
UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Reinforcement Learning in
Cooperative Navigation Tasks

Francisco António Chaves Saraiva de Melo
(Licenciado)

Dissertação para a obtenção do Grau de Doutor em
Engenharia Electrotécnica e de Computadores

Orientador: Prof. Doutora Maria Isabel Lobato de Faria Ribeiro

Júri:

Presidente: Reitor da Universidade Técnica de Lisboa

Vogais: Prof. Doutora Manuela M. Veloso, Carnegie-Mellon University
Prof. Doutor Fernando Lobo Pereira, Universidade do Porto
Prof. Doutora M. Isabel Ribeiro, Instituto Superior Técnico
Prof. Doutor Arlindo Oliveira, Instituto Superior Técnico
Prof. Doutor Pedro A. Lima, Instituto Superior Técnico
Doutor Matthijs T.J. Spaan, Instituto de Sistemas e Robótica

Novembro de 2007

UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Reinforcement Learning in
Cooperative Navigation Tasks

Francisco António Chaves Saraiva de Melo

Thesis submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

November 2007

Advisor: Prof. Dr. M. Isabel Ribeiro

Thesis Committee:

Chair: Reitor da Universidade Técnica de Lisboa

Prof. Dr. Manuela M. Veloso, Carnegie-Mellon University
Prof. Dr. Fernando Lobo Pereira, Universidade do Porto
Prof. Dr. Arlindo Oliveira, Instituto Superior Técnico
Prof. Dr. Pedro A. Lima, Instituto Superior Técnico
Dr. Matthijs T.J. Spaan, Instituto de Sistemas e Robótica

c© Francisco A. C. Saraiva de Melo, 2007

Typeset in Computer Modern using TEX and LATEX2ε

This work was partially supported by Programa Operacional Sociedade do Con-
hecimento (POS_C) (former Programa Operacional Sociedade de Informação –
POSI) that includes FEDER funds and by the PhD grant SFRH/BD/3074/2000.

ii

Resumo

Nesta tese aborda-se o problema da navegação robótica autónoma sob o ponto

de vista da aprendizagem. Abordam-se situações nas quais um robô ou grupo de

robôs tem que navegar de uma localização/configuração inicial até uma localiza-

ção/configuração final. A principal contribuição da tese consiste na introdução e

estudo de um conjunto de novos métodos de aprendizagem por reforço e da sua

aplicação a problemas de navegação robótica. Em particular, a tese propõe méto-

dos de aprendizagem por reforço mais gerais do que os existentes na bibliografia,

que permitem implementar aprendizagem e coordenação em problemas com es-

paços de estado infinitos ou com observabilidade parcial, sendo este o cenário mais

típico de aplicação em robótica móvel. Descrevem-se ainda os resultados obtidos

ao aplicar os métodos desenvolvidos na tese a problemas concretos de navegação

topológica com um/múltiplos robô(s) e conclui-se acerca das vantagens e limi-

tações da abordagem seguida neste tipo de problemas.

Nas últimas décadas, assistiu-se a um aumento substancial do interesse na naveg-
ação de robôs autónomos. Esta tornou-se um tópico fundamental de investigação em
Robótica. A tese dá uma contribuição neste abrangente campo de investigação. O
trabalho que aqui se descreve divide-se em duas partes fundamentais. Consideram-se
numa primeira parte situações em que um único robô se desloca num determinado
ambiente, procurando navegar de uma localização inicial até uma localização fi-
nal; na segunda parte considera-se então a existência de múltiplos robôs a navegar
num ambiente comum. Estes problemas de navegação robótica são abordados na
tese de um ponto de vista da aprendizagem, adoptando-se o formalismo usual da
aprendizagem por reforço.

Na primeira parte da tese, abordam-se tarefas de navegação nas quais um único
robô se deve deslocar de uma localização inicial para uma localização final. O
ambiente é descrito por um mapa topológico finito, representado por um grafo no
qual os nós representam estados ("locais") no ambiente e as arestas representam as
ligações entre esses vários locais. O robô deverá ser capaz de explorar com sucesso

o ambiente e, através do feedback recebido durante a fase de exploração, aprender
a desempenhar a tarefa de forma óptima. Para tal, a tese descreve o problema
de navegação como um problema de decisão sequencial e descreve um conjunto
de algoritmos clássicos de aprendizagem por reforço, como sejam o Q-learning e o
SARSA, que são adequados para abordar problemas de navegação simples, nos quais
o robô se desloca com percepção perfeita do estado.

