
VISION BASED STATION KEEPING AND DOCKING

FOR FLOATING VEHICLES

S. van der Zwaan, A. Bernardino, J. Santos-Victor

Instituto de Sistemas e Robótica
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Av. Rovisco Pais, Torre Norte, 1049-001 Lisboa, Portugal
fax: + 351 21 8418291

e-mail: {sjoerd,alex,jasv}@isr.ist.utl.pt

Keywords: Visual servoing, tracking, underwater robots.

Abstract

This paper describes a method for station keeping and
docking of floating vehicles. We consider the case of a
lighter-than-air blimp and that of an underwater robot.
Due to the motion disturbances in the environment (cur-
rents), these tasks are important to keep the vehicle stabi-
lized relative to an external reference frame. The main dif-
ficulties to achieve station keeping and docking are related
to the non-holonomic constraints of the floating vehicles
moving in 3D, having a limited number of controllable de-
grees of freedom. The relative position of the vehicle with
respect to a docking station is tracked using vision. A
planar surface is chosen as a reference plane which allows
visual tracking of an environmental region, based on pla-
nar projective transformations. An image-based control
law is proposed together with a dynamic model for the
vehicles. Experiments both with a blimp and an under-
water vehicle are described and discussed.

1 Introduction

Recently, research on the utilization of unmanned aerial
vehicles has grown with an increasing interest on robotic
airships, also known as blimps or lighter-than-air vehi-
cles. The motivation behind it is that airships outperform
airplanes and helicopters in low-speed, low altitude appli-
cations, having an enormous potential for tasks like envi-
ronmental and traffic monitoring, climate research, trans-
portation, etc. Several references can be found in liter-
ature about airship modeling for autonomous navigation
[3, 4].

This work is integrated in the NARVAL1 project, where
one of the goals consists in using visual feedback for con-
trolling an underwater vehicle. Since the blimp kinematics
and dynamics are a reasonable approximation of those of
the submarine, we have used the blimp as a test-bed for ex-
periments in a laboratory environment. As water is more
viscous than air, the control may be simpler with the un-

1ESPRIT-LTR Project 30185, NARVAL - Navigation of Au-
tonomous Robots via Active Environmental Perception

derwater vehicie even though the visibility conditions may
get more difficult.

The problem addressed is that of controlling a small-sized
floating vehicle (either the indoor-blimp or the submarine)
in order to achieve station keeping and docking, based on
visual input. Station keeping consists in stabilizing the
vehicle against some external reference frame or environ-
mental region, thus rejecting external disturbances like
currents. The docking problem is intimately related to
station keeping, and consists of controlling the vehicle in
order to attain a desired position and orientation relative
to a chosen coordinate frame. Assuming that the tasks of
docking and station keeping are defined relative to short
range regions in the environment, one can use vision in
order to extract information about the vehicle’s pose and
use this information for visual servoing. In analogy to the
approach adopted in [5], an image-based visual servo-law
is proposed to close the control loop.

Assuming that an image patch is initially identified by
some user, the temporal changes of this image patch in-
duced by the vehicle’s motion, need to be tracked. As the
vehicle moves in 3D, such an image can be distorted ac-
cording to a fairly general set of deformations when com-
pared to those usually considered in robotics and com-
puter vision (translational or affine motions). In this pa-
per, the tracking system is based on full planar projective
transformations in real-time, thus accommodating a wide
set of possible image deformations.

Section 2 describes the method used for visual tracking of
the identified image patch. Section 3 describes the vehicles
used in this work, together with the dynamic model. The
control aspects are further detailed in Section 4 and ex-
periments are described in Section 5. Finally, in Section 6,
conclusions are drawn and future work is indicated.

2 Tracking of Image Regions

Given a reference image I0 and a target image I1, the
registration problem is that of computing an image trans-
formation (x′, y′) = ω (x, y), that maps a region R of the
reference image onto a specified region of the target image,
such that I1 (x, y) = I0

(
ω (x, y)

)
. Usually, these transfor-



mations, are parameterized as a function of a vector q:
ω(x, y) = ω(x, y;q). In this work we are mostly inter-
ested in tracking planar regions. Planar motions cannot
be adequately modeled by simple image transforms, like
affine or translational. A projective planar transformation
is the exact motion model when a camera rotates about
its eyepoint or if the image surface is planar [6]. The 2D
projective transformation depends on 8 parameters:

x′ =
q1x+ q2y + q3
q7x+ q8y + 1

, y′ =
q4x+ q5y + q6
q7x+ q8y + 1

(1)

