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Abstract—The noncoherent single-user multiple-input–mul-
tiple-output (MIMO) channel in the low signal-to-noise ratio
(SNR) regime is investigated from two viewpoints: capacity and
probability of error analysis. The novelty in both viewpoints is
that we allow an arbitrary correlation structure for the Gaussian
observation noise. First, we look at the capacity of the spatially
correlated Rayleigh fading channel. We investigate the impact of
channel and noise correlation on the mutual information for the
ON–OFF and Gaussian signaling schemes. Our findings establish
that, in the low SNR regime, mutual information is maximized
when the transmit antennas are fully correlated (the same holds
for the receive array). Then, the deterministic channel setup is
considered and a pairwise error probability (PEP) analysis for the
generalized likelihood ratio test (GLRT) receiver is performed.
This leads to a codebook design criterion on which we base the
construction of new space-time constellations. Their performance
is assessed by computer simulations and, as a byproduct, we show
that our codebooks are also of interest for Bayesian receivers,
which decode constellations with nonuniform priors.

Index Terms—Channel capacity, colored noise, correlated
Rayleigh fading, Gaussian modulation, generalized likelihood
ratio test (GLRT) receiver, low signal-to-noise ratio (SNR),
maximum a posteriori (MAP) estimation, multiple-input–mul-
tiple-output (MIMO) systems, noncoherent communications.

I. INTRODUCTION

I N slowly fading scenarios, channel stability enables the re-
ceiver to be trained in order to acquire the channel state in-

formation (CSI) necessary for coherent detection of the trans-
mitted codeword. The scope of this paper will be fast fading
scenarios, where fading coefficients change into new, almost in-
dependent values before being learned by the receiver through
training signals. Hence, CSI is no more accessible, and the re-
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ceiver must then operate in a noncoherent mode. Further, we
focus on the low signal-to-noise ratio (SNR) regime. This stems
from the fact that in the third-generation mobile data systems
almost 40% of geographical locations experience receiver SNR
levels below 0 dB while only less than 10% display levels above
10 dB. High SNR requirement, besides its low-power efficiency,
cannot always be satisfied due to the power limitations in the
mobile device. Also, recent technological advances have led to
the emergence of small, low-power, and possibly mobile devices
that, when deployed in large numbers, have the ability to form
an intelligent (sensor) network, which can monitor large areas,
detect the presence or absence of targets, etc. This motivates the
analysis and construction of communication schemes that can
cope with the low SNR regime. See [1]–[3] for a more thorough
discussion of this topic.

A. Previous Work

Low SNR multiple-input–multiple-output (MIMO) systems
when CSI is available at the receiver have been treated in [1].
The interplay of rate, bandwidth, and power is analyzed in the
region of energy per bit close to its minimum value. The scenario
where no CSI is available at the receiver has been considered
in [4]. It has been shown that the optimal signaling at low SNR
achieves the same capacity as the known channel case for single
transmit antenna systems. Verdu [5] has shown that knowledge
of the first and second derivatives of capacity at low SNR gives
us insight on bandwidth and energy efficiency for signal trans-
mission. More precisely, these quantities tell us how spectral
efficiency grows with energy-per-bit. In [6], a formula for the
second-order expansion of the input–output mutual information
at low SNR is obtained, whereas in [7], the capacity and the
reliability function as the peak constraint tends to zero are con-
sidered for a discrete-time memoryless channel with peak con-
strained inputs. Similar results to [6] and [7] have been obtained
in [8] under weaker assumptions on the input signals. In the
same work, Rao and Hassibi have demonstrated that the ON–OFF

signaling presented in [4] generalizes to the multiantenna setting
and attains the known channel capacity. The tradeoff between
communication rate and average probability of decoding error
using a framework of error-exponent theory has been investi-
gated in [9]. It is argued that the advantage of having multiple
antennas is best realized when the fading is fully correlated, i.e.,
a performance gain of and a peakiness gain of
can be achieved where , , and represent the number of
transmit, receive antennas, and the length of the coherence in-
terval, respectively. The symbol error probability point of view
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for the analysis of low SNR noncoherent independent and iden-
tically distributed (i.i.d.) Rayleigh channel is more recent, al-
though Hochwald et al. [10] had reported that in the low SNR
and Rayleigh fading channel it seems one should employ only
one transmit antenna. Borran et al. [2], under the assumption
of equally probable codewords, presented a technique that uses
Kullback–Liebler (KL) divergence between the probability den-
sity functions (pdfs) induced at the receiver by distinct trans-
mitted codewords as a design criterion for codebook design. In
low SNR condition, their constellation points occupy multiple
level (signal points lie in concentric spheres) with a point usually
in the origin. The codes thereby constructed were shown to per-
form better than some existing noncoherent codebook construc-
tions in low SNR, namely, [10]. Srinivasan et al. [11] considered
the case of a single transmit antenna in the low SNR regime.
Using the information theoretic results over the low SNR non-
coherent i.i.d. Rayleigh fading channel under an average power
constraint (cf. [8] and [9]), they allow for codewords with un-
equal priors in a code and optimize over prior probabilities to
achieve better performance. This results in constellations that
assume a point in the origin with probability 1/2, with the prob-
abilities of the points lying in the sphere being equal. In [12], the
correlated Rayleigh fading model was studied and it was shown
that at any SNR, any single antenna performs better when used
with suitable precoding in a MIMO correlated Rayleigh fading
than in a single-input–multiple-output (SIMO) channel. Conse-
quently, code designs that exploit the correlations in the transmit
antennas in the MIMO case to provide gains over the corre-
sponding SIMO case in the low SNR regime were presented.

