability and dynamic response. By
placing the controller zero close to one, we have a fast sys-
tem response. Figure 4 shows the corresponding system
root-locus (right plot).

4.1 Stability Analysis

So far, we assumed that the vehicle heading direction
could be measured directly. However, we only have access
to its projection on the image plane. Does the transfor-
mation introduced by the camera observations will alter
the system stability 7

Assuming that such transformation is known (for the cali-
bration procedure refer to Appendix A), one could always
convert image coordinates to ground plane coordinates.
The challenging problem however, is to design a stable
controller, assuming the camera calibration is unknown.
We show that the system is (locally) stable independently
of the (unknown) camera position and orientation, using
Liapunov’s second method for continuous systems [3].

We use a continuous-time second order system to describe
the relationship between the torque, u, applied at the vehi-
cle mid-point and the heading direction, 6 (see Section 3.2)

M +CO=p (9)

where M describes the system mass and C is a positive
constant related to the mechanical pole. The control sys-
tem error, 6., is the difference between the vehicle heading
and some specified reference direction, 6":

0. =06

The mapping between the angles, 6, measured on the
ground plane and the corresponding angles projected on
the image plane, 07, is denoted by H:

0 = H(0r) (10)

This function describes the viewing geometry. In general,
it depends on the orientation of the image plane relative
to the ground plane, on the viewing direction, on the angle
being measured and, finally on the absolute angle orien-
tation.

The mapping H(6;) is differentiable, provided that the
camera plane is not perpendicular to the ground plane,
that would give rise to singularities. Using equation (9)
and the differentiable (projective) mapping (10), we can
describe the dynamic evolution of the vehicle heading, as
seen in the image plane:

MM (07)0; + MH"(0:)0;" +CH (01)0; = (11)
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Figure 4: Left: Root-Locus for a proportional controller. Right: the zero of the PD controller is placed at Z = 0.9.

where we have used

_ OH(01)

, O*H (6
H (0r) = 9, = (61)

7
H (91) - ({99%

(12)

If we assume that H(07) varies slowly, we can use a lin-
earized model to describe the image evolution of the vehi-
cle heading:

MH'0; + CH'6; = (13)
where the constant H' is the slope of H(f;) evaluated
at a given angular position. One can now build a Lia-
punov function combining the system kinetic energy and
a quadratic term in the orientation error :

. 1 2 1 . 9
V(0;,0r) = QMH 0r + §Kp(01 —0r) (14)
where K, is a positive constant, and we assume for the
moment that H’ is positive. In these conditions, V' (0r,6r)
vanishes for the desired equilibrium point, (6;,60;) =
(07,0), and is positive elsewhere. Computing the time
derivative of V' (05, 0r) yields:
V(0r,6;) = MMH616; — K,(0] — 0,)0;
O {MH'0; — K, (05 —07)}

= 9[{” - CH/HI — KP(GF — 91)}
If we choose a control law given by:

w— K,(07 —0r) = —K,0; (15)

with K, being a positive scalar, it yields :

) . .2

V(BI, 9]) = —{CH’ + KU}QI

Since C' and K, are positive scalars, and H' was also as-
sumed to be positive, V(61,0r) is a negative semi definite
function. Hence (6;,0;7) = (67,0), is a stable equilibrium
point.

As the system described by equation (11) is an au-
tonomous system, to study the asymptotic stability we
need to invoke LaSalle’s theorem [13], considering the re-
gion where V (87, 6;) vanishes:

r = “&ﬁﬂeﬁ:ﬂ&ﬂﬁ:@

{me%mem:@

Among all the points (6, 6; = 0), only the desired equi-
librium point (6;,67) = (67, 0) is a solution of the system
equation (13). We can conclude that the control system is
asymptotically stable, and the original non-linear system
is locally asymptotically stable. The control law is then
given by:

n= KP(Q; - 91) - Kvél (16)

which is an image-based PD controller, that ensures (lo-
cal) stability of the closed-loop system.

The mapping H depends both on the camera position and
orientation relative to the ground plane, and on the partic-
ular image pixel and angle under consideration. Assuming
that H’ is positive means that, for an arbitrary camera lo-
cation, an increase of the angle between two image lines,
hy and hg, is due to an increase of the angle between by
the corresponding lines, H; and Hs, on the ground plane.
In other words, when the angle increases on the image
plane, the same happens with the angle generated by the
corresponding lines on the pavement. This idea is illus-
trated in Figure 5. This hypothesis holds for any camera
orientation, except when the image plane becomes per-
pendicular to the ground plane, or the viewing direction
tends to become perpendicular to the optical axis.

If the image plane is parallel to the ground plane, then
H’ is constant (equal to one) all over the image plane; the
model linearization is no longer an approximation, and
the closed loop control system is globally asymptotically
stable.



Figure 5: Increasing the angle between two image lines,
h1 and hs, yields an increase of the angle between the
corresponding lines, H; and Hs, drawn on the ground
plane.

The analysis of the global stability of the non-linear sys-
tem (11) can be made in a similar way. However, it re-
quires the knowledge about upper and lower bounds of H’
to implement the resulting control law.

