Scheduling for single server queues. Variant of the jic-rule.

Zita Fernandes

Abstract

The goal of the work described in this paper concerns the
presentation of arguments that bring a new perspective to
some existing results of queuing networks. Comparison
between numerical data obtained with models that use only
buffer length as state variable with models that use also
server state show that the models which only use buffer
length do not correctly represent the systems under study.
Also a new scheduling policy is presented. It is motivated
by the belief that the marginal cost of waiting should not
be a constant and by the belief that strict priorities are only
interesting to customers having higher priority. With this
new policy we propose to replace strict priorities, as is the
case of the uc—rule. The variance of the cycle time for all
classes achieved with the new policy will be presented, as
is numerically computed. The tools used to get the results
presented in this work, such as Dynamic Programming and
Discrete Event Simulation, are also described.

Keywords:  Queuing networks, Scheduling problem,
queuing networks modeling, state costs, variance of cycle

time.

1 Introduction

Looking at several approaches to model queuing networks
to address the scheduling problem, one verifies that the ma-
jority were modeled using only the queue length as state
variable. Such is the case of [5, 9, 8, 4, 1], where the au-
thors formulate and solve an MDP through Dynamic Pro-
gramming, and formally establish optimality of the result-
ing policy. Analyzing those models, we conclude that they
do not represent the networks correctly. In this paper, we
consider that the state of the servers of the network should
also be taken into account.

To validate this hypothesis we modeled a simple queu-
ing network with two alternative state representations: us-
ing only the queue lengths; and using the queue lengths
and the server state. To verify which of the two models is
the correct one, we computed state costs for each and then
compared those to the results obtained by simulating the
network, through a discrete event simulator. To compute
optimal costs and policies, two Markov Decision Problems,
MDP, are formulated and solved using Dynamic Program-
ming. To simulate the networks, a software package using
object oriented language was developed.

In order to provide an alternative to strict priority poli-
cies, we also present a new policy that tries to be more eq-
uitable in server access to the several classes of customers
entering the network.

A new cost formulation, which is a generalization of the
cost function for which the well known pc-rule is optimal,
was developed. The pc-rule is such that the class which has
the highest score given by p;c;, gets priority over the other
classes. The processing rate for class ¢ is given by u; and
c; is the cost rate parameter, expressing the amount being
payed, while in the system, by each costumer of the same
class. For the classic scheduling problem the cost rate is
given by a simple linear parameter, but in our new function
it is given by a linear and a quadratic term. To evaluate the
performance of the policy derived for this new cost func-
tion, we computed the variance of the cycle time for the
individual classes, comparing it with the same performance
measure achieved under the pc-rule.

Finally, we also show that the new policy gets a lower
global variance of the total cycle time than the pc-rule.

In the remaining of the paper we present the alternative
models in Section 2, formulate the MDP associated with
each, and present a sample of the numerical results support-
ing our claim. Next in Section 3, we present the policy that

results from the alternative cost function, providing an in-



tuitive explanation of its structure, match examples of the
numerically computed policy with the policy intuitively de-
rived, and show, through numerical examples, the effect of
this policy on the variance of the cycle times. We conclude,
in Section 4, discussing some consequences of our results

and pointing directions for further research.

2  Queuing Networks Modeling

We start by addressing the issue of what is the adequate pro-
cedure to model the scheduling problem for single server
queues. We formulate the classic scheduling problem,
model the network using only the buffer lengths, as the ma-
jority of the authors, and model it with the alternative rep-

resentation, where the server state is also included.

2.1 Problem Formulation

The network used to study the modeling problem is com-
posed by 2 buffers with Poisson arrivals (with rate \; for
queue ¢) and one single server with exponential service
times (with rate u; for class 7). Given the fact that we as-
sume linear cost rates for the buffer lengths the pic-rule is the
optimal scheduling policy. We also consider that the service
is non-preemptive and non idling. Due to the characteristics
of the problem, we may build a model of the network as a
continuous time Markov chain and then make use of Lipp-
man’s uniformization procedure, [12], to obtain the discrete
time counterpart.