B. Contributions and Paper Organization

We study the noncoherent MIMO channel in the low SNR
regime from the capacity and pairwise error probability (PEP)
viewpoints. The novel aspect is that we allow the Gaussian ob-
servation noise to have an arbitrary correlation structure, though
known to the transmitter and the receiver. In Section II, the
spatially correlated noncoherent MIMO block Rayleigh fading
channel is analyzed. This extends the approach in [8] as we
take into account both channel and noise correlation. The im-
pact of channel and noise correlation on the mutual informa-
tion is obtained for the ON–OFF and Gaussian signaling. The
main conclusion is that mutual information is maximized when
both the transmit and receive antennas are fully correlated. We
also argue that the ON–OFF signaling is optimal for this mul-
tiantenna setting. In Section III, contrary to most approaches
for the low SNR regime, the channel matrix is assumed de-
terministic, i.e., no stochastic model is attached to it. A low
SNR analysis of the PEP for the generalized likelihood ratio
test (GLRT) receiver is introduced, and a codebook design crite-
rion that takes into account the information about noise correla-
tion is obtained. For the special case of single transmit antenna
and spatio–temporal white Gaussian noise, it is shown that the
problem of finding good codes corresponds to the very well-
known packing problem in the complex projective space [22],
[25]. New space–time constellations for some particular wire-
less scenarios are constructed. Computer simulations show that
these new codebooks are also of interest for Bayesian receivers

that decode constellations with nonuniform priors. Section IV
contains the main conclusions of our paper.

Throughout this paper, the operator ( ) denotes transpose
(complex conjugate transpose). The multivariate circularly sym-
metric, complex Gaussian distribution with mean vector and
covariance matrix is denoted by . The operator
denotes the expectation with respect to the probability distribu-
tion . When no ambiguity can occur, we simply write . For
any matrix , we write its trace as . The symbol

denotes the Frobenius norm. The -dimensional
identity matrix is denoted by and the matrix of all
zeros by (if no ambiguity can occur, we write ). The
minimum (maximum) eigenvalue of the symmetric matrix is
denoted by ( ). The determinant of matrix is
denoted by . The curled inequality symbol represents
matrix inequality between Hermitian matrices.

II. RANDOM FADING CHANNEL: THE LOW SNR MUTUAL

INFORMATION ANALYSIS

1) Data Model and Assumptions: We focus on a communi-
cation system comprising transmit and receive antennas
over a narrowband flat Rayleigh fading channel. We assume a
block fading channel model that is widely used in the MIMO
literature [8], [9], [15], [24], with coherence interval . In com-
plex baseband notation, we have the system model

(1)

where is the matrix of transmitted symbols, is the
matrix of received symbols, is the channel

matrix, and is the matrix of zero-mean additive obser-
vation noise. We work under the following assumptions.

A1) Channel matrix: The popular separable (Kronecker)
spatial correlation model [1], [14], [15] is used, i.e.,

, where is an
matrix composed of statistically independent
entries, and the coefficient is the model

parameter proportional to the SNR. We assume that
the matrix remains fixed for the coherence time
after which it changes to a new independent value. The
correlation coefficients between the ( ) transmit
(receive) antennas are assembled into an
( ) positive-semidefinite Hermitian correlation
matrix ( ; the operator is used for the sake
of convenience). The matrix is not known at the
receiver or at the transmitter, but its distribution is, in
addition to and . This model is appropriate for
the scenarios where only the objects surrounding the
transmitter and the receiver cause the correlation of the
local antenna elements, while they have no impact on
the correlation at the other end of the link. The model
has been found to be satisfactory in certain scenarios
[16], [17]. We would also like to point out that there
exist other spatial correlation models that take into ac-
count coupling between transmit and receive sides; see
[18] and references therein. Although these models may
characterize realistic channels more accurately for some
scenarios (in these cases, the Kronecker model leads
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to capacity underestimations), we adopt the Kronecker
model since the general case is less tractable for the an-
alytical approach in this work. For a fair comparison of
different correlation cases, we assume that
and .

A2) Transmit power constraint: We impose the power con-
straint .

A3) Noise distribution: The noise covariance matrix
is known at the transmitter

and at the receiver ( stacks all columns of the
matrix on the top of each other, from left to right).
Also, without loss of generality (w.l.o.g.), we assume

. Note that in A3), we let the data model
depart from the customary assumption of spatio–tem-
poral white Gaussian observation noise that is clearly an
approximation (for which it is known that leads to severe
capacity underestimations). In realistic scenarios, the
term often exhibits a very rich correlation structure, e.g,
see [1], [19, pp. 10, 159, 171], and [20, pp. 100]. The
generalization to arbitrary noise covariance matrices

encompasses many scenarios of interest as special
cases: spatially colored or not jointly with temporally
colored or not observation noise, multiuser environ-
ment, etc. A methodology for designing space–time
codebooks for noncoherent communications in mul-
tiple-antenna wireless systems and an arbitrarily given
noise covariance matrix in the high SNR regime has
recently been proposed; see [22] for more details.

A. Mutual Information: ON–OFF Signaling

In [8], it has been demonstrated that the ON–OFF signaling
presented in [4], where the single transmit antenna systems were
considered, generalizes to the multiantenna setting and attains
the known channel capacity. Here, we show that this is also the
case for the correlated Rayleigh fading channel model with ar-
bitrary noise covariance matrix. Furthermore, we maximize the
mutual information with respect to (w.r.t.) the input signal ,

, and . Hence, we view both and as system pa-
rameters that we can introduce and track. This paper completes
our previous work in [23]. The ON–OFF signaling is defined as
follows: for any and assuming

with probability (w.p.)
w.p.