5 Results

The system described in the previous sections was im-
plemented and tested. The control strategy consists in
regulating to zero the angular error between the robot
heading and the direction towards the final point, or to-
wards a way point over the trajectory to follow. Figure 6
shows the cellular robot developed for the experiments.

Figure 6: Cellular robot developed for the experimental
tests.

During normal operation, the user specifies the desired
end point or trajectory in the image coordinates. Figure 7
shows the image in the user’s interface where the robot
trajectory was superimposed.

Figure 8 shows the trajectory described by the vehicle
during a maneuver, together with the estimates of the ve-
hicle position and linear velocity obtained by the o — 3

Figure 7: Example of robot trajectory superimposed on
the image.

filter. The figure shows also the temporal evolution of
the angular error and distance to the target point. The
position and velocity estimates obtained with the o — 3
filter are smooth and provide reliable data to determine
the heading direction. Notice also that the angular er-
ror increases when approaching the final goal, when small
misalignements yield large angular errors. The last plot
shows the distance to the target measured perpendicularly
to the heading direction. As expected, the distance to goal
decreases linearly, as the linear velocity is kept constant.

The robot describes a curvilinear path, moving away from
the goal point and finally, towards the desired position.
The shape of the path is mainly due to the non-holonomic
constraints of the robot platform and on the saturation
imposed on the control values.

An aspect worth discussing is the inverse projection of
the orientation error measured in the image back to the
ground plane, using P, 1 (see Appendix). The measure-
ment error noise would be quite amplified in the areas
far from the camera (where the perspective effects are
stronger). In our system, the controller uses the error
measured in the image plane, which is directly connected
to the information available to the user in the system’s
interface. We achieve much smoother robot trajectories,
as opposed to the case where the error signal is back pro-
jected to the ground plane. The difference between image
and 3D position based control is discussed in [8].

6 Conclusions

Figure 9 shows the operation under trajectory following
and an example of two cellular robots cooperating to push
an object (white bar) to a desired configuration. We have
described an approach for remote control of cellular robots
using visual feedback obtained from a static camera view-
ing the robot workspace. This system offers a flexible
framework for robotic applications such as surveillance
and inspection, where the user can specify goal-points or
trajectories directly in image coordinates. Several test
examples were included, showing point-to-point and tra-
jectory following control modes, and an example of coop-
eration between two robots under vision based control.
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Figure 8: Robot trajectory during a maneuver, estimated velocities, angular error to target and distance to goal, over
time. The angular error tends to increase during the final approach, since at short distances a small misalignement
corresponds to a large angular deviation. However, the distance to the target measured perpendicularly to the robot
heading (last plot) approaches zero in a consistent manner.



Figure 9: Top: path executed by the cellular robot under
vision based control in trajectory following mode. Bottom:
two robots cooperating to push a bar.

By specifying the control goal in the image coordinates,
the overall accuracy of the system is independent of the
errors in the calibration of the camera intrinsic or extrinsic
parameters.

We have also shown that the closed-loop control system
is (locally) stable for any camera position/orientation ex-
cept when the image plane becomes perpendicular to the
ground plane. Naturally, the performance will be differ-
ent when the camera position is changed. The problem of
addressing the optimal control parameters for any camera
position orientation is being considered for future work.

One possible extension is the use of multiple cameras ob-
serving a large environment. From a theoretical point of
view this is exactly the same problem as the one described
in this paper. If the projection matrices are estimated, we
can relate pixels of the various images, simply by compos-
ing the various projective homographies.

Alternatively, if we prefer to keep the system uncalibrated,
it would not be necessary to explicitly relate the coordi-
nate systems of the various images, as the control could
be easily switched between the various cameras. Also, if
both the robot and the goal are visible in more than one
camera, one could use the multiple angular errors in the
global robot controller, thus explicitly benefiting from the
existence of multiple measurements to further improve the
accuracy.

A Determining the robot ground plane
coordinates

It is well known [6]that, under perspective projection, the
3D coordinates of a scene point, M, and the corresponding
image projection, m, are related by the following equation:

m = PM, with P=K[R|— Rt

where m and M are both expressed in projective coor-
dinates. The 3x4 projection matrix, P, depends on the
camera intrinsic parameters, K, and the camera orienta-
tion and position relative to the world frame R,t.

As the camera is observing a plane where the vehicle
moves, we can choose the world coordinate frame such
that the plane equation is given by Z = 0 and, as a result,
each image point will correspond uniquely to a certain
point on the plane, according to :

m = P,M
AT P11 P12 P13 X
Ay = D21 P22 P23 Y (17)
A P31 P32 D33 1

where X,Y denote
plane.

the vehicle position on the ground

Equation (17) expresses a plane-to-plane projective trans-
formation. 151, has 8 degrees of freedom (up to a scale fac-
tor) and can be determined from a minimum of four image
points with known coordinates on the ground plane. Once
]5p has been estimated, it can be used to convert image
coordinates to the ground plane and vice-versa.
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