To register the two image regions, the best possible match
can be obtained through the minimization of an error
function, using an appropriate norm, such as the sum-of-
squared-differences (L2-error criterion). We assume that
at each time instant we have a prediction of the current
transformation parameters, q0. The most simple predic-
tion may be the parameters of the previous step. In our
case we compute the optic flow in the region and adjust an
affine model to the computed flow, providing a first step
towards the solution so only small adjustments remain to
be made. Considering images as column vectors, the L2
error function is given by :

e(∆q) =
1
2
‖ I1 − Ī0 (∆q) ‖2 (2)

where Ī0(∆q) = I0(ω(x, y;q0 + ∆q)) and q0 is the ini-
tial prediction of the transform. To minimize this error
function, usual gradient descent methods use the partial
derivatives of Ī0(∆q) whose discrete approximations can
be computed as Ī0(δei) − I0, where ei is the i’th basis
vector and δ is an adequate value for discretization, de-
pending on the shape of the error function. However,
for an 8 dimensional space this method has a weak in-
terpolation capability, i.e. it only searches the space ef-
fectively in the coordinate directions, and within a range
determined by the parameter δ. Furthermore, minimiz-
ing eq. (2) using an exhaustive search on the parameter
space would be impractical. Instead we assume a set of
vectors {∆qi : i ∈ (1 . . .m)} that sample the parameter
space more densely for the expected image deformations
and range. The parameter vector ∆q can be expressed as
a linear combination of the various ∆qi:

∆q =
m∑

i=1

ki∆qi (3)

Now the image space can be considered as a function of
the parameter vector k = [k1 . . . km]T . The new parame-
terization is given by: Î0(k) = Ī0(

∑m
i=1 ki∆qi). For small

deviations about k = 0 we have the first order approx-
imation: Î0(k) ≈ I0 +

∑m
i=1

∂Î0
∂ki

ki. A suitable discrete
approximation of each partial derivative in the previous
equation is given by:

∂Î0
∂ki

= Î0(ei)− I0 = Ī0(∆qi)− I0 = Bi (4)

In [2], the set of vectors Bi are denoted ”Difference Tem-
plates” and are also used for image registration, but they
are justified in a different form. The error function now
takes the form:

e(k) =
1
2

m∑
i=1

‖ D −Bk ‖2 (5)

where D is the difference image I1−I0 and B is the partial
derivatives matrix: B = [B1 . . . Bm]. Vector k can be
determined minimizing:

mink ‖ D −Bk ‖2 ⇒ BTD −BTBk = 0 (6)

After determining k, the solution for ∆q can be calcu-
lated using the linear combination in eq. (3). Using the
updated estimates of the parameter vector ∆q, this pro-
cess can proceed in subsequent iterations and at different
resolutions of the image pyramid.

3 Vehicle Modeling

We have used a small-size indoor blimp equipped with
an on-board camera, radio control and video link. Addi-
tionally we have performed experiments with and Phan-
tom Underwater vehicle equipped with a steerable camera.
Both vehicles are illustrated in Figure 1.

Figure 1: Top: radio controlled indoor blimp with on-
board camera. Bottom: underwater vehicle (Phantom
500)

In order to derive a mathematical model, it is useful to
first review some physical principles of airship/submarine
operation [4]. Both vehicles have similar kinematics and
degrees of freedom. Additionally they move in 3D im-
mersed in a fluid (air/water). Hence the dynamic model



will be similar in the two cases as well. In this section we
refer mostly to the model of the blimp and the aerostatic
forces acting upon this vehicle. However, notice that a
very similar model is obtained for the ROV subject to
hydrostatic forces.

First of all, an important characteristic is the aerostatic
lift, which, unlike the lift forces generated over a wing
surface, is independent of flight speed. The aerostatic lift
force comes from Archimedes’ Principle and is equal to
the mass of the volume of air displaced by the airship’s
envelope. The aerostatic lift is also known as the buoyant
force. An upward lift is obtained when the vehicle’s enve-
lope contains a gas with a density lower then air. Helium
is the most commonly used lifting gas.

Second, a buoyant body in motion in a fluid displaces
each fluid particle in the direction of motion of the body.
The fluid therefore gains kinetic energy and the body ex-
periences a resistance to its motion. This effect can be
taken into account by considering added mass and inertia
terms. As the blimp displaces a relative large volume of air
during flight, these properties become significant and the
body behaves as if it had a mass and moments of inertia
substantially higher than those indicated by conventional
physical methods.