With an analysis similar to [8], presented in Appendix I, it can
be shown that at sufficiently low SNR the mutual information
between and up to first order in is given by

(2)

where denotes the Kronecker product. Note that for the spe-
cial case of spatio–temporal white observation noise and uncor-
related Rayleigh fading channel case, i.e., , ,
and , our result in (2) recovers the finding in [8]. In
that case, the maximal mutual information (per channel use) is
equal to

Now, we address the maximization of the mutual information
w.r.t. , , and , i.e.,

(3)
where

matrix such that and
(4)

In Appendix II, we show that the maximum in (3) is attained by

(5)

where

(6)

with for and zero, otherwise. The notation
represents the entry of the matrix on the position . Note
that is a diagonal matrix. The optimization problem in (6) al-
ways admits a solution (maximization of a continuous function
over a compact set), but, in general, a closed-form solution is not
available. The exception is the case when the noise covariance
matrix has a Kronecker structure, say , for some

matrix and matrix . In that situation, the
optimal (resp., ) can be taken as any unit-norm eigenvector
associated with the minimal eigenvalue of (resp., ). For
example, in the case of spatially white-temporal colored obser-
vation noise, i.e., for some positive-def-
inite matrix , the vector is the unit-norm eigenvector asso-
ciated with the minimal eigenvalue of (in other words, we
transmit the codeword in the direction that is least affected by
the noise). For the choice in (5),, the maximal mutual informa-
tion (per channel use) is equal to

(7)

where .
1) Remarks: From (5), it is clear that both the transmit and

receive antennas should be made as correlated as possible, as
both the optimal and have rank one. Note that in (7) the
mutual information is proportional to the number of transmit
antennas . The similar conclusion has been drawn in [9] and
[15] where it has been demonstrated that channel correlation can
have beneficial impact on the capacity. This is in sharp contrast
with the case of uncorrelated Rayleigh fading channel model
for which it has been shown that the maximal mutual informa-
tion is independent of the number of transmit antennas [8]. Also,
since , where

’s are the eigenvalues of , we can w.l.o.g. assume that, e.g.,
(otherwise, ). Then, by choosing

and , we have
. This result

confirms the general principle that correlated noise is beneficial
from the capacity point of view. See, e.g., [20, p. 100] for more
details. In practice, by changing the antenna separation, one can
control the eigenvalues of and , but not their eigenvectors.
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See [15], [9], [26], [27], and [20, Sec. 6.3.3]. As a consequence,
the result presented herein has to be intended as the upper bound
on the channel capacity. Nevertheless, the previous conclusion
holds for the case when we cannot manipulate the eigenvectors
of (which are still available to the transmitter through a feed-
back link): in this case, from (39), we obtain

where , , and are defined in (32), (32), and (36), respec-

tively. Clearly, (otherwise,
). Thus, correlated noise is beneficial from the capacity point

of view in this case as well. A short exercise would show that
the first-order term in (7) corresponds to that of the capacity
when the channel is known to the receiver and the noise co-
variance matrix is arbitrary (when , then ;
from (7), we retrieve the result on [20, p. 94], where the co-
herent correlated Rayleigh fading channel has been treated).
With coherent reception, we know that the mutual information is
maximized if the input is circularly symmetric, complex
Gaussian distribution, i.e., for some co-
variance matrix with such that the power
constraint in the assumption is satisfied (note that we may
assume w.l.o.g. that is zero mean). In that case, it can
be readily shown (by maximizing the first-order expansion of
the very well-known expectation-log-det expression for the ca-
pacity w.r.t. , , and ) that the optimal covariance ma-
trix is given by

(8)

with , , and defined as in (5).

B. Mutual Information: Gaussian Modulation

From a practical point of view, it is unreasonable to allow
input signals with large peakiness as the previous ON–OFF sig-
naling. Thus, we compute the low SNR mutual information for
the more realistic case of Gaussian modulation. Let
be a zero-mean random variable with covariance matrix that
follows a circularly symmetric, complex Gaussian distribution,
i.e., . Clearly, in order to meet the power constraint
in the assumption A2), . Then, at sufficiently low
SNR, the mutual information between and up to second
order in is given by

(9)

(10)

where , ,

, ,
and ’s, for , are the eigenvalues of . The ma-

trices and , for , are defined in (32), whereas
the matrix , for , is given by

(11)

where represents the th column of the identity matrix .
The proof is given in Appendix III. We now address the opti-
mization problem

(12)

It can be shown that the maximum of (12) is attained by the
following signaling scheme. The optimal correlation matrices

and are defined as in (5), and the optimal covariance
matrix is given by

(13)

where the vectors and are, as before, solutions of the opti-
mization problem (6). The constant matrix has all
the entries equal to zero except the entry , which is one.
The proof is given in Appendix IV. In this case, the mutual in-
formation (per channel use) is given by

(14)

where .
1) Remarks: In [8], it has been proved that for the uncorre-

lated Rayleigh fading channel only one transmit antenna should
be employed. Here, we see from (14) that having more transmit
( ) and receive ( ) antennas can actually enhance the channel
performance in terms of capacity significantly in the correlated
setup. We see that the mutual information is proportional to

, whereas in [8], the increase is only linear in the number
of the receive antennas. Hence, by making the antennas as cor-
related as possible the total gain is . Remark that although
the mathematics for calculating , , and is quite in-
volved, our findings are not surprising, since we see that the
optimal values correspond to those of the coherent correlated
Rayleigh fading channel case [it is easy to check that
defined in (8)]. The conclusions herein presented are in con-
cordance with [9] and [15] and with the results of Section II-A
where it has been shown that channel correlation and correlated
noise can actually improve the channel performance.

III. DETERMINISTIC FADING CHANNEL: THE LOW SNR
PEP ANALYSIS

1) Data Model and Assumptions: We retain the data
model (1), but the presumptions under which we work are the
following:

P1) Channel matrix: The channel matrix is not known at
the receiver or at the transmitter, and no stochastic model
is assumed for it.
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P2) Transmit power constraint: The codeword is chosen
from a finite codebook known
to the receiver, where is the size of the codebook. We
impose the power constraint for each
codeword. We further assume that each codeword is of
full rank.

P3) Noise distribution: As in the assumption A3), the noise
covariance matrix is known at
the transmitter and at the receiver.

