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Abstract

Reconstructing a 3D scene from a moving camera is one
of the most important issues in the field of computer vision.
In this scenario, not all points are known in all images (e.g.
due to occlusion), thus generating missing data. The state
of the art handles the missing points in this context by en-
forcing rank constraints on the point track matrix. How-
ever, quite frequently, close up views tend to capture planar
surfaces producing degenerate data. If one single frame is
degenerate, the whole sequence will produce high errors on
the shape reconstruction, even though the observation ma-
trix verifies the rank 4 constraint. In this paper, we propose
to solve the structure from motion problem with degener-
ate data, introducing a new factorization algorithm that im-
poses the full scaled orthographic model in one single op-
timization procedure. By imposing all model constraints,
a unique (correct) 3D shape is estimated regardless of the
data degeneracies. Experiments show that remarkably good
reconstructions are obtained with an approximate models
such as orthography.

1. Introduction
One of the most important issues in computer vision is

definitely the structure from motion problem, where the ob-
ject’s structure and motion are obtained from image mea-
surements. Considering the orthographic camera model,
this task can be solved by the Tomasi-Kanade method [12].
More complex cameras have been considered in [8, 10].
Note that the referred algorithms are adequate only if all
features points are visible in each image. Problems oc-
cur when some measurements are missing and this happens
nearly always in real situations.

The problem which we propose to solve in this paper,
is the 3D Reconstruction of an object’s shape from an im-
age stream with missing data. The assumed camera model
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is the orthographic model. To minimize perspective effect,
the image sequence should be produced by close-up views
of the objects (these views quite frequently are of planar
surfaces).

The missing data problem can be formulated as an opti-
mization given by:

Problem 1 (Â, B̂)∗ = argminÂ,B̂

∣∣∣∣∣∣(Z − ÂB̂) � D
∣∣∣∣∣∣

F

where Z and D are the measurements and mask matri-
ces, respectively. The mask matrix is a binary matrix iden-
tifying the known data with 1 and unknown data with 0.

According to the orthographic camera model, matrix
Z has rank 4 and this fact is used to estimate the un-
known data. In [12],the missing data is sequentially re-
placed using complete subsets of the data. But, this first
approach does not solve Problem 1 for generic configura-
tions of D, as proved by Jacobs [7]. The proposed approach
in [7] is a non-iterative and sub-optimal algorithm where
the measurement matrix verify the rank constraint. In the
same way of Jacobs’ approach, there are several algorithms
[5, 11, 13] known as batch algorithms, because the solution
(sub-optimal in presence of noise) is found in one global
step. Due to this reason, this type of methods can be used
to obtain an initialization to iterative algorithmwhere alter-
nation algorithms play an important role. These last algo-
rithms are based in the fact that if A or B are known, there
is a closed-form solution for the other such that (Problem 1)
is minimized.

Guerreiro and Aguiar approach [4] is similar to Aanaes
et al [1], both algorithms project the data in a subspace in
each iteration. The convergence of the referred methods is
initially good but it is very susceptible to flatlining. Then,
Buchanan [2] presented a Newton method to improve con-
vergence.

The constraint used by these algorithms, the rank con-
straint, is not enough to obtain a correct estimate when
there are images in the sequence where the 3D points of
the known projections belongs to 1D or 2D subspaces. This
happens because the optimization problem (1) has infinite
minimae.
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There are works that try to solve this ambiguity with
more priori information. In [9], the planar surfaces of the
object are known and due to this they impose these con-
straints to the object’s shape and in [5, 11] a smooth camera
trajectory is considered. But these last strategies can not be
used to solve the problem presented in this paper, because
we want to recover the 3D shape of an unknown object and
without any constraints in the camera trajectory. We will
show that this objective can be attained by solving prob-
lem (1) but constraining camera motion to comply with the
rigidity constraints. To obtain this result, an intermediate
step is required, leading to a new rigid factorization algo-
rithm.