We represent the queue lengths by X(t) =
[z1(t) x2(t)] € N2, with x;(t) representing the amount
of customers of class ¢, ¢ = 1,2, in the system at time
t. For the server state we use y(¢) € {0,1,2}, where
y(t) = 0 means that, at time ¢, the server is idle, y(¢) = 1,
1 = 1,2, the server is processing a customer of class 7. The
first model will only use X (¢) for state representation and
the second model will use [X(¢) y(¢)]. The first will be
designated as the One Variable Model and the second will
be the Two Variable Model.

On both models four events are possible: end of service
of a customer of class 1, end of service of a customer of

class 2, arrival of a customer of class 1, and arrival of a

customer of class 2. The resulting MDP’s for both models,

after the uniformization, are displayed in Figs. 1 and 2
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(a) Diagram 1. (b) Diagram 2.

Figure 1: Uniformized transition diagram using one vari-
able.

Figure 2: Uniformized transition diagram using two vari-
ables.

On both diagrams, 7y represents the uniform rate and is
such that v = pu1 + po + A1 + Ao. Still related to the dia-
grams, it is possible to define two kinds of transitions. Tran-
sitions that are controllable and transitions that are uncon-
trollable. The transitions that are controllable are the con-
clusion of service and the uncontrollable are the arrival of
customers. When a end of service takes place, we can also
say that we have a decision point. That is, is it necessary
to chose which of the classes to serve. Given we consider
the service to be non-preemptive, when the arrival of a pri-
ority customer occurs during the service of a non-priority
customer, there is no decision point. Also, an arrival gener-
ates a decision point only when it occurs when the system
is empty of customers.

In any of the two models, a decision point will present
three options: remain idle; process a customer of class 1,
u = 1; and process a customer of class 2, u = 2. These last
two options, if chose, will enable controllable transitions.
Although it is known that the classic scheduling problem
produces a non idling policy, for the benefit of completion,

we explicitly present the option of staying idle.



The cost criterion used is based on the total expected dis-
counted cost over infinite horizon with discount factor 3, as

follows
Vi(X) =Ex /Oo e P eizy (t) + coma ()] dt, (1)
0

where the expected value is taken over all possible trajecto-
ries of the system, given the fact that the Markov chain is
a stochastic process, and some policy 7 is being used, such
that for each transition point some mapping exists between

state and decision.

The optimal cost is obtained over all possible policies

and is expressed as

V(X)= Ir£11 Ex /00 e Pteray(t) + coxa(t)] dt.  (2)
0
We know, [6], that the policy that minimizes the above is
the pc-rule. That is, at every decision point where there are
customers in both queues, the server will chose to process
a customer from the buffer for which the product p;c; is
the highest. Since, p; and c¢; are assumed to be constant
parameters during the control horizon, this means that there
will be a class that has always higher priority over the other,
except for the trivial case where the above product is the

same for both classes.

With all the information above, it is possible to solve the
MDP using Dynamic Programming, DP. The Value Itera-
tion algorithm [2, 3] was used to compute the optimal costs
according to the specified performance criterion. This was
done in order to compare the costs obtained through DP for
the different models and not to obtain the optimal policy,

because its structure is known upfront.

Looking at the model using only one variable, the DP
recursions to apply the value iteration algorithm are given
by:

Vit1(X) = ﬁ(clml + cox2)+

+ amin {V(X,u\u = 0), V(X,ulu = 1), V(X, ulu = 2)} ,
3)

with

V(X,u|u = 0) = %Vk(rl + 1,:102) + %Vk(ml,mg + 1)+
-+ <1 — %) Vk(xl,xg),

V(X,u|u =1)= %Vk(m +1,22) + %Vk(.’ﬂl,iﬂg + 1)+
+8 V(21 — 1, 22) + (1 — %) Vi(x1, 22),

B 4)
V(X,ulu=2)= %Vk(xl +1,22) + %Vk(.’l}l,mg + 1)+

HE2 Vi (@1, 02 — 1) + (1 - %) Vio(@1, 2).