2) Receiver: Under the previous conditions, the conditional
pdf of the received vector , given the trans-
mitted matrix and the unknown realization of the channel

, is given by

where and the notation
is used. Since no stochastic model is attached to the channel
propagation matrix, the receiver faces a multiple hypothesis
testing problem with the channel as a deterministic nuisance
parameter. Hence, we will assume a GLRT receiver. The GLRT
[32] is composed of a bank of parallel processors where
the th processor assumes the presence of the th codeword
and computes the likelihood of the observation, after replacing
the channel by its maximum-likelihood (ML) estimate. The
GLRT detector chooses the codeword associated with the
processor exhibiting the largest likelihood of the observation,
i.e., , where

with
represents the ML estimate of the channel. Due to the respective
expression for , we note that since each codeword of the
codebook has full rank (presumption ), the ML channel
estimate is well defined.

3) Low SNR Analysis: Recently, in [13], in contrast to other
approaches for the low SNR regime, the channel matrix was as-
sumed deterministic and a low SNR analysis of the PEP was in-
troduced, for the special case and spatio–temporal white
Gaussian noise. Here, we generalize the approach in [13] for
any number of transmit antennas and arbitrary noise covariance
matrix. Let be the probability of the GLRT receiver de-
ciding when is sent. It can be shown that for

(15)

with , ,
and , where and
are i.i.d. circular complex Gaussian random variables with
zero mean and unit variance, i.e., , for

. The angles are the principal angles
between the subspaces spanned by and . The proof is
given in Appendix V. For the case of spatio–temporal white
observation noise, i.e., and , from (15), we
have

(16)

where we assume (remark that for there
are maximum different principal angles where each of them
is of multiplicity ). In our work [22], we derive the expression
for the PEP in the high SNR regime and . For
and , it is given by

(17)

where . Equations (16) and (17)
show that the probability of misdetecting for depends on
the channel , but more importantly, on the relative ge-
ometry of the codewords and . Since (a
feature of the scenario and ), the PEPs are
symmetric, which gives rise to an intuitive distance measure.
Hence, by analyzing the PEP in both extreme cases (low and
high SNR), it is clear that one wishes to make the codewords
and as separate as possible, i.e., the problem of finding good
codes corresponds to the very well-known packing problem in
the complex projective space [25], [22]. Unfortunately, from
(15), it seems difficult to propose a codebook design criteria for

and . One of the reasons originates from the
fact that PEPs are not symmetric for this general case. Hence,
as usually, we resort to an upper bound on the PEP. From (15),
an upper bound on the PEP is readily derived

(18)

where . The bound in (18) is admittedly
loose, but allows us to come up with a workable codebook de-
sign criterion. The simulation results below will assess its ef-
fectiveness. By invoking the second part of the theorem on [33,
p. 200], the case when , and then by repeating
the analysis of the case presented in Appendix V, it
is straightforward to see that the matrix is rank deficient.
This can seriously affect the error performance of the system
since, by interpreting (15), one wants to maximize .
Thus, as in the high SNR regime and GLRT receiver [22], when
designing constellation for arbitrary and the low SNR regime,
we take . Also, remark that for , the
bound in (18) is not applicable since .

4) Codebook Construction Methodology: The codebook de-
sign criterion in (18) is equivalent to the one for the high SNR
regime that has been treated in [21]. Denoting a codebook by

, we are led to the following optimiza-
tion problem:

(19)

where , , and
with .

A codebook is a point in the space
. Note that the space can be viewed as multi-

dimensional torus, i.e., the Cartesian product of unit spheres:
( times) and each codeword

belongs to . The symbol denotes the unit sphere
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Fig. 1. Category 1: spatio–temporal white observation noise.

in . From (19), we see that the design of the codebook con-
sists in a high-dimensional, nonlinear, and nonsmooth optimiza-
tion problem. To solve (19), we employ the algorithm presented
in [21] and [22]. The method contains two main steps.
Step 1) It starts by solving a convex semidefinite program-

ming (SDP) relaxation to obtain a rough estimate of
the optimal codebook.

Step 2) It refines it through a geodesic descent optimiza-
tion algorithm, which efficiently exploits the Rie-
mannian geometry of the constraint space .

Please refer to [22] for more details.

A. Results

Using the codebook construction criterion methodology in
[22], we have constructed codes for three special categories of
noise covariance matrices . If not stated differently, in all sim-
ulations, we assume uncorrelated Rayleigh fading model for the
channel matrix, i.e., . In simulations, we have
tried to cover a wide range of low SNR: from very low SNR of

10 to 10 dB.
1) First Category: Spatio–Temporal White Observation

Noise: We are not aware of any work concerning the low SNR
noncoherent MIMO scenario employing a GLRT receiver.
Hence, we will compare the performance of our codes and
our GLRT receiver with the codes assuming a Rayleigh fading
channel with equally probable codewords [2] and ML receiver.
We also show that our codes are of great interest for the con-
stellations with unequal priors [11], [12].

• Constellations with equal priors for : In Fig. 1,
we compared our codes and our GLRT receiver against the
codes found in [2] with the ML receiver proposed therein.
We considered the cases where the coherence interval

, SNR 7 dB, and codebooks with and
codewords. The solid and dashed curves represent our

codes and Borran codes, respectively. As we can see, for
, although the Borran’s codes assume the knowl-

edge of actual ,

Fig. 2. Category 1: spatio–temporal white observation noise.

our codebook constructions can save up to three receive
antennas at symbol error rate (SER) of . The same
figure plots the results of a similar experiment for .
It can be seen that for SER , our codes demon-
strate a saving of six receive antennas when compared with
Borran’s codes. The gain of our codes when compared to
Borran’s can be explained by the following argument. We
have seen that for and spatio–temporal white ob-
servation noise the problem of finding good codes corre-
sponds to the packing problem in the complex projective
space. This is why for our codes we have used packings
presented in [22]. On the other hand, Borran’s codes given
in [2, Fig. 8] are clearly suboptimal in this example.