2. Rigid Factorization
In this section we will introduce a new factorization al-

gorithm that computes shape and motion under scaled or-
thography in one single optimization step, and imposing
the correct camera model upfront. We will show that this
constraint is unavoidable if the known data is degenerate
and because of this fact the affine factorization of Tomasi-
Kanade does not provide the correct answer. Assume for
now that there are no missing points on our data, and that
the known data matrix Z is given by

Z = W (1)

where W is called the data matrix. If one object is repre-
sented by P points view in F frames, this matrix is com-
posed by the projections of the object’s points in all images,
such as

W =

⎡
⎢⎢⎢⎢⎢⎣

u1
1 . . . uP

1

v1
1 . . . vP

1
...

. . .
...

u1
F . . . uP

F

v1
F . . . vP

F

⎤
⎥⎥⎥⎥⎥⎦ (2)

where up
f and vp

f are the p point projection in the frame f .
Considering the scaled-orthographic camera model, (2) can
be factorized as

Z = MS + tT 1 (3)

where M[2F×3] is the motion matrix, S[3×P ] the shape ma-

trix and t =
[
t1ut1v...t

F
u tFv

]T
the translation vector. The

motion matrix is composed by independentmatrices like the
next expression indicates.

M =
[
MT

1 . . .MT
F

]T

Each matrix Mf (also called the motion matrix in frame
f ) is composed by the two perpendicular vectors

Mf =
[
ix iy iz
jx jy jz

]f

=
[
if

jf

]
(4)

It is important to refer that the vectors if and jf are not
orthonormal vectors, as usual, but perpendicular with the

same norm (the scale factor). Since we are estimating the
model’s parameters without missing data, considering that
the shape coordinate system is placed in the shape’s cen-
troid, the translation vector has a closed-form solution,

t =
[

1
P

∑
i Z1i . . . 1

P

∑
i Z[2f,i]

]
(5)

Replacing it in (3) we obtain the so called centered data
matrix

Zc = MS (6)

In the orthographic model (the considered model for the
data), there are not constraints for S. Instead M has to ver-
ify the following motion constraints

if if = αf (7)

jf jf = αf (8)

if jf = 0 (9)

∀f ∈ {1, ..., P}
where αf is the scale factor of the frame f relatively to the
reference one. Due to the Least Squares (LS) formulation of
Tomasi-Kanade method, in the noisy data case, the obtained
solution does not satisfy exactly these constraints (7,8,9).

2.1. Imposing Rigid Motion Constraints
To estimate the missing data that will be presented in

section 3, the motion constraints must be satisfied. To do
this, we replace the unconstraint optimization problem [12]
by the following one

Problem 2
(M̂, Ŝ)∗ = argmin

M̂,Ŝ

∑
f ||(Zc)f − M̂f Ŝ||2F

s.t.

M̂1M̂1

T
= α1I2×2

...

M̂F M̂F

T
= αF I2x2

αf ∈ R+, ∀f

The natural way of solving the Problem 2 is to search
the motion matrix M̂ in the motion manifold, defined by the
constraints of the referred problem. However, this is still
a very hard problem. Instead we propose an iterative algo-
rithm in R2F×P where the solution found in each iteration
(for the optimization problem without constraints) is pro-
jected in the motion manifold. It can be seen as a version of
the power method where in each iteration a motion matrix
is calculated (step 2) independently. The procedure of step

2, which projects the left factor of Zc (
[
RT

1 ...RT
F

]T
) onto

the manifold of motion matrices, has a similar derivation to
the Procrustes problem [3]. The solution of this problem for
each matrix Mf (4) in each iteration k is given by:

M̂k
f = αfUfV T

f , where Rf = Uf

[
σ1 0
0 σ2

]
V T

f

and αf = (σ1 + σ2)/2



Algorithm 1 Rigid Factorization

1. Initializations:
(factorize Zc using any factorization (e.g. SVD)

Zc = AB, R = A, M̂0 = A, Ŝ0 = B
k = 1

2. Project R into the manifold of motion matrices

M̂k = argminX

∑
f ||Rf − Xf ||2F

s. t. XfXT
f = αf I2x2 ∀f

α ∈ R+

3. Ŝk = M̂k
+
Zc, M̂k

+
- Moore-Penrose pseudoinverse

4. R = ZcŜ+
k

5. Verify if ||M̂k − M̂k−1|| < ε.
If not, go to step 2 and k = k + 1.

6. M̂ = M̂k and Ŝ = Ŝk

Even though step 2 is solved F times in each iteration,
the computational cost of this is irrelevant because as equa-
tion (10) shows, it has closed-form solution and is unique.
In step 3, the estimate of the object’s shape is given by a LS
solution.

