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Abstract— We study the synchronization problem for n single
state agents with linear continuous time dynamics. The agent
states are required to synchronize and travel at a desired
common speed. This problem arises naturally in the design of
coordinated path-following algorithms problem [9] and in stud-
ies on the synchronization of Kuramoto oscillator networks [17].
When the desired speed is zero or there are no time delays, it has
been shown in the literature that a so-called neighboring control
rule makes the states synchronize asymptotically under some
connectivity conditions on the union of the underlying com-
munication graphs. We will show that when both the desired
speed and the communication delay are non-zero, the behavior
of the synchronization system changes significantly. We start
by considering asymmetric networks and switching topologies
with homogeneous time delays. We then address some issues
related to the behavior of the synchronization system in the
presence of heterogeneous time delays. We provide connectivity
conditions under which the synchronization problem is solved
and introduce synchronization laws that compensates for the
effect of non-zero speed and time delays. Simulations illustrate
the synchronization of three agents.

I. INTRODUCTION

Increasingly challenging mission scenarios and the advent

of powerful embedded systems and communication networks

have spawned widespread interest in the problem of coordi-

nated motion control of multiple autonomous vehicles. The

types of applications envisioned are numerous and include

aircraft and spacecraft formation flying control [1], [10],

[25], coordinated control of land robots [9], [23], control

of multiple surface and underwater vehicles [6], [19], [27],

and networked robots [4].

To meet the requirements imposed by these applications,

a new control paradigm is needed that departs considerably

from classical centralized control strategies. Centralized con-

trollers deal with systems in which a single controller pos-

sesses all the information needed to achieve the desired con-

trol objectives (including stability and performance require-

ments). However, in many of the applications envisioned,

because of the highly distributed nature of vehicles’ sensing

and actuation modules and due to the nature of the inter-

vehicle communications network, it is impossible to tackle

the problems in the framework of centralized control theory.

For these reasons, there has been over the past few years a

flurry of activity in the area of multi-agent networks with
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application to engineering and science problems. Namely, in

such topics as parallel computing [28], synchronization of

oscillators [24], [26], collective behavior and flocking [16],

consensus [21], multi-vehicle formation control [5], asyn-

chronous protocols [7], graph theory and graph connectivity

[18], and Voronoi tessellation techniques [3].

In spite of significant progress in these challenging areas,

much work remains to be done to develop strategies capable

of yielding robust performance of a fleet of vehicles in

the presence switching communication networks, informa-

tion transmission time delays, and severe communication

constraints. These difficulties are specially challenging in the

field of marine robotics, since underwater communications

and positioning rely heavily on acoustic systems, which are

plagued with intermittent failures, latency, and multipath

effects. This paper addresses some of the problems that arise

in these kinds of applications. We review existing results

and highlight their most important properties and develop

synchronization laws to make a set of agents asymptotically

synchronize and travel at a desired speed. We show that a

simple neighboring rule fails to synchronize the agents in the

case of latency in the exchange of information.

The key contributions of the paper are clearly reflected

in its organization. Section II introduces the motivation for

the proposed problem, that is, decentralized synchronization

control of a network of single state agents with continuous

dynamics under switching communication topologies and

time delays and formulates the problem under consideration.

Section III provides some preliminaries of Graph theory

and reviews existing results in the literature on agreement

problems. Section IV presents the main results of the paper

and shows that the behavior of the coordination dynamics

changes significantly in the presence of switching communi-

cation networks and time delays if the states are required to

travel at a non-zero speed. We further establish the conditions

under which synchronization is recovered, and provide some

synchronization rules that maintain the common connectivity

conditions. Several examples in Section V compare the

behavior of the synchronization closed-loop systems in dif-

ferent situations. Section VI contains the main conclusions.

II. MOTIVATION

Consider a group of n vehicles numbered 1, .., n and the

problem of steering the vehicles along given paths while

holding a desired formation pattern. The solution to this

problem, henceforth referred to as the Coordinated Path-

Following problem, unfolds in two basic steps. First, a path-

following control law is used to drive each vehicle to its as-

signed path regardless of the temporal speed profile adopted.