Porém, de um ponto de vista prático, os sensores utilizados na navegação robótica
apresentam geralmente erros de medida/processamento e, portanto, a localização de
um robô terá sempre uma incerteza associada. Nessa situação, o robô deverá ter
em conta essa incerteza no processo de decisão/escolha de acções. Na presença
desta observabilidade parcial, o problema de decisão pode ser transformado num
outro problema de decisão equivalente, mas com um espaço de estados infinito. A
tese propõe então dois novos algoritmos de aprendizagem, designados Approximate
Q-Learning e Approximate SARSA, adequados a problemas com espaço de estados
infinitos. Estuda-se a convergência de ambos métodos, identificando condições nas
quais esta é garantida que assentam essencialmente nas propriedades de ergodici-
dade do sistema e na escolha adequada de um método de aproximação. Discute-se
ainda a aplicabilidade destes algoritmos na aprendizagem de tarefas de navegação
com sensores imperfeitos. A primeira parte da tese termina com os resultados de
simulação obtidos ao aplicar os dois métodos atrás referidos a diversos problemas
de navegação robótica com observabilidade parcial.

Na segunda parte da tese, adopta-se uma abordagem semelhante, mas con-
siderando problemas de navegação com múltiplos robôs. Em particular, analisam-se
tarefas de navegação nas quais uma equipa de robôs se deve deslocar de uma con-
figuração inicial para uma configuração final, num ambiente também descrito por
um mapa topológico finito. Neste trajecto, os robôs devem evitar acidentes e outras
situações indesejáveis, resultantes de má coordenação.

A tese faz uso da teoria dos jogos (em particular de jogos de Markov ou es-
tocásticos) na modelação deste tipo de problemas de navegação. Neste contexto,
discute-se o problema da selecção de pontos de equilíbrio/coordenação e propõe-se
a utilização do método de Biased Adaptive Play (BAP). Descreve-se o algoritmo
OAL (Optimal Adaptive Learning) e estudam-se as suas propriedades mais impor-
tantes. De seguida, a tese propõe um novo algoritmo, que designamos por CQL
(Coordinated Q-Learning). Estes algoritmos (OAL e CQL) são aplicáveis a jogos
estocásticos nos quais os jogadores têm interesses comuns, o jogo tem um conjunto
finito de estados possíveis e são pois adequados para tratar problemas de navegação
cooperativa quando os robôs têm percepção perfeita do estado.

iv

Tal como na primeira parte da tese, e para abordar problemas mais realistas
em que os sensores não são perfeitos, a tese propõe a utilização do algoritmo de
Approximate Q-Learning, desenvolvido na primeira parte, a jogos estocásticos com
espaços de estados infinitos. Nesta parte desenvolve-se também uma versão mais
geral do método de BAP para jogos estocásticos com um espaço de estados infinito
e estabelece-se a sua convergência. O algoritmo obtido da conjugação destes dois
métodos, denominado por CAQL, é a contribuição final da tese, que termina apre-
sentando os resultados deste método em diversas tarefas de navegação com múltiplos
robôs, sensores centralizados e observabilidade parcial.

Resumindo, a tese propõe vários novos algoritmos (nomeadamente, Approxi-
mate Q-learning, Approximate SARSA, Coordinated Q-learning, Approximate Biased
Adaptive Play e Coordinated Approximate Q-Learning) e desenvolve um estudo das
principais propriedades de cada um deles, nomeadamente em termos de convergência
e aplicabilidade a problemas de navegação com observabilidade parcial.

Palavras-chave: Navegação topológica, processos de Markov, jogos estocásticos,
observabilidade parcial, aprendizagem por reforço, coordenação.

v

vi

Abstract

In this thesis we address mobile robot navigation from a learning perspective.

We address robotic navigation tasks in which a robot or group of robots must navi-

gate from some initial location/configuration to some final location/configuration.

The main contribution of the thesis is the proposal and study of several new rein-

forcement learning methods and their applicability to robotic navigation tasks. In

particular, we propose and analyze methods that generalize those existing in the lit-

erature to address learning and coordination in problems with infinite state-spaces

or with partial observability. We emphasize the fact that partially observable prob-

lems describe the typical scenario considered in mobile robot applications. We also

describe the results obtained with the methods proposed in the thesis in several

navigation scenarios, featuring both single-robot and multi-robot situations. We

conclude by discussing the advantages and limitations of the approach in the thesis

and pointing out directions for future work.