In terms of complexity, we need to compute two pseudo-
inverses and a set of eigen vectors in closed-form (in R3).

3. Estimating Shape With Missing Data
To represent the missing data, we introduce the matrix

D. Elements D[2∗i−1,j] and D[2∗i,j] of this matrix are 1
if point j is known in frame i and 0, otherwise. Due to
missing data, the equations presented in section 2 are not
valid in this one. In this way, (3) is replaced by

Z = W � D (10)

where � represents the Schur (elementwise) product. Ac-
cording to (10) and the orthographic model, we have

Z = (MS + tT ) � D (11)

In this section, t is impossible to calculate such as (5)
because this expression requires that all data are known. If
the point p is known in all frames, the translation vector is
computed as
tT = −Z [0 . . . 0︸ ︷︷ ︸

p−1

1 0 . . . 0]T︸ ︷︷ ︸
P−p

= − [
z1p . . . z[2f,p]

]
(12)

and all measurements are registered to this point. If not this
vector is another parameter to estimate.

3.1. Using the rank constraint
The rank constraint can be used to calculate the unknown

values of Z. This fact is true because, by checking the
model (11) and the dimensions of M and S, we can eas-
ily conclude that Z has at most rank 4. Mathematically,
this problem corresponds to solve the following optimiza-
tion problem

Problem 3

(Ŵ)∗ = argmin
Ŵ

∣∣∣∣∣∣(W − Ŵ
)
� D

∣∣∣∣∣∣2
F

s.t. Ŵ ∈ S4

where S4 is the space of matrices with rank equal to 4.
This approach allows us to obtain the correct solution for the
missing data if the object is a full 3D object and the known
points of each image of the stream are not coplanar. The
solution is not the correct one if it exists, at least, one image
where the known points are in the same 1D or 2D subspace
(degenerate images). This happens because the problem 3
has infinite solutions.

To verify the described fact, consider that the translation
vector is computed and, due to this we know Zc given by

Zc = MS � D

where Zc ∈ S3. Suppose that the first m points belong to
a 2D flat surface and the known points of the image f are
these points, precisely. The object’s shape is known and we
can calculate a matrix A such that the plane z = 0 contains
the first m points.[
(Zc)[2f−1,1] ... (Zc)[2f−1,m] ?...?
(Zc)[2f,1] ... (Zc)[2f,m] ?...?

]
︸ ︷︷ ︸

Ŵf

= (13)

[
a b c
d e f

]
︸ ︷︷ ︸

M̂f

AA−1

⎡
⎢⎣Ŝ11 ... Ŝ1m Ŝ[1,m+1]...Ŝ1P

Ŝ21 ... Ŝ2m Ŝ[2,m+1]...Ŝ2P

0 ... 0 Ŝ[3,m+1]...Ŝ3P

⎤
⎥⎦

︸ ︷︷ ︸
Ŝ

This particular parametrization just makes completely clear
that the submatrix of the first m columns of S is singular
(the planar surface). Equation (13) is equivalent to the sys-
tem of equations given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(Zc)[2f−1,1] = aS11 + bS21

(Zc)[2f,1] = dS11 + eS21

... =
...

(Zc)[2f−1,m] = aS1m + bS2m

(Zc)[2f,m] = dS1m + eS2m

(14)

In (14) we can clearly verify that the Problem 3 has two
degrees of freedom, variables c and f . Then, the unknown
image points projection in frame f have not two solutions,
but infinite. This fact does not allow us to recover the origi-
nalmotion and shape matrix because the method can add an
error to the known points’ projections in this frame. In real
situations with noise and other distortions these estimated
projections can be quite far from reality. If, as it is common
in real situations, there are large sets of degenerate images
the total error can be significant.



3.2. Imposing the orthogonality constraints
Considering the orthographic camera model to explain

the data, we can verify, in section 3.1, the rank constraint
is not enough to estimate the missing data. To solve this
problem, we propose the following optimization problem
Problem 4

(M̂, Ŝ)∗ = argmin
M̂Ŝ

∑
f

∣∣∣∣∣∣(Wf − M̂f Ŝ + t̂f1[2,P ]

)
� D

∣∣∣∣∣∣2
F

s.t.