Finally, because the airship center-of-mass is difficult to
locate and time-variant during flight, motion has to be ref-
erenced to by a system of orthogonal body axes, {LTA},
placed at the geometric center of the envelope volume
(CV ), as shown in Figure 2.
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Figure 2: Definition of reference frames.

The centre of volume can be assumed to coincide with the
center of buoyancy.

3.1 Dynamics and kinematics

Considering the vehicle as a rigid body (not taking into
account its elasticity) the dynamic model can be obtained
by writing down the Newton-Euler equations of motion
resolved into the body-fixed reference frame, which can
be stated as [7, 4]:

Mẋ+ C(x) +D(x)x+G(α, β, γ) = τ, (7)

where:

• x = [u v w p q r]T , is the 6×1 velocity vector
containing the three components of linear velocity u,
v, w and the three components of angular velocity p,
q, r, measured in some earth-fixed inertial reference
frame {U} and expressed in the body-fixed reference
frame {LTA}.

• M ≡ MRB +MA, is the 6 × 6 mass matrix contain-
ing all masses and inertias of the rigid body (MRB)
and the added mass and inertia terms (MA). Due
to the symmetry of the vehicle, cross-coupling iner-
tial terms in MRB can be neglected. The following
model for the added mass and inertia terms is used:
MA = diag{A11, A22, A33, A44, A55, A66}. The ele-
ments Aii, i ∈ (1, 2, .., 6) can be estimated from the
dimensions of the airship’s hull [7].

• C ≡ CRB + CA, is the 6 × 1 dynamic forces vector
containing all Coriolis and centrifugal terms of the
dynamic model [4, 7] .

• D(x) ≡ DS(x) + DM (x), is the 6 × 6 aerodynamic
damping matrix. Linear and quadratic skin fric-
tion drag are modeled with DS(x) and arise due
to laminar and turbulent boundary layers. Damp-
ing due to vortex shedding, which depends on the
streamline of the airship’s hull, can be modeled with
DM (x). For small indoor blimps moving at low
speed, laminar boundary layer conditions can be as-
sumed, considering only linear skin friction coeffi-
cients. For this case, the following model is proposed:
D = diag{Xu, Yv, Zw,Kp,Mq, Nr}. The elements of
D can be estimated either from wind-tunnel testing
or system identification tools.

• G(α, β, γ), is the 6 × 1 restoring forces vector con-
taining the gravity and buoyancy forces resolved into
body-fixed axes by a rotation matrix, parameterized
by the standard roll(γ), pitch(β) and yaw(α) an-
gles representation.

• τ = τA + τP , is the 6 × 1 applied forces vector
containing all forces and moments acting on the rigid
body due to the aerodynamic control surfaces (τA)
and the propulsive units (τP ). For an indoor blimp
moving at low speed under laminar boundary layer
conditions, aerodynamic control surfaces will have
no effect and thus are not included. In this case, the
vector τ will be a function of the geometrical arrange-
ment of the propulsive units around the body axes:
τ = [Tcmn 0 Tv 0 (dzTcmn) (dyTdiff )]T ,
where Tcmn = (Ts + Tp) is the common mode
component of thrust coming from the starboard
and port side propellers, Tv is the thrust resulting
from the vertical propeller, Tdiff = Ts − Tp is the
difference between starboard and port side propeller
thrust, dy is the horizontal offset from the center
of volume of the horizontal propellers and dz is the
vertical offset of the vertical propeller (see Figure 2).



For control and navigation purposes, the velocity vector
in eq.(7) must be transformed to the earth-fixed inertial
frame, leading to the kinematic relations. The relative
position and orientation of {LTA} with respect to {U}
will be denoted by the vector η = [x y z α β γ]T ,
where a standard roll, pitch and yaw angles representation
is assumed for the orientation. The kinematic equations
can then be written as:

η̇ =
[
J1(α, β, γ) 03×3

03×3 J2(α, β, γ)

]
x, (8)

where J1 is the corresponding rotation matrix and J2 a
Jacobian matrix relating the angular velocity vector to the
time derivatives of the attitude parameters. The Jacobian
J2 can be easily calculated from the rotation matrix (see
[1]).