In the past decades, autonomous robot navigation has become a central topic of
robotic research. In this thesis we add a contribution to this wide area of research.
The work described herein is two-folded. We start by considering single-robot nav-
igation tasks, where a single robot must navigate from an initial position to a final
position; we then move to the analysis of multi-robot navigation tasks, where multi-
ple robots must navigate in a common environment. We approach such navigation
tasks from a learning perspective and adopt a reinforcement learning formalism to
address the tasks at hand.

In single-robot scenarios, we address navigation tasks in which a robot must
move from an initial to a final position in a finite topological map. A topological
map is a graph describing the environment as a set of states (nodes in the graph)
and corresponding connectivity information (the edges in the graph). The robot
should be able to successfully explore its environment and use evaluative feedback
collected during this exploration phase to learn the optimal way of completing its
assigned task. We cast the navigation task as a sequential decision problem and
describe a set of classical reinforcement learning algorithms (such as Q-learning and

SARSA) designed to handle simple tasks, where the robot moves in the environment
with perfect perception of the state.

However, in most practical situations, the assumption of perfect perception of
the state does not hold. Any localization method relying on imperfect sensor read-
ings will exhibit some degree of uncertainty that should be taken into account in the
decision process. Such partially observable decision problems can be re-cast as equiv-
alent, fully-observable problems, where the state-space is now infinite. Therefore,
we propose a set of new learning algorithms (namely, approximate Q-learning and
approximate SARSA) that address tasks in infinite spaces. We identify a set of con-
ditions that guarantee the convergence of such methods that essentially rely on the
ergodicity properties of the process and on an adequate choice of an approximation
methodology. We conclude the first part of the thesis by reporting the simulation
results obtained with both mentioned algorithms in several topological navigation
tasks where the assumption of perfect state perception is no longer considered.

When considering multi-robot navigation tasks, we follow a similar course of
action. We consider tasks in which a team of robots must move from an initial
configuration to a final configuration in a topological map, while avoiding “accidents”
and other undesirable situations arising from mis-coordination. We propose the
framework of Markov games as a model of interaction for the team. We discuss
important issues such as equilibrium selection and propose the use of biased adaptive
play (BAP) as a coordination mechanism. We describe the OAL algorithm (optimal
adaptive learning) and contribute the new CQL algorithm (coordinated Q-learning);
both methods are designed to address simple games where all players have a common
goal and the game has a finite set of possible states. In other words, these algorithms
are suited to address simple cooperative navigation tasks in which the robots have,
once again, perfect perception of the state.

To alleviate the latter assumption, we propose the application of approximate Q-
learning to games with an infinite set of states. We contribute an extension of BAP
to this class of infinite games and establish its convergence. The method obtained
by combining approximate Q-learning and approximate BAP (named coordinated
approximate Q-learning, or CAQL) is the final contribution of the thesis. The sec-
ond part concludes with the results obtained with CAQL in several multi-robot
topological navigation tasks.

Summarizing, we contribute several new algorithms (approximate Q-learning,
approximate SARSA, coordinated Q-learning, approximate biased adaptive play and
coordinated approximate Q-learning) and study their main properties, such as con-

viii

vergence and applicability to cooperative navigation problems with partial observ-
ability.

Keywords: Topological navigation, Markov decision process, Markov games, par-
tial observability, reinforcement learning, coordination.

ix

x

Acknowledgements

I believe now that writing a PhD dissertation must be in many aspects similar to
building a house: the project is there from the start, but only when the actual
building takes place do we realize how hard it really is to fit the bricks into the
idealized project.

In this building process, I am indebted to numerous people without whom I
would not have been able to take this project to a satisfying conclusion.

I must start my list of acknowledgements with my PhD advisor, Professor Isabel
Ribeiro. The will to go on with my studies and pursue a PhD degree was first
born during her classes on system theory. More recently, throughout the last PhD
years, she always encouraged me and supported me in all ups and downs of my
scientific (and sometimes personal) life. Our numerous discussions were invaluable
in nurturing all the ideas in this thesis. I am also grateful for all the conditions and
opportunities that I was given during these years.