M̂1M̂1

T
= α1I

...

M̂F M̂F

T
= αF I

αf ∈ R+, ∀f

With this new approach (Problem 4), the motion con-
strains (7,8,9) are added to (14). Then, the variables c and
f have not an infinite number of solutions but only the two
solutions.

Algorithm 2 Rigid Factorization with Missing Data

1. Initializations: Ẑ0 = Z, k = 0
2.Estimate translation (centroid).

t̂k =
[

1
P

∑
i Ẑ1ik . . . 1

P

∑
i Ẑ[2f,i]k

]
(12)

Ẑck = Ẑk − t̂k Remove translation
k = k + 1

3. Estimate M̂k e Ŝk Using Rigid Factorization
4. Update data matrix

Ẑk = (M̂kŜk + t̂k−11[2F,P ]) � D̄︸ ︷︷ ︸
Missing data estimate

+ Z� D︸ ︷︷ ︸
Known data

D̄ - 2’s complement of D i.e. D̄ = 1[2F,P ] − D
5. Verify if ||Ẑk − Ẑk−1|| < ε.

If not verify go to step 2 and k = k + 1.

The two solutions correspond to the correct one, and the
reflection of the camera over the plane (shape). This reflec-
tion produces the same image (it is intrinsic to orthography).
Even though motion can be ”reflected” the computed shape
will always be correct. Note that in case known data is over
a line (rank 1 known shape) there will be infinite solutions
for motion too, however this will not affect the shape either
(orthography is valid). Then, to compute the structure from
motion it is proposed the iterative Algorithm 2.

In step 3, it is used an algorithm which solution verifies
(7,8,9), such as algorithm 1 described previously.

4. Experiments
4.1. Hotel Experiment

Benchmark tests were performed against the state-of-
the-art, using Buchanan&Fitzgibbon’s matlab code1. We

1This package contains several high performance methods and was
made generously available in www.robots.ox.ac.uk/˜abm
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Figure 1. Up Left - Image feature tracks. Up Right - The reference
3D shape, computed with Tomasi-Kanade’s factorization. Bottom
- Pattern of missing points
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Figure 2. The top figure compares several methods by showing
a top view of the hotel’s 3D shape. Besides the reference shape
(TK), we show the proposed method (RF) and two other (BF and
GA). The graph in the bottom figure plots the relative error of sev-
eral methods showing that none of them can compute shape ade-
quately

modified the known hotel sequence2 selecting all 106 featue
points and 18 equally spaced frames from the total of 180.
The matrix measurement has only 14% of missing features
and two of those frames were artificially made degenerate
with only 24 features visible, all lying on a planar sur-
face (the rightmost wall of the hotel, shown in figure 1
top right). Since there is no ground-truth, we used the ob-
ject’s shape computed using Tomasi-Kanade’s factorization
method with full observation matrix (no missing data), as
the reference shape (figure 1 middle).

In figure 2 we show the performance of our (rigid factor-
ization) algorithm against 4 state-of-the-art methods: BF-
Buchanan&Fitzgibbon’s Damped Newton method[2],PF-
Vidal&Hartley’s power factorization [14], GA- Guer-
reiro&Aguiar EM (alternate) algorithm [4],Aanaes- Aanaes
et al [1]. To avoid graphical clutter, in the top plot of fig-
ure 2 we show the reconstruction of two methods - GA and

2http://vasc.ri.cmu.edu/idb/html/motion/index.html
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Figure 3. Up - Two images of the sequence Bottom - Pattern of
missing points

BF (an alternate algorithm vs. a Newton algorithm) -, the
”ground-truth” (TK) and our method (RF). The figure was
generated from a top view so that the 3 planes of the ho-
tel walls can be perceived clearly. Since both methods seek
the best rank 4 matrix, like all other methods, they reach
similar solutions, both inadequate (figure 2). As expected
by enforcing rigidity constraints the reconstruction is quite
close to the reference. In figure 2 (bottom), each bar repre-
sents the shape error

∑ |Ŝi − Stk
i |, where Ŝi is the shape

estimate for point i and Stk
i is the reference shape for that

point. Of course the absolute value of the error depends on
the particular shape, but the relevant aspect is that all other
methods obtain estimates that are at least one order of mag-
nitude above our method, and this happens with only 14%
of data missing.