We omit the details concerning transforming equation 2
into the recursions presented in 3 and 4. The interested
reader may find this in [2] for the general case and in [7]

for the specific problem being addressed here.

The algorithm stops when the error associated to the iter-
ative process is lower than some ¢, defined by the user, that
is

‘Vk+1 — Vk| < €.

Not all the terms of expression 4 are active in all decision
points. In some cases, such as states were there are no cus-
tomers of class 2, only the first two terms correspond to
admissible options.
For the model using two variables, the value iteration
recursions are given by
Vit1(X,0) = ﬁ(clm + cowa)+
—&—amin{f/(X, 0,ulu =0),V(X,0,ulu=1),V(X,0,ulu = 2)} ,
(5)
with,

V(X,0,ulu=0)= %Vk(m +1,22,0) + %Vk(:m,:vz +1,0)+
(1 — /\1+A2) Vk(ml,xz,()),

~

V(X,0,ulu=1)= %Vk(m +1,22,1) + A721/16(:101,502 +1,1)+
+“71Vk(m1 —1,22,0) + (1 — %) Vie(z1, 22, 1),

(6)
V(X,O,u|u = 2) = %Vk(m + 1,I2,2) + %Vk($17562 + 172)-{-
+E2Vi (21,22 — 1,0) + (1 = 282252 ) Vi (21,25, 2).

For states where the server is busy, that is, a decision has
been made at an earlier transition, the recursions assume the
following form

Vi1 (X, 1) = gz (cran + caw2)+

o {%Vk(m +1,22,1) + %Vk(xl,xg +1,1)+

+ %Vk(l’l —1,22,0) + (1 — %) Vie(x1, 2, 1)} ,
(7

Vir1(X,2) = g5 (121 + cawa)+

a{%Vk(l’l + 1,22,2) + 22 Vi (21,22 + 1,2)+

+ B2 Vi(z1 - 1,22,0) + (1 - %) Vk($1,$2,2)} .
)



Like in the model using one variable, expression 5 has
terms that may not correspond to admissible options for
some states.

At this point we are able to see some differences be-
tween the two models. Although the events that can occur
in the two models are the same, we can verify that different
states of the model using two variables are represented by
the same state in the model using only one variable. For ex-
ample, the states {3,2,1} and {3,2,2} are represented as
the same state {3,2} in the model using one variable. In
the model using one variable it is impossible to know if the
server is processing a customer from class 1 or class 2. In
the model using two variables, that doubt does not exist.

The next step is to compute the costs by simulation. For
this purpose, we have developed a package in JAVA that
allows the simulation of queuing networks and activity net-
works, [10, 11]. During the simulation, an output file is
created. This output file contains the arrivals times, the end
of service times and the number of customers of each class
in the system when one of the two previous events occur.
Processing this information using Matlab, it is possible to
get the costs under the optimal policy.

For each group of parameters we ran 25 simulations,
each one with a different seed and each simulation corre-
sponding to 1000 regeneration intervals. One defines a re-
generation point as the instant of time where a customer

leaves the system empty upon his/her departure.

2.2 Results

The figures 3 and 4 present the results computed using DP
and by the simulator. In the case of the simulation results,
the 95% interval of confidence has been computed. We

computed state costs using the following parameters:

AL = 3ur =4,c1 =2,
Ay = 0.666666, 112 — 0.1, ¢5 — 1
5 = 0.002.

As it can be verified, almost all results obtained with the
model of two variables fit in the confidence interval. The
few cases where that doesn’t happen are not due to an error
in the costs computed using DP but by the cost computed

using the simulation’s output. A way of reducing this er-
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Figure 3: Cost as a function of zs.
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Figure 4: Cost as a function of ;.

ror is to increase the number of simulations for each set of
parameters. The costs computed using the model of one
variable are significantly lower than the other costs. From
these results, it is possible to conclude that the model using
two variables is the most correct one to model networks of
this kind.

3 The pA-Rule

In this section we address the problem of parting with strict
priorities using, alternatively, smooth priorities. That is,
policies where the lower priority classes may be chosen in
the presence of higher priority classes as a function of the

overall system state.