• Constellations with equal priors and : We present
some results to study the impact of employing
transmit antennas in the low SNR regime. Fig. 2 plots
the result of the experiment for , SNR 6 dB,

, and . We see that at SER ,
our codes for demonstrate a saving of eight receive
antennas when compared with our codes constructed for

. The same plot presents the result of the experi-
ment for , SNR 6 dB, , and .
For SER , our codes for can spare nine
receive antennas compared with our codes constructed for

. Then, we compare our codebook constructions for
against Borran’s codes with . This is done

because one could wonder whether our codebook designs
for are good enough. Fig. 3 plots the result of the
experiment. The solid signed and the solid circled curve
show the performance of our codes for , ,

, and , , , respectively. The
dashed signed and the dashed circled curve represent the
performances of the Borran’s codes for , ,

and , , , respectively.
For 32-point constellations, we see that our codes can save
seven receive antennas at SER . For 16-point
constellations, we witness the gain of more than ten re-
ceive antennas at SER . We think that the results
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Fig. 3. Category 1: spatio–temporal white observation noise.

Fig. 4. Category 1: spatio–temporal white observation noise:��� � ��� . Cor-
related Rayleigh fading: solid curves. Uncorrelated Rayleigh fading: dashed
curves. Our and Srinivasan’s five-point constellations use MAP receiver; our
four-point constellation uses GLRT receiver.

presented in the Figs. 2 and 3 further strengthen the moti-
vation of using a single transmit antenna codebooks in the
low SNR regime when GLRT receiver is employed.

• Constellations with unequal priors: Now, we depart from
our GLRT receiver and show that our codebook designs for

are nevertheless of interest for schemes that allow
for nonuniform priors, e.g., the Bayesian receiver in [11]
and [12]. In Fig. 4, we show the results of the simulations.
We considered the case where the coherence interval

, , and rate 1 bps/Hz, with .
For simplicity, we assume . We consider codes
with codewords of the form since
this form of the code resembles the capacity achieving dis-
tribution at sufficiently low SNR presented in Section II.
We call them single-beam constellations. First, we treat the
case of uncorrelated Rayleigh fading channel, i.e.,

where . Note that in this case only one transmit
antenna is effectively used. The dashed and dashed–cir-
cled curves represent our codes, and Srinivasan’s five-point
constellations with unequal priors [11] (the constellations
assume a point in the origin with probability 1/2, with the
probabilities of the points lying in the sphere being equal).
Next, we assume the correlated Rayleigh fading case with

with defined in Section II (when refer-
ring to case, we simply write rank ).
The solid and solid–circled curves represent our codes, and
Srinivasan’s five-point constellations with unequal priors.
As expected, high improvements are possible when codes
are used in correlated MIMO scenarios, which is in con-
cordance with the information-theoretic result presented
herein. The gain of our five-point constellations with un-
equal priors compared with Srinivasan’s codes is because
we use optimal packings in complex projective space (in
the outer sphere), whereas Srinivasan uses optimal pack-
ings in the real projective space (one can expect larger
gains as increases, where represents the number of
the codewords on the sphere). The improvement obtained
can be explained by the optimality of our designed pack-
ings. Rankin bound is an upper bound on the packing ra-
dius of subspaces in the Grassmanian space .
When , the bound applies to packings in the com-
plex projective space, and in this case, it holds

where is the acute angle between codewords and
. Please refer to [25] for more details. One can easily

check that our designed codebook indeed meets the Rankin
bound which is 2/3 for and . Our code-
book is represented in the following matrix
where the equations at the bottom of the page hold. The
dashed–dotted curve represents our four-point constella-
tion with equal priors and , and it is plotted only
to confirm that if the receiver knows the channel statis-
tics, then constellations with nonuniform priors are the best
option.

2) Second Category: Spatially White-Temporal Colored Ob-
servation Noise: The second category corresponds to spatially
white-temporally colored observation noise, i.e.,

, where the vector is the first column of the
Toeplitz matrix . To the best of our knowledge, we are not
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Fig. 5. Category 2: spatially white-temporal colored observation noise.

aware of any work that treats the problem of codebook construc-
tions in the presence of spatially white-temporal colored obser-
vation noise for the low SNR regime. Hence, we compare our
codes designed (adapted) to this specific scenario with codes de-
signed when the presence of spatio–temporal white observation
noise is assumed. The goal here is to demonstrate the increase
of performance obtained by matching the codebook construc-
tion to the noise statistics.

• Constellations with equal priors: Fig. 5 plots the result of
the experiment for , SNR 10 dB, ,
and . The solid and
solid–circled curve represent the performance of our codes
that match the noise statistics for and , re-
spectively. The dashed and dashed–circled curve show the
performance of our codes adapted to zeros .
For SER , our codes adapted to the
noise statistics demonstrate the gain of three receive an-
tennas over our adapted codes, and more than six
receive antennas over noise mismatched codes.
We conclude that for sufficiently low SNR one should con-
struct codebook constellations with just one transmit an-
tenna that match the noise statistics.

• Constellations with unequal priors: Although our primal
goal in this work is to address the deterministic channel
case, Fig. 6 further shows that our codebook designs for

are also of interest for maximum a posteriori
(MAP) receivers that assume knowledge of the channel sta-
tistics. Fig. 6 plots the result of the experiment for ,
SNR 6 dB, and . The
solid, dashed–dotted, and dashed lines represent the per-
formances of our eight-point constellations that match the
noise statistics, when the GLRT receiver is implemented
for , , and , respectively. The plus-
signed dotted line represents the performance of our eight-
point constellation that is constructed for the spatio–tem-
poral white noise case , when GLRT receiver
is implemented and . The plus-signed solid curve
represent our 17-point constellation that match the noise

Fig. 6. Category 2: spatially white-temporal colored observation noise.