3.2 Linearized equations of motion

Assuming airship motion to be constrained to small per-
turbations about some equilibrium condition, a consid-
erably simplified linear model can be obtained. Writing
eq.(7) as Mẋ(t) = f(x(t), τ(t)) with x(t) = x̃(t) + xδ(t)
and τ(t) = τ̃(t) + τδ(t) written as small perturbations
xδ, τδ around some equilibrium condition x̃, τ̃ , the lin-
earized system around the equilibrium condition is given
by:

ẋδ(t) = Axδ(t) +Bτδ(t), (9)

where A = δf
δx (x̃(t), τ̃(t)) and B = δf

δτ (x̃(t), τ̃(t)) are Jaco-
bian matrices obtained from a first order Taylor expansion
of f(x(t), τ(t)) about the equilibrium. In particular, the
products and squares of small perturbation variables be-
come negligibly small in a linearized model so all Coriolis
and centrifugal terms in eq.(7) can be neglected. With
C(x) = 0, the dynamic system becomes decoupled in lon-
gitudinal motion (vertical X-Z-plane) and lateral motion
(horizontal X-Y-plane).

Linearizing about β = γ = 0 corresponds to small pitch
and roll angles, which is a reasonable condition for airship
operation. The decoupled linearized systems for this equi-
librium condition are given by the longitudinal and lateral
models as given in the sequence.

3.3 Longitudinal and lateral models

The longitudinal or vertical model describes the airship
motion in the X-Z-plane of the body-fixed reference frame.
The corresponding state and input vectors are given by:

x = [δu δw δq δβ]T

τ = [δTcmn δTv]T

where the small perturbation of the pitch angle, δβ, is
included in the state vector to accommodate the gravita-
tion and buoyancy forces so as to obtain squared matrices.

The dynamics of the pitch angle is given by the kinematic
relations derived in eq.(8). Writing down the dynamic
equations from eq.(7) corresponding to each state vari-
able, the linearized longitudinal model about β = γ = 0
is given by:

Mẋ = Ax+Bτ, (10)

M =



m+A11 0 maz 0

0 m+A33 −max 0
maz −max Iyy +A55 0
0 0 0 1


 ,

A =



−Xu 0 0 −(mg − fb)
0 −Zw 0 0
0 0 −Mq −azmg
0 0 1 0


 ,

B =
[
1 0 dz 0
0 1 0 0

]T

The lateral or horizontal model describes the dynamics of
the airship orientation in the X-Y-plane and includes the
following state and input variables:

x = [δv δp δr δγ]T

τ = δTdiff

Here the roll angle, γ, is included and the linearized model
is given by:

Mẋ = Ax+Bτ, (11)

M =



m+A22 −maz max 0
−maz Ixx +A44 0 0
max 0 Izz +A66 0
0 0 0 1


 ,

A =



−Yv 0 0 mg − fb

0 −Kp 0 −azmg
0 0 −Nr 0
0 1 0 0


 ,

B = [0 0 dy 0]T

In these models, m is the airship mass, g is the gravita-
tional acceleration, fb is the buoyancy force, (ax az) are
the coordinates of the center off mass, dz is the coordinate
of the vertical propeller, dy is the (symmetric) coordinate
of the horizontal propellers, all expressed in the body fixed
reference frame, Iii are inertia terms, Aii are added mass
and inertia terms and Xu, Yv, Zw,Kp,Mq, Nr the linear
friction terms.

Note that although the linearized models are valid only
for small perturbations of the roll and pitch angles about
γ = β = 0, no such assumptions exist for the yaw (α)
angle.

4 Controller Design

As a first approach for station keeping and docking, we use
a control strategy based on measurements in the image-



plane. This strategy uses experimentally tuned PID-
controllers for each controllable degree of freedom. This
demonstrates the possibility of controlling the system with
simple controllers. Additionally it has allowed the iden-
tification of some model parameters, required for more
sophisticated controllers based on the linear models pre-
sented in section 3.3.