This is done by making each vehicle approach a conveniently

defined virtual target that moves along the path. In the second

step, the speeds of the virtual targets are adjusted so as to

synchronize their positions (also called coordination states)

along the paths, thus achieving coordination, while making

the formation as a whole travel at a given speed vL(t).
Since the vehicles converge to their corresponding virtual

targets that will synchronize asymptotically, the closed-loop

error signals tend to zero and the vehicles asymptotically

reach a desired formation1. Following the nomenclature in

[8], each path to be followed is parameterized by γi ∈ R
and the vehicles reach the desired formation pattern iff

γi = γj ; ∀i, j ∈ N := {1, ..., n}. In a simplified version,

the dynamics of each state are governed by

γ̇i(t) = vri
(t); i ∈ N , (1)

where the speed-profiles vri
are taken as control signals

that must be assigned to yield coordination of the states

γi. To achieve this objective, information is exchanged over

an inter-vehicle communications network. Typically, all-to-

all communications are impossible to achieve. In general,

vri
will be a function of γi and of the coordination states

of the so-called neighboring vehicles defined by the set Ni

that represents the set of vehicles that vehicle i communi-

cates with. We will consider asymmetric communications

networks where the communication links may be directional,

that is, i ∈ Nj does not necessarily imply j ∈ Ni.

Another important issue in coordination control systems is

delayed information. In a number of applications involving

underwater cooperative control systems that rely on acoustic

communications, time delays in the communication channels

become significant. In this paper, we start by addressing

homogenous time delays, that is, we assume that all the

transmission links introduce the same time delay τ ≥ 0.

Some of the issues studied will be further analyzed in the

context of synchronization systems with heterogeneous time

delays.

Definition 1: Coordination Consider a set of agents i ∈ N
with dynamics (1), and a formation speed assignment vL(t).
Assume γi and γj ; j ∈ Ni are available to vehicle i ∈ N .

Derive a control law for vri
such that the coordination errors

γi − γj and the formation speed tracking errors γ̇i − vL;

∀i, j ∈ N converge to zero as t → ∞.

A similar problem arises in the synchronization of net-

works of Kuramoto oscillators. See [24], [26] for further

details.

With the set-up adopted, Graph Theory becomes the tool

par excellence to model the constraints imposed by the

communication topology among the vehicles, as embodied

in the definition of sets Ni; i ∈ N . We now recall some key

concepts from algebraic graph theory [11] and agreement

algorithms and derive some basic tools that will be used in

the sequel.

1See [9], [8] and [15] where coordinated path-following is addressed.

III. PRELIMINARIES AND BASIC RESULTS

A. Graph theory

Let G(V , E) (abbv. G) be a directed graph or digraph

induced by the inter-vehicle communication network, with

V denoting the set of n nodes (each corresponding to a

vehicle) and set E of ordered pairs (Vi, Vj) ∈ E , henceforth

referred to as arcs (each standing for a data link). Given an

arc (Vi, Vj) ∈ E , its first and second elements are called the

tail and head of the arc, respectively. It is assumed that the

flow of information in an arc is directed from its head to its

tail. The in-degree (out-degree) of a node Vi is the number

of arcs with Vi as its head (tail). If (Vi, Vj) ∈ E , then we

say that Vi and Vj are adjacent.
A path of length r from Vi to Vj in a digraph is a sequence

of r + 1 distinct nodes starting with Vi and ending with

Vj such that consecutive nodes are adjacent. If there is a

path in G from node Vi to node Vj , then Vj is said to be

reachable from Vi. In this case, there is a path of consecutive

communication links directed from vehicle j (transmitter) to

vehicle i (receiver). A node Vi is globally reachable if it is

reachable from every other node. Graph G is quasi strongly

connected (QSC) if it has a globally reachable node2.
The adjacency matrix of a digraph G, denoted A, is a

square matrix with rows and columns indexed by the nodes,

such that the i, j-entry of A is 1 if (Vi, Vj) ∈ E and zero

otherwise. The degree matrix D of a digraph G is a diagonal

matrix where the i, i-entry equals the out-degree of node

Vi. Notice that the out-degree of node Vi equals |Ni|, the

cardinality of Ni. The Laplacian of a digraph is defined as

L = D−A. Every row sum of L equals zero, that is, L1 = 0,

where 1 := [1]n×1 and 0 := [0]n×1.
We will be dealing with situations where the communica-

tion links are time-varying in the sense that links can appear

and disappear (switch) due to intermittent failures and/or

communication links scheduling. The mathematical set-up

required is described next.
A complete graph is a graph with all possible arcs (an