statistics and . The dashed-circled curve shows
the performance of our 17-point constellation that is con-
structed for and . Both 17-point con-
stellations are with unequal priors [11] (there is a point
in the origin with probability 1/2, with the probabilities
of the points lying in the sphere being equal), and they
use MAP receiver. The gain that 17-point constellation
with unequal priors demonstrate over eight-point constel-
lation with equal priors can be explained by the fact that
the signaling scheme proposed in [11] only resembles op-
timal, capacity achieving distribution. The information the-
oretic results presented here, over the low SNR nonco-
herent Rayleigh fading channel with arbitrary noise corre-
lation structure under an average power constraint, suggest
that the capacity achieving distribution becomes peaky.
We see that for SER of , we can save two re-
ceive antennas when we compare our 17-point constella-
tion matched to the noise statistics with the mismatched
constellation constructed for . Also, as expected,
for SER of and , two receive antennas can
be spared when we compare our eight-point constellation
matched to the noise statistics with the mismatched con-
stellation constructed for .
Next, we consider correlated Rayleigh fading channel
case. We treat single-beam constellations, i.e., codes
with codewords of the form ,
and we show that significant improvements are possible
over uncorrelated Rayleigh fading. Fig. 7 plots the re-
sult of the experiment. We considered the case where
the coherence interval , , ,

, and rate 0.5 bps/Hz, with
. The correlated Rayleigh fading case

where with defined in Section II is assumed
(again, the notation rank implies that the case
when is treated). The dotted plus-signed and
dashed–dotted curves represent our 17-point single-beam
constellation with unequal priors [11], and our eight-point
single-beam constellation with equal priors, respectively.
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Fig. 7. Category 2: spatially white-temporal colored observation noise:��� �

��� . All codes use MAP receiver.

Then, we investigate the case of uncorrelated Rayleigh
fading channel, i.e., where . The dashed
curve represents our 17-point single-beam constellation
with unequal priors and the solid curve represents our
eight-point single-beam constellation with equal priors.
For SER , our eight- and 17-point codes in the
correlated regime perform substantially better than in un-
correlated regime (more than ten receive antennas can be
spared if one decides to make the transmit antennas fully
correlated). This is in concordance with the results pre-
sented in Section II where it has been proved that channel
correlation can actually improve the performance of the
channel in arbitrary noise environment. We witness the
effect of our 17-point codes losing their superiority over
eight-point codes as the number of receive antennas in-
creases. This can be justified by the fact that the signaling
scheme proposed in [11] only resembles the optimal,
capacity achieving distribution.

3) Third Category: . We considered the
case where the noise matrix is of the form .
This models an interfering source (with known covariance ma-
trix ) where the complex vector is the known channel atten-
uation between each receive antenna and the interfering source.
The matrix has a noise covariance matrix belonging to
the second category. Thus, the noise covariance matrix is given
by . As in the second category,
we will compare our codes adapted to this specific scenario with
codes designed for spatio–temporal white observation noise. We
demonstrate the increase of performance obtained by matching
the codebook construction to the noise statistics.

• Constellations with equal priors: Fig. 8 shows the result
of the experiment for , , ,

, , and
. The solid (dashed) curve rep-

resents our codes for adapted to col-
ored noise, respectively, and the dashed–dotted curve rep-
resents our codes for adapted to spatio–temporal
white observation noise. For SER , we witness the

Fig. 8. Category 3: solid curve—our codes for � � � adapted to col-
ored noise, dashed curve—our codes for � � � adapted to colored noise,
dashed–dotted curve—our codes for � � � adapted to white noise.

gain of 1.5 dB when we compare the one transmit antenna
constellation constructed taking into account the noise sta-
tistics, with the one transmit constellation constructed for

. As SNR increases, the codebook con-
struction, adapted to the noise statistics, outperforms the
one antenna constellation.
The foregoing results for the cases when the noise matrix
is of the form of the second and third category give rise to
the following conclusion:

For a GLRT receiver, at sufficiently low SNR, one
should construct codebook constellations with just
one transmit antenna, but which are adapted to the
noise statistics.

• Constellations with unequal priors: As for the case
when the noise covariance matrix belongs to the second
category, we demonstrate that our codebook designs
for are of interest for MAP receivers that as-
sume knowledge of the channel statistics. Fig. 9 plots
the result of the experiment for , ,

, , , and
. Solid–cir-

cled curve represents our 17-point codes with unequal
priors [11] adapted to colored noise, which use MAP
receiver. The plus-signed solid curve represents our
eight-point codes with equal priors adapted to colored
noise, which use ML receiver. The solid curve represents
our eight-point codes with equal priors adapted to colored
noise, which use GLRT receiver. The dashed–circled curve
represents our 17-point codes with unequal priors adapted
to white noise, which use MAP receiver. The plus-signed
dashed curve represents our 8-point codes with equal
priors adapted to white noise, and use ML receiver. The
dashed curve represents our 8-point codes with equal
priors adapted to white noise, which use GLRT receiver.
For SNR from 5 to 5 dB, our one transmit antenna
constellations adapted to the noise statistics demonstrate
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Fig. 9. Category 3.

the gain of 2 dB when compared to the codes designed
for the white noise case. For SER , our 17-point
codes demonstrate the gain of 1 dB when compared to
the eight-point codes, which is in concordance with the
theoretic-information results presented in this paper. Also,
we see that our GLRT receiver performs suboptimally
w.r.t. the ML receiver.

IV. CONCLUSION

We have studied the MIMO channel in the low SNR regime
from two perspectives: capacity and PEP analysis. The novel as-
pect is that we allow the Gaussian observation noise to have an
arbitrary correlation structure. From the capacity analysis per-
spective for correlated Rayleigh fading channel, we have shown
that, by maximizing the mutual information for the ON–OFF and
Gaussian signalings over the system’s parameters (antenna cor-
relation), the transmit (receive) antennas should be made as cor-
related as possible. Further, we have presented the PEP analysis
for the low SNR deterministic channel setup and have shown

how the noise statistics could be taken into account when con-
structing codebook constellations. We argued that one should
construct codebooks for just one transmit antenna that match
the noise statistics.