4.2. Dinosaur Experiment
In the second experiment with real data, the proposed

algorithm was tested with the dinosaur sequence3 (figure
3). The sequence is composed by 36 images and does not
contain any image with degenerate data. The measurement
matrix is sparse with only 28% of known data (see figure
3).

Since there is no full matrix in this experiment, in oppo-
site to the previous one, the ”ground-truth” is not available
and due to this reason the numerical evaluation of the results
becomes very hard. In figures 4, we can see two different
views of the dinosaur’s shape which was obtained by the
new method. Checking these figures, the obtained shape
seems to be correct.

4.3. Full reconstruction with largely scaled images
Finally we present a real life example using the rigid fac-

torization with missing data. The aim is to produce a 3D
reconstruction of one building from a set of uncalibrated
images. We searched on Google for images depicting the
building from a quite diverse set of viewpoints. The im-
age scale is also quite diverse, since there are images taken

3www.robots.ox.ac.uk/˜abm
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Figure 4. Two views of the dinosaur’s shape obtained by the pro-
posed method

Figure 5. Reconstruction of a famous Rem Koolhaas ”piecewise
planar” building.

from a pedestrian capturing one window together with far
off aerial views from an airplane. Resolution ranged from
3 Megapixel to a 60 Kilopixel and perspective effects were
quite large in some of them. Image features were tracked
by hand and were basically the vertices of the building and
windows’ corners. In figure 5 we show some of the 19 im-
ages with the features superimosed. Close up views with a
large depth range produce strong perspective, therefore we
just inserted points that were in a small depth range com-
pared to the distance to the camera. Even thought it fa-
vors the camera model adequacy it generates high volumes
of (possibly degenerate) missing data. A triangulation was
computed to convey the shape in a more natural way. The
blue surfaces are windows. As figure 5 shows, the recon-
struction is quite faithful. However perspective effects are
noticeable, specially in the large front window. Neverthe-
less, in our opinion, this is a quite a hard set of images
to any 3D reconstruction algorithm and remember that no
prior knowledge used. For more precise applications this
can be a good starting point to perspective factorization al-
gorithms such as [6, 10].

4.4. Convergence
To analyze the algorithm’s performance, several syn-

thetic experiments were done. Convergence was evaluated
as a function the total number of points and the number of
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Figure 7. Shape error as a function of noise and number of visible
points

visible points. The tested object was composed of 3 faces
of a cube and 37 features were in each of them. In each
experiment, a total of 21 images were generated and 15 of
them were degenerate.The missing data in the remaining 6
(non-degenerate) images was set to 30%.

Figure 6 plots graphs of the ratio and speed of con-
vergence. One hundred random experiments were made
for each parameter (#visible points). Checking figure 6
(left) we can verify that to obtain good estimations (rates of
convergence above 97%), we must know at least 8 points
per each degenerate image. The convergence’s velocity
changes in accordance to the known projections in degen-
erate frames (figure 6 - right): the new algorithm is faster
when more projections are known.

The graphs of figure 7 illustrate the algorithm’s behav-
ior with noise. In this experiment, the parameter value was
chosen such that a high convergence rate is achieved: the
number of known projections in degenerate images (15 in
21 also) is 13. The figure of merit to the algorithm’s evalua-
tion is shape error. These results are compared with the ref-
erence shape, computed by TK factorization with full ma-
trix. Observing figure 7, we can verify that the error shape
is proportional to that of the reference shape.

In summary, the relevant conclusion here is that the pro-
posed algorithm converges to the correct shape, when there
are at least 8 known points in each degenerate image.

5. Conclusions
We have presented an new factorization algorithm that

computes the optimal motion shape and scale estimates
(scaled orthography) from a feature track matrix. We also

introduced an iterative algorithm that produces the same
estimates when feature points are missing and the known
points are degenerate. To our knowledge no other algorithm
can solve this problem. We have presented a solution of the
structure from motion problem to the most general and re-
alistic situation.
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