3.1 Problem Formulation

Taking into account the results of the previous section, this
problem is formulated using a model with two variables.
The network used in this problem is the same used above

and we are still looking at infinite horizon discounted costs.



The difference now concerns with the expression that ex-
presses the cost as a function of the buffer lengths.

For the pc-rule, the costs are given by c;x;. In this prob-
lem the state cost is given by a;z; + bixf, that is, the state
cost is given by a linear and a quadratic term. Using this
expression in the DP algorithm we will obtain the decision
matrices that allow us to identify the new policy. The deci-
sion matrices are obtained by choosing the action that mini-
mizes the cost state upon convergence of the value iteration
algorithm. Depending on the state, in the respective position
of the matrix it will appear a 0 if idleness is the best choice,
1 if processing customers of class 1 is the best choice, or 2
otherwise.

We omit the details of the recursions for this particular
problem and move on to the presentation of the results ob-

tained with the Value Iteration algorithm.

3.2 Results

To illustrate the structure of the optimal policy we present a
sample of the results, where the linear cost parameters are
set to zero and only the quadratic terms are non zero. In
particular, we set by to be constant and evaluate how does

the policy change with a change in bs.

)\1 = 0.475,,[11 = 1,a1 = O,bl =0.5
Ao =0475, ue = 1,a0 = 0,0y € {03,07}
B = 0.002

In Figure 5 we present the control matrices obtained for
decision points as functions of x; and z5. Matrix a) is ob-
tained for by = 0.3 and matrix b) corresponds to by = 0.7.
One should note that if by were to be set to zero, given the
fact that by is non zero, the resulting policy would be the
pe-rule with priority to class 1. Therefore, when b, is non
zero but lower than b; — Fig. 5 a) —, we observe that there is
region of the state space where customers of class 2 get pri-
ority over customers of class 1. Moreover, the state space is
divided in two regions,where each class has higher priority
in each region. Also, there is a straight line separating them.
Reporting to matrix b), a similar behavior is observed with
the classes switching their roles, since bs > by for this case.

We have observed the switching curve to be a straight line

for all other choices of the cost parameters we tried.
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Figure 5: Sample of decision matrices.

Given the fact that the curve separating the two regions
is a straight line, we can conjecture that it should be possi-
ble to formally establish the structure of the optimal policy
for any set of cost parameters. What we propose next is to
derive its structure using intuitive arguments and making an
analogy with what happens for the uc-rule.

3.3 Intuitive Formulation of the Policy

Considering an iteration on the process, we have the follow-
ing for the pc-rule: whenever both queues are non empty at
a decision point the choice is made as if looking to what
class will reduce more cost at a higher rate if chosen to be

processed. That is,
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ing the size of queue i by one.

We know the pic-rule to give higher priority according to
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the product p;C;. That is, the highest priority goes to the

class for which the product between the linear cost rate and

processing rate is higher.

By analogy with the pc-rule, we now repeat the argu-

ment using also the quadratic component for the cost:

G
Il I
[ —
(o} —
—~ (]
— —~
—
! _
S 2
= &
) 8
+ +
— =
_ 1_ 5]
£ 187
i
S~—~"
- T I =
S I3
- T N T
T & 3 &
| [
— o~ N
— 8 o 8
O SR A
+ + + +
— 2
8§ 3§ g8 &
i
I = I o
&5 E g
— I
S S |

each queue size by one is A; as given above. Therefore, it

In this case, the incurred cost reduction due to decreasing

appears that higher priority should be given to the class for

which p; A; is higher. If this is the case, note that there is no

single class which always has higher priority than the other,

because A; depends on the queue size z;.

if uiAg(t) > pala(t)

< p2a(2)

if 1Ay (t)

(W)

Figure 6: Decision matrices with switching curve superim-

posed

Assuming our reasoning to be correct, we can derive an

expression for the switching curve, which is done by iden-

meaning that for those cases we either have a straight line

tifying the states for which p1 A1 = paAs.

with zero slope or infinite slope, which is the same as say-
ing that when only one quadratic term is present, we have