APPENDIX I
MUTUAL INFORMATION FOR ON–OFF SIGNALING

IN THE LOW SNR REGIME

In this section, we show that the expression for the mutual
information between and up to first order in , for ON–OFF

signaling and sufficiently low SNR, is given by (2). Since

we will find the mutual information by computing the condi-
tional entropy of given , i.e., , and in sequel, the
entropy of , i.e., .

• We start by computing . Given ,
is a zero-mean complex Gaussian with covariance

and the condi-
tional pdf of given is described by

(20)
From (20), it is possible to compute the conditional entropy

. By definition (we use logarithms to base ), we
have (21) and (22) shown at the bottom of the page.

• Next, we compute . We have

(23)

It is not difficult to see that the second term of (23) is much
larger than the first (since is small and , is small,

where (21)

where

as is large for and small s are the positive eigenvalues of and is its rank

since for (22)
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the determinant in the denominator of the first term is large,
whereas the numerator is bounded above by one), therefore

(24)

(25)

Equation (25) is valid because

(26)

where

and . Since , , and are independent
random variables, from (26), we easily get

(27)

Substituting (27) into (24) results in (25). Then, using (22)
and (25), we have

as required.

APPENDIX II
OPTIMIZATION PROBLEM FOR ON–OFF SIGNALLING

In this appendix, we prove that the maximum of the optimiza-
tion problem defined in (3) is attained by the signaling scheme
presented in (5) and (6).

Approach: It is known that we can always maximize (min-
imize) a function by first maximizing (minimizing) over some
of the variables, and then maximizing (minimizing) over the re-
maining ones, if the constraints are independent (in the sense
that each constraint function depends only on one of the vari-
ables). See, e.g., [34, p. 133] for more details. This simple and
general procedure will help us to transform the problem in (3)
into equivalent forms.

Let represent the maximum of (3), i.e.,

(28)

where

diagonal matrix such that and

(29)

unitary matrix, i.e.,

(30)

is the unitary matrix of the eigen-
vectors of and is the diagonal matrix of the
corresponding eigenvalues (for which we assume that they are
arranged in the decreasing order). That is,
represents the singular value decomposition (SVD) of the matrix

. Let , , , , and denote optimal values
for the matrices , , , , and , respectively. There
are two main steps in the proof. In the first step, , , and
will be determined for given and , whereas the second
step furnishes and .

Step 1: We start by rewriting the problem in (28) in the equiv-
alent form

(31)
where is the diagonal element of on the position

(32)

and represents the th column of . The equivalence of (28)
with (31) can be established by a series of simple manipulations
of the objective function of (28)

(33)

In (33), we used the property of Kronecker product: if and
exist, then ; see [36, p. 28].

Idea: The idea that we will use in order to determine the
optimal , , and is to relax the problem in (31) [hence,
by doing this, the optimal value of the new, relaxed problem will
be equal or larger than of the original one in (31)], and then to
show that the maximum of the relaxed problem is also attainable
for the original problem. The relaxed problem is defined as

(34)

The motivation behind the definition of the new variable , a
Hermitian semidefinite-positive matrix that obeys the
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constraint , is the fact that is also
a Hermitian semidefinite-positive matrix with the same upper
bound on the trace constraint, i.e.,
(which is easily verified since ). Clearly,

. The problem in (34) can be readily maximized by
maximizing it first w.r.t. , and then w.r.t. . We will maxi-
mize (34) w.r.t. by invoking the following fact: if a convex
function is defined on the bounded, closed convex set , then,
if has a maximum over it is achieved at an extreme point of

(see, e.g., [28, p. 119]). In our case, the function is a linear
combination of ’s and the set

vectors

such that and

It is readily seen that the extreme points of are the
vectors whose all entries are zero except one which is
equal to . Regarding maximization of (34) w.r.t. , the
Fan’s theorem is used, see [35, p. 17]. That is, beam-

forming in the direction of is performed

such that an upper bound on is attained

. Hence

(35)

where the matrix is the unitary matrix of the eigenvec-

tors of (that is, we assume that repre-

sents the SVD of the matrix where the matrix
is the diagonal matrix of the corresponding eigenvalues sorted
in the decreasing order); the constant matrix has all
the entries equal to zero except the entry which is one,

for , and zero otherwise; and the matrix is
defined as in (32), and

(36)

For the choice in (35) and from (34), we get

(37)

Next, we prove that the optimal value of the relaxed problem in
(37) is attainable for the original problem in (31). To see this,
we define , , and in the following way:

for (38)

together with as in (35). The constant matrix has
all the entries equal to zero except the entry which is one,
and is defined in (36). In that case

(39)

Remark that for the choice in (38) the power constraint on the
transmitted codeword is satisfied with equality, is a diagonal
matrix, and both and are rank one matrices.

Step 2: In the first step, we have determined and . It
remains now to compute and . First, note that from (38),
we can write

(40)

where the unitary vector is the eigenvector associated to

the maximal eigenvalue of the matrix , i.e., it is the
first column of the unitary matrix . Hence, we need to find
such a unitary vector and a unitary matrix that maximize

in (39). Let

Then, (41)–(43) shown at the bottom of the page hold. Let
be the solution pair of (43), i.e.,

(44)
Then, using (40) and the fact that is the th column of
(where is defined in (36) and due to the passage from (42)
to (43) we can w.l.o.g. assume that , although any other
choice of would just change but not ), we have

(45)

Equations (35), (38), (44), and (45) complete the proof.

(41)

from (32) and

(42)

(43)
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APPENDIX III
MUTUAL INFORMATION FOR GAUSSIAN SIGNALING

IN THE LOW SNR REGIME

In this section, we show that the expression for the mutual
information between and up to second order in , for
Gaussian signaling and sufficiently low SNR, is given by (10).