arc between each pair of nodes). Let G be a complete

graph with arcs numbered 1, ..., n̄. Consider a communica-

tion network among n vehicles. To model the underlying

switching communication graph, let p = [pi]n̄×1, where each

pi(t) : [0,∞) → {0, 1} is a piecewise-continuous time-

varying binary function which indicates the existence of arc

i in the graph G at time t. Therefore, given a switching

signal p(t), the dynamic communication graph Gp(t) is the

pair (V , Ep(t)), where, if i ∈ Ep(t) then pi(t) = 1, otherwise

pi(t) = 0. For example, p(t) = [1, 0, ..., 0]T means that at

time t only link number 1 is active. Denote by Lp the explicit

dependence of the graph Laplacian on p and likewise for

the degree matrix Dp and adjacency matrix Ap. Further let

Ni,p(t) denote the set of the neighbors of vehicle i at time t.
We discard infinitely fast switchings. Formally, let Sdwell

denote the class of piecewise constant switching signals such

that any consecutive discontinuities are separated by no less

than some fixed positive constant time τD, the dwell time.

We assume that p(t) ∈ Sdwell. See [13] for more details.

2In [20] a digraph is defined as QSC if its opposite digraph has a globally
reachable node.



B. Switching topologies and connectedness

We will consider switching topologies where the commu-

nication graph may fail to be connected at any instant of

time; however, we assume there is a finite time T > 0 such

that over any interval of length T the union of the different

graphs is somehow connected. This statement will be made

precise in the sequel. We now present some key results for

time-varying communication graph and agreement problems

that borrow from [20], [21], [22].

Let Gi; i = 1, ..., q be q graphs defined on n nodes, and

denote by Li their corresponding graph Laplacians. Define

the union graph G = ∪iGi as the graph whose arcs are

obtained from the union of the arcs Ei of Gi; i = 1, ..., q.

Since p ∈ Sdwell (only a finite number of switchings are

allowed over any bounded time interval), the union graph is

defined over time intervals in the obvious manner. Formally,

given two real numbers 0 ≤ t1 ≤ t2, the union graph

G([t1, t2)) is the graph whose arcs are obtained from the

union of the arcs Ep(t) of graph Gp(t) for t ∈ [t1, t2).
Definition 2: Uniformly Quasi Strongly Connected A

switching communication graph Gp(t) is uniformly quasi

strongly connected (UQSC), if there exists T > 0 such that

for every t ≥ 0 the union graph G([t, t + T )) is QSC.

C. Agreement

Consider n agents with dynamics (1) with a supporting

communication network whose underlying communication

graph is modeled by Gp subjected to the switching signal

p(t). Assume that the communication network causes no

delays in delivering the information and let the control

signals vri
be computed as

vri
= −ki

∑

j∈Ni,p(t)

γi(t) − γj(t) (2)

(the so-called neighboring rule), where ki > 0. Then the

closed-loop system takes the form of linear switching dy-

namics

γ̇ = −KLpγ (3)

where γ = [γi]n×1, K is a positive definite diagonal matrix

and Lp is the Laplacian matrix of dynamic graph Gp. It is

known, see for example [21], that

Theorem 1: Agreement Consider n variables γi with dy-

namics (3) and assume the switching communication graph

Gp(t) is UQSC. Then the coordination errors γi − γj; ∀i, j ∈
N converge to zero and γ̇i → 0; ∀i ∈ N as t → ∞;

(exponentially fast). We say the agreement problem is solved.

To make the states γi travel with a desired speed profile

vL(t) while synchronized, modify (2) to

vri
= vL(t) − ki

∑

j∈Ni,p(t)

γi(t) − γj(t) (4)

which in vector form yields

γ̇ = vL1− KLpγ. (5)

To show that the states synchronize make the change of

variables

γ̃ = γ − 1

∫ t

0

vL(s)ds.

Using (5), the dynamics of γ̃ can be written as

˙̃γ = −KLpγ̃.

If the dynamic graph Gp is UQSC, according to Theorem 1,

γ̃i − γ̃j and ˙̃γi tend to zero as t → ∞, for all i, j ∈ N .

Therefore γi−γj and γ̇i−vL converge to zero, exponentially

fast.

We now consider the delayed version of (3). Let the

coordination states γi evolve according to

γ̇(t) = −KDp(t)γ(t) + KAp(t)γ(t − τ) (6)

where Dp(t) and Ap(t) are the degree matrix and the adja-

cency matrix of Gp(t), respectively. The following statement

can be derived from [22].