= g [ag + 222bs — by

w1 lar + 2x1by — by

a threshold policy. For instance, when b; = 0, for every

ba # 0 there is a value, say k, above which class 2 gets

priority over class 1. In this case, we can associate with the

€))

+

To =

blNl
bafio

(a1p1 — agpz) + (bapiz — bijir)
2ba o

threshold the concept of waiting time for service. That is,

when the non priority buffer has more than &k customers, it

The expression above is only valid for b; # 0 and corre-

means that the first customer of that class has been waiting

sponds to the threshold that defines when to change priority,

for service for over k inter-arrival intervals. The purpose

0 and by # 0 we

and it is indeed a straight line. For b;



is to prevent customers to wait too long for service. The
magnitude of by will establish how much is acceptable.
Figure 6 shows that the previous formulation is correct,

since the numerical results and the threshold overlap.

3.4 Variance of Cycle Time

Now we need to address the consequences this new cost
function and respective policy have concerning the variance
of the cycle time for the two classes. We simulated the net-

work with the following parameters:

)\1 = 0.475,/11 = 1,(]1 = 2,[)1 =0
Ay = 0475,/1,2 =1l,a9 =1,by € [0701]
B = 0.002

For this purpose, we simulated the network with lin-
ear and quadratic terms to see the effect of increasing the
quadratic term for the non-priority class. Note that when
ba = 0 we have the original classic scheduling problem
and, with these parameters, priority should be given to class
1.
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Figure 7: 95% confidence intervals for cycle time variance
of class 1 and 2.

Although it does not make any sense to talk about pri-
ority and non priority classes for this new policy, we still
make such usage to make our discussion clearer, in terms of
comparing the behavior relative to the original pc-rule.

As it is possible to see in figure 7, as we increase the
value of by (quadratic term of the non-priority class), the
variance of the cycle time for the priority class — class 1,
originally — increases and the variance of the cycle time of
the non-priority class decreases. These results should not
be surprising, given the discussion made so far because, by
changing the quadratic term, we can increase the chances
for the non-priority class to have access to the server in the
presence of the priority class.

Having looked at the variance of the cycle time for each
class separately, we can see what happens to the global vari-

ance.
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Figure 8: 95% confidence intervals for total cycle time vari-
ance.

As can be seen in figure 8 there is a set of parameters that
allow the resulting policy to achieve a lower global variance
of the cycle time. The value achieved by the pc-rule corre-
sponds to b, = 0.

Finally it is possible to see if the variance of the cycle
time of the two classes is independent. To verify this, we
computed the global variance and the sum of the variance
of the two classes and confirmed them not to be equal.

From figure 9, we can conclude that the processes are
not independent. This result is easy to understand because
the classes are competing for the same server. If a non-
priority customer is being served, given the service is non-
preemptive, the priority customer has to wait for the com-

pletion of that service. So, the access of each class to the
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Figure 9: Total cycle time variance and sum of variances for
both classes.

server is influenced by the other class.

4. Conclusions
The two main aspects to retain from this work are:

e in queueing networks, the formulation of some prob-
lems using models where only the buffer lengths define
the state is not correct;

e we formulated a new cost function that produces an
alternative to strict priorities policies and decreases the
variance of the total cycle time.

Consequences of the first remark are that, although the
cost estimates produced by the value iteration algorithm are
incorrect for the 1 variable model, the optimal policy is the
same in both models. However we conjecture that, for other
MDP’s constructed for queuing networks, the resulting poli-
cies may themselves be incorrect when the state representa-
tion does not include the server state.

As to the second remark, we showed that by manipulat-
ing the parameters of the new cost function, it is possible to
adjust the priorities to both classes in a more balanced way,
and we are proposing the concept of smooth priorities as a
better alternative to strict priorities.

In terms of performance, we can see that there is a set
of parameters that used in the pc-rule and in the new rule
gives a lower global variance for the new rule than for the
pe-rule, thus improving the departure time predictability for
each class of customers.

Future work will have to address the formal demonstra-
tion of the pA-rule optimality.
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