Consider the coordinates of the centroid of the tracked
window as an error signal to control the blimp. Hence,
the desired behaviour for the closed loop system is to bring
the tracked window back to the image center. The error
in the vertical direction of the image coordinates, ev, is
used to control the blimp’s forward motion:

Tcmn(t) = kp.ev(t) + kd.
d

dt
ev(t)

Note that there is no need for including the integral term
of the PID-controller due to the existence of integration
terms in the open-loop system. Similarly, the lateral de-
viation of the target from the image center, el, is used to
control the blimp lateral motion:

Tdiff (t) = k
′
p.el(t) + k

′
d.

d

dt
el(t)

The altitude of the blimp can be controlled by considering
the area of the tracked window and taking the area of the
initial user-selected window as a reference. The desired
behavior of the closed-loop system is to maintain the area
of the tracked window close to its reference, thus trying
to maintain the blimp at some constant height. Defining
the error between the area of the tracked window and its
reference by eA, the altitude control is given by:

Tv(t) = k
′′
p .eA(t) + k

′′
d .

d

dt
.eA(t)

Again, no integral term is considered for the controller.
Plugging the error signals into the linearized models by
substituting the input signals, provides a means for ana-
lytic controller synthesis. It should be noted however that
for this purpose, the error signals need to be transformed
from the image-plane to Euclidean-space, involving a non-
linearity of the camera Jacobian.

5 Results

A set of real experiments were done using the blimp with
the on-board camera. Figure 3 shows the results of track-
ing an image window which defines the coordinate frame
used for station keeping. In spite of the distortion in-
troduced by the blimp’s camera, the implemented tracker
successfully follows the specified image patch while the
blimp is moving in 3D. Feature tracking is realized at a
sampling rate of 12Hz.

Figure 4 shows the temporal evolution of the error signals
during a docking and station keeping experiment. At the

Figure 3: Tracking an image window from the flying
blimp.
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Figure 4: Docking and station keeping test with the blimp.
Left: trajectory of the centroid of the tracked window (im-
age errors in normalized pixel coordinates); Right: differ-
ence between the area of the image patch and the tracked
window.

left side, the image trajectory of the target point (cen-
troid of the tracked window) is illustrated under closed-
loop control. The control strategy aims at driving this
point to the image center (docking) and keep it as close as
possible to this center (station keeping). The right image
shows the error between the areas of the reference window
and the tracked window and indicates that the blimp is
approximately maintained at a constant height.

Figure 5 shows the corresponding control signals (the
blimp’s linear and angular velocities) for the docking and
station keeping experiment.

After having obtained promising results with the blimp,
we have applied the same approach for station keeping
and docking on an underwater vehicle. Experiments were
first conducted in a test pool and at a later stage test
were performed at sea. Figure 6 show results obtained
with our approach when stabilizing an underwater vehicle
during sea tests. We show that further improvements can
be obtained if the camera’s degrees of freedom (pan and
tilt) are controlled in addition to the degrees of freedom
of the underwater vehicle.

Although preliminary, these approaches led to encourag-
ing results in moving the error close to zero, and main-
taining the target close to the image center. The main
difficulties arise when the target moves laterally. In this
case, since neither the blimp or the underwater vehicle
have lateral degrees of freedom, the only solution is to
compensate this error by rotating the blimp. Then, as
the rotation is not performed around the camera optical
axis, it induces a translation motion in the image plane,
which will generate errors for the forward motion control.
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Figure 5: Docking and station keeping test with the blimp.
Common mode forward velocity control (top) and differ-
ential angular velocity control (bottom).

Figure 6: Docking and station keeping test with the under-
water vehicle. We see the trajectory described in the im-
age plane by the target region during the station keeping
maneuver. In the top image the camera is fixed, whereas
in the bottom example we controlled the camera’s pan
and tilt, in addition to the vehicle’s degrees of freedom,
resulting in smaller errors.

This fact explains that the forward motion control, Tcmn

in Figure 5, shows an oscillatory behavior near to its ref-
erence value (zero).

6 Conclusions

In this paper we have explained how the problems of dock-
ing and station keeping of a floating vehicle can be ad-
dressed using visual feedback, selecting an image patch
on the docking station. The presented method tracks the
selected region, thus following its temporal evolution in
3D-space. This information is then used with a control
strategy so as to perform station keeping and docking.

Results were obtained concerning the problem of automat-
ically controlling a lighter-than-air blimp and an underwa-
ter robot so as to perform station keeping and docking. A
first control strategy is proposed which succeeded in mov-
ing the control errors close to zero. The main difficulties
arise in those situations for which positioning errors occur
along the blimp y-axis. In this case, since the blimp is a
non-holonomic vehicle and does not have lateral degrees of
freedom, the only solution is to compensate this error by
rotating the blimp. Work is being carried out to develop
more robust and adequate control strategies. However,
even with this simple control system it was possible to
obtain encouraging results.
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