Theorem 2: Agreement-delayed information Consider n
variables γi with dynamics (6) and τ > 0, and assume the

switching communication graph Gp(t) is UQSC. Then, the

results of Theorem 1 are valid.

The main results of the paper are stated in the next section

where both vL(t) and τ are nonzero. It will be shown that the

behavior of the closed-loop dynamics change significantly.

We will also provide extra conditions needed to guarantee

similar results, that is, coordination of the states γi while

traveling at speed vL.

IV. SYNCHRONIZATION: DELAYED INFORMATION AND

SWITCHING TOPOLOGIES

Consider the coordination problem (Definition 1) for the

case where the communication channels have homogenous

time delays τ > 0. In this case, the neighboring control law

for the reference speed vri
becomes a function of delayed

information, that is

vri
= vL − ki

∑

j∈Ni,p(t)

γi(t) − γj(t − τ). (7)

Using (1) and (7), the closed-loop coordination system can

be written as

γ̇(t) = vL1 − KDp(t)γ(t) + KAp(t)γ(t − τ). (8)

We are now interested in determining conditions under

which coordination is achieved, that is, in the existence of a

continuous time signal γ0(t) ∈ R such that γ = γ0(t)1 is a

solution of (8). If this is the case, then by substituting this

“solution” in (8) and using the fact that Ap = Dp − Lp, we

obtain

γ̇01 = vL1− KDpγ0(t)1 + K(Dp − Lp)γ0(t − τ)1

which simplifies to

(γ̇0 − vL)1 = −(γ0(t) − γ0(t − τ))KDp1. (9)

Here, we used the fact that Lp1 = 0. Equality in (9) is valid

iff all the rows of the right-hand side are equal for all time.

Two cases are possible.

p1 γ0(t) is either a constant or a periodic signal with

period τ . In this case γ0(t) − γ0(t − τ) = 0 and

the right-hand side of (9) equals zero. Thus (9)

holds with γ̇0 = vL where the formation speed vL



must be set to either zero or a periodic signal with

period τ . These are not of interest from a practical

standpoint.

p2 ∀t, KDp(t) = kI for some k > 0. This requires

that the out-degrees of the nodes of the switching

communication graph Gp never vanish, that is,

|Ni,p| 6= 0, ∀t, so that the degree matrix is always

nonsingular and we can set the control gains to

K = kD−1
p . Therefore, the control gains become

piecewise constant as functions of p.

Next, we will address case p2 and state the first result of

this section. To lift the constraint |Ni,p| 6= 0 and have a

coordination algorithm applicable to more general types of

switching topologies, we will later modify control law (7).

Proposition 1: Consider n agents with dynamics (1) and

neighboring feedback control law (7). Assume that Ni,p(t) 6=
∅ (the empty set) for all t, and let the control gains be ki(t) =
k/|Ni,p(t)|. Then, if the underlying communication graph Gp

is UQSC, |γi − γj | → 0 and γ̇i → γ̇0 as t → ∞, where γ0

is a solution of the delay differential equation

γ̇0 = −k(γ0(t) − γ0(t − τ)) + vL. (10)

Moreover, if vL is constant γ̇i →
vL

1+kτ
; ∀i ∈ N .

Proof: As explained above, with the control law (7),

the coordination system takes the form (8). Let

γ̃(t) = γ(t) − γ0(t)1 (11)

and substitute γ from (11) in (8) to get

γ̇0(t)1 + ˙̃γ =
vL1− K(t)Dp(t)γ̃(t) + K(t)Ap(t)γ̃(t − τ)+
−γ0(t)K(t)Dp(t)1 + γ0(t − τ)K(t)Ap(t)1

(12)

which simplifies to

˙̃γ = −kγ̃(t) + kD−1
p Apγ̃(t − τ) (13)

if γ0(t) is the solution of (10) and K(t) = kD−1
p . From

Theorem 2, the error states γ̃i − γ̃j and ˙̃γi vanish exponen-

tially. Consequently, γi − γj = γ̃i − γ̃j → 0 and γ̇i → γ̇0 as

t → ∞.

For the particular case of constant vL, one solution to (10)

is γ0(t) = v∗Lt where v∗L = vL

1+kτ
, and the result follows.

Notice that due to the transmission delay τ , there is a finite

error in the speed tracking, that is, γ̇i converges to v∗L and

not to vL.