First, we calculate , where
. Remark that where

, the matrix is defined in (32),
(as in Appendix II), and . If the

vector , for , represents the th column of the
matrix , then it holds

where , for , the matrix
is defined in (32), and ’s are the eigenvalues of the ma-

trix . Let where .
Next, we need the following result (see, e.g., [29, p. 564]): if

, then for , Hermitian matrices

(46)

Now, by using (46), it is easy to check that

for any matrix . This, and using the facts that and
[where and is defined in (11)], implies

(47) shown at the bottom of the page, where and

.
It can readily be shown that

(48)

Combining (47) with (48) results in (10). This concludes the
proof.

APPENDIX IV
OPTIMIZATION PROBLEM FOR GAUSSIAN SIGNALLING

In this appendix, we prove that the maximum of the opti-
mization problem defined in (12) is attained by , defined in
(13), and by and presented in (5). As in Appendix II,
let represent the SVD of the matrix

, and let , , , , and denote the optimal values
of the matrices , , , , and , respectively. We repeat
the analysis presented in Appendix II. In the first step, is cal-
culated, whereas the second step determines , , , and .

Step 1: Note that

(49)

where the vector . The entry ,
for , of the Hermitian matrix is given
by .

Approach: We will show that the matrix is positive
semidefinite. In that case, the function is convex on
defined in (29), and the maximum is achieved at an extreme
point of (see [28, p. 119]). To this end, let us introduce
the result that will be used in the proof: if an
matrix is positive semidefinite, then matrix ,
with
for , is also positive semidefinite. In other
words, is equal to the sum of all elements of the th
block of the matrix (the matrix consists in disjoint
blocks where each of the blocks is of size ). Now,
remark that where the
vector is the vector of all ones [from now on, we write

]. Hence, the matrix is positive semidefi-
nite. The subsequent series of results of matrix analysis proves
that is positive semidefinite.

1) Let represent the matrix obtained from

defined in (32) as explained in the following. Seen
as a block matrix with disjoint blocks, where each of
them is of size , any th block of , for

, consists of identical disjoint sub-
blocks of dimension . For the th block of ,
the corresponding subblock is , i.e., the complex con-

jugate of , where is defined in (32).
Note that is positive semidefinite. For any nonzero com-
plex vector , where for

, it holds ,
where with

(47)
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for . Since , then and
is positive semidefinite.

2) Define where is the ma-
trix of all ones. Then, is positive semidefinite since the
Kronecker product of two positive (semi)definite matrices
is positive (semi)definite (see [30, p. 245]). Also, the ma-
trix defined as , where the symbol repre-
sents the Schur (Hadamard) product, is positive semidefi-
nite since both and are positive semidefinite, and the
Schur product of two positive (semi)definite matrices is
also positive (semi)definite (see [31, p. 458]).

3) Next, we define the matrix as ,
which is positive semidefinite. Remark that

. Now, it is
easy to see that the matrix can be presented as follows:

since

for and Hermitian and . Thus, as
stated, the matrix is positive semidefinite and the max-
imum is achieved at an extreme point of ; so the optimal
value of is given by

(50)

for , where

(51)
The optimization problem in (13) now becomes

(52)

Step 2: In the second step, we will determine the optimal
values of , , and .

Approach: Similarly to the analysis of Appendix II, in order
to calculate , , and , we relax the problem in (52), find an
upper bound on the relaxed problem, and show that this bound
is attainable for the original problem. Let be the maximum

of the problem in (52), and let

with . Then, the re-
laxed problem is defined as

(53)

where ,
, and the matrix , for , is

defined in (11). The matrix is the square root of ,

i.e., it is the matrix such that . Clearly,
. Now, note that, as , it holds

Also, since

we can write the equation shown at the bottom of the page,
due to the fact proved in the sequel that

for every pair where .
Proof: We start by noting that

where represents the th column of . Now, let ,
, , and , for , represent the diagonal

entries of the matrices , , , and , respec-

tively (i.e., , , ,

and ). It is not difficult to see that

for ,

where represents the th column of . Let .

Hence, from which

the desired inequality is readily obtained. Remark that we have
used the fact that the sum of positive-semidefinite matrices is a
positive-semidefinite matrix. Thus, we have .
We now prove that an upper bound on the relaxed problem in
(53) is attainable for the original problem in (52). To see this,
we define and on the following way:

(54)
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where we assume that represents the SVD of
(the matrix is the diagonal matrix of the cor-

responding eigenvalues sorted in the decreasing order), the
constant matrix has all the entries

equal to zero except the entry which is one, and is
defined in (51). Note that is a diagonal matrix. In that case

(55)

where, from (51) and (54)

By repeating the analysis of the ON–OFF signaling in
Appendix II [see (41)–(43)], we easily find

(56)

where and are the solutions of the optimization problem in
(6). Equations (54) and (56) conclude the proof.

APPENDIX V
PEP FOR FAST FADING IN THE LOW SNR REGIME

In this appendix, we derive the expression for the low SNR
regime PEP presented in (15). In [21], it has been shown that if

is transmitted, then the probability that the receiver decides
in favor of is

(57)

where, for , , ,
, , ,

, , and .
The unknown realization of the channel is denoted by

, whereas represents the real part of the complex
number . Unfortunately, the expression (57) cannot be simpli-
fied analytically. Hence, we will analyze (57) in the low SNR
regime where the linear term of is negligible (see [21] for the
analysis of (57) in the high SNR regime). Therefore, at suffi-
ciently low SNR

(58)
It is easy to see that, for , ,

where and means equal in distri-
bution. Then, from (58), it holds

(59)

where, for , . That is,
contains an orthonormal basis for the subspace spanned by the
columns of . Notice that . To proceed with the
analysis we use the known fact from [33, p. 199]: if and
are matrices with orthonormal columns ,

then there exist unitary matrices and , and
a unitary matrix with the following properties.

If , then

(60)

where is a diagonal matrix with diagonal
entries , , ,
and . Now, using (60), we have

,
so , for , are the principal angles be-
tween the subspaces spanned by and . It can be

readily shown that ,

where and .

Let where ,

for . Hence, using the
fact that , for , are the eigenvalues of
the matrix , from (59), we easily get

as required.
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