Consider now the case where there are instants of time
t for which Ni,p(t) = ∅ for some i ∈ N . We will present
this part only for the case where vL is constant, that is,
γ0(t) = v∗Lt and v∗L = vL

1+kτ
. In this case, (8) can be rewritten

in terms of γ̃ defined in (11) as

˙̃γ = −K(t)Dp(t)γ̃(t)+K(t)Ap(t)γ̃(t−τ )+v
∗
Lτ (kI−K(t)Dp)1.

(14)

Clearly, when τ = 0 or vL = 0 agreement is achieved

for any choice of positive definite K , due to Theorem 2.

However, this is not the case when τ 6= 0 and vL 6= 0. For

example, assume that the agreement dynamics (14) are at

rest, that is, ˙̃γi = 0, and γ̃i = γ̃j ∀i, j ∈ N . Then, at the

time that |Ni,p(t)| = 0 for some i, the dynamics (14) are

disturbed by a signal of amplitude v∗Lτk = vL − v∗L through

the channel (row) i.
This problem arises from the fact that if agreement is

reached the formation traveling speed must be v∗L. However,

during the interval where Ni,p = ∅, the corresponding

coordination state is governed by the dynamics γ̇i = vL.

This contradiction can be resolved by applying different

reference speeds when a particular vehicle has no neighbors

to communicate with. The solution is stated next.
Proposition 2: Consider n agents with dynamics (1) and

feedback control law

vri
=



vL − k

|Ni,p|

P

j∈Ni,p
γi(t) − γj(t − τ ), Ni,p 6= ∅

v∗
L, Ni,p = ∅

(15)

Then, if the underlying communication graph Gp is UQSC,

|γi − γj | → 0 and γ̇i → v∗L as t → ∞.

Proof: The closed-loop coordination dynamics in vector

form is given by

γ̇ = −KDpγ(t) + KApγ(t − τ) +
vL − v∗L

k
KDp1 + v∗L1.

where K = diag[ki] and

ki =

{

k
|Ni,p|

, Ni,p 6= ∅

1, Ni,p = ∅

Letting γ̃(t) = γ(t) − v∗Lt1 simplifies the closed-loop

dynamics to

˙̃γ = −KDpγ̃(t) + KApγ̃(t − τ).

From Theorem 2, agreement is achieved and the results

follow.

Notice that to implement the control law (15), the agents

need to know the delay τ to compute v∗L. This raises the

question of estimating v∗L. This issue will not be addressed

in the paper.

We showed that an agreement protocol based on a simple

neighboring rule over a switching network with delayed

information leads to undesirable results. We then proved that

this problem can be avoided if the time delay is known.

We now study the case where the time-delays are nonho-

mogeneous, that is, each communication link may exhibit a

different time-delay. As in the previous case, we assume the

time delays can be measured. Let the communication links

exhibit m distinct time delays {τr ≥ 0; r = 1, ..., m} and

let N r
i,p denote the neighbors of agent i whose information

arrives with τr delay.

Let the control signal for agent i ∈ N be given by

γ̇i = vL − ki

m
∑

r=1

∑

j∈Nr
i,p

[γi(t) − γj(t − τr) − vLτr], (16)

It is easily shown that (16) compensates for delays. Define

a state transformation as γ̃i(t) = γi(t) − vLt and substitute

in (16) to obtain

˙̃γi = −ki

m
∑

r=1

∑

j∈Nr
i,p

[γ̃i(t) − γ̃j(t − τr)], (17)

In general, proving that the states γ̃i governed by the

above equations agree asymptotically is not an easy task. We



conjecture that this is true if the dynamic graph is UQSC.

This property has been shown for similar discrete dynamics

in [2] and [29]. In what follows we address the case where

the graphs are fixed.

To write the above equations in compact vector form, let

the associated arcs with the time delay τr define a subgraph

Gr with corresponding degree matrix Dr and adjacency

matrix Ar. Since to each arc there is only one delay

associated, the subgraphs are disjoint and D =
∑m

r=1 Dr

and A =
∑m

r=1 Ar, where D and A are the degree matrix

and adjacency of the main (or union) graph, respectively.

Then (17) yields

˙̃γ = −KDγ̃(t) + K

m
∑

r=1

Arγ̃(t − τr), (18)

where K = diag[ki]n×n is a positive definite matrix. We

assume the underlying communication graph is symmetric,

that is, Ar = AT

r ; ∀r = 1, ..., m. We are now ready to state

the main result of the paper.

Proposition 3: Consider n agents with a fixed symmetric

communication network that exhibits m time delays τr; r =
1, ..., m. Then, the control law given by (16) solves the

coordination problem (Definition 1) if the underlying com-

munication graph is QSC 3. In particular, the coordination

errors γi−γj and the speed tracking errors γ̇i−vL; ∀i, j ∈ N
converge asymptotically to zero as t → ∞.

Proof: Consider the Lyapunov-Krasovskii functional

V = γ̃T K−1γ̃ +

m
∑

r=1

∫ 0

−τr

γ̃(ν)T Drγ̃(ν)dν

whose time derivative along the solutions of (18) yields

V̇ = 2γ̃T (−Dγ̃ +
∑

r Arγ̃τr
) +

∑

r(γ̃
T Drγ̃ − γ̃T

τr
Drγ̃τr

)
= −

∑

r γ̃T Drγ̃ − 2γ̃T Arγ̃τr
+ γ̃T

τr
Drγ̃τr

where γ̃τr
= γ̃(t − τr). Using Gersgorin theorem [14] and

the fact that Lr = Dr − Ar ≤ 0, it is easily shown that

Lr :=

(

Dr −Ar

−Ar Dr

)

≤ 0; ∀r = 1, ..., m. (19)

Therefore, V̇ ≤ 0. Let Ω := {col(γ̃, γ̃τ1 , ..., γ̃τr
) : V̇ = 0}.

Using (18) and the fact that Drγ̃ = Arγ̃τr
on Ω, clearly

˙̃γ = 0 on Ω. That is, Ω is an invariant set. Since γ̃ is constant,

γ̃τr
= γ̃, then Drγ̃ = Arγ̃, Lrγ̃ = 0, and Lγ̃ = 0. Because

the graph is QSC, γ̃ ∈ span{1} on Ω. The result follows by

using LaSalle invariance principle. See [12] for details on

stability in the sense of Lyapunov for delayed systems.

V. EXAMPLES

In this section, we consider a simple synchronization prob-

lem of three agents numbered {1, 2, 3} in three situations:

1) with and without switching topologies

2) with and without time delays

3) zero and nonzero vL

In all the simulations, the control gains were set to K =
0.5I3 and the following communication switching topology

3When the graph is symmetric, being QSC is equivalent to being
connected.

were applied. A communication network periodically switch

between neighboring sets N1 = {1, 2}, N2 = ∅, N3 = ∅ and

N1 = ∅, N2 = {1}, N3 = {1}, with period 10[s] and duty

cycle 50%. In Figures 1-4, the coordination errors γ1 − γ2

and γ1 − γ3 are shown.

Fig. 1 shows the coordination errors generated by control

signals of the form (4) with vL = 1[s−1]. The switching

topology reduces the convergence rate, but the states agree

exponentially in both cases.

Fig. 2 illustrates the effect of a homogeneous time delay

τ = 2[s] with the control law of the form (7) and vL =
1[s−1]. Clearly, the states do not reach agreement.

Fig. 3 shows the evolution of the coordination errors for

nonhomogeneous time delays. Links (1, 2), (2, 1), and links

(1, 3), (3, 1) have time delays τ1 = 2[s] and τ2 = 1[s],

respectively. The control law of the form (7) with vL =
1[s−1] is applied. Again, no agreement is obtained.

Fig. 4(a) depicts a similar situation but with vL = 0. As

shown before, contrary to the previous case the states reach

agreement.
From the above simulations, one can conclude that the

agreement fails in cases where both the desired speed vL

and the time delays are nonzero.

Fig. 4(b) shows how the control signal (16) can com-

pensate for the time delays. The simulations were done for

nonzero vL, switching topologies, and nonhomogeneous time

delays.

VI. CONCLUSION

We studied the synchronization problem of n agents with

continuous time linear dynamics that are required to travel

at a desired speed.
We considered asymmetric networks, switching topologies

with homogenous time delays, and provided the connectiv-

ity conditions under which the synchronization problem is

solved.

We showed that when both the desired speed and the

communication delay are non-zero, the application of a

simple neighboring control rule does not yield asymptotic

synchronization.

Assuming that the time delays are known, we derived syn-

chronization laws that compensate for the effect of nonzero

speed and time delays. Several simulations illustrate the

performance obtained for the synchronization of three agents

in the presence of switching communication networks and

delayed information.
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