I must also acknowledge Professor Pedro Lima for many valuable discussions and
for introducing me to discrete event systems; Professor Fernando Lobo Pereira, from
Universidade do Porto, who provided many useful comments and suggestions on how
to improve the work in general, maintaining it anchored to the robotic problem it
is focused on.

During my brief stay at Carnegie Mellon University, I had the opportunity to
interact and work with the CORAL group, lead by Professor Manuela Veloso. I
can not thank Professor Manuela Veloso enough for being an extraordinary host, far
surpassing any possible expectations that I could have had. I am deeply indebted for
all the support, friendship, enlightening discussions, sharp and decisive suggestions
and encouraging remarks that I benefitted during my stay at CMU and, at a latter
stage, during the preparation of this thesis. During the three months I spent at
CMU, I was able to present my work to several researchers who contributed useful
suggestions. To all of them I leave my appreciation. Also, I would like to refer all
the help I got from Francisco Pereira when moving in and out of Pittsburgh, and
thank him for his endless patience, availability and good-will in every step of the
“finding a home” process.

At ISR, I am especially grateful to Prof. João Xavier, Matthijs Spaan, Manuel
Lopes and Luis Montesano for many interesting and valuable discussions that defi-
nitely contributed in one way or the other to the work presented here. I also bene-
fitted from the helpful discussions with Prof. Carlos Rocha, Alberto Vale, Gonçalo
Neto, Nelson Gonçalves and Duarte Antunes. More generally, I must gratefully ac-
knowledge all the support from the Institute for Systems and Robotics, where I was
able to learn, work and develop my research, in a stimulating environment and with

all required conditions. I must also acknowledge the Fundação para a Ciência e a
Tecnologia, in their Programa Operacional Sociedade do Conhecimento (POS_C).
They provided my PhD grant SFRH/BD /3074/2000 and all the necessary funding
for me to proceed with my PhD studies.

Outside the scientific world, I am grateful beyond words for the extraordinary
support and friendship of Bruno Nobre, Américo Barreira and Sónia, Ricardo Caxias
Ferreira, Bruno and Ana Santos, Luís and Aude Pacheco, Ricardo Martins and his
family. In particular, I owe Ricardo for the illustration in the cover. I would also like
to thank all the support from Catarina, Sara and all my friends from Agrupamento
541 Pio XII and CVX group.

This endeavor would not be possible without the unconditional support from
my family, namely my grand-mother Antónia, my parents António and Odete, my
brother Nuno, my sister Teresa and her husband Miguel, my god-parents Alcindo
and Alice, Lula, my uncle Armando and my aunt Belita. I have also received a
great deal of support from my wife’s family, José Manuel, Rosarinho, Ruy, Ana and
grand-mother Maria de Lourdes.

Finally, I want to thank my wonderful wife Isabel for all the patience, love and
outstanding support that nurtured me during all this time. During these last years,
she was able to stand my numerous monologues about MDPs, POMDPs, norms,
projections, games and equilibria without running away. She endured my absence,
stress, bad mood and lack of availability during all this time. She also lent me her
valuable help in writing down the .CON files describing the environments used in
the simulations. This thesis and all the work in it would never have been possible
without her and her support. I dedicate this work to her and to our son, Vasco.

Lisbon, PORTUGAL Francisco Melo
November, 2007

xii

Contents

Resumo . iii

Abstract . vii

Acknowledgements . xi

1 Introduction . 1
1.1 The world of robotics and intelligent machines 1
1.2 Problem statement . 6
1.3 Structure of the thesis . 8
1.4 Contributions . 10
1.5 Basic nomenclature . 12

I Single-Robot Navigation and Learning 13

2 Topological Navigation and Markov Processes 15
2.1 Mobile robot navigation . 16
2.2 Topological maps . 18
2.3 Topological localization . 22
2.4 Topological navigation . 27
2.5 Concluding remarks . 33

3 Reinforcement Learning in Finite State-Spaces 37
3.1 Reinforcement learning . 38
3.2 Learning and fixed-point computations 39
3.3 Model-based learning . 41
3.4 Model-free learning . 46
3.5 An illustrative example . 51
3.6 Concluding remarks . 53

4 Generalized Reinforcement Learning . 59
4.1 Learning and function approximation 60
4.2 Infinite state-space Markov processes 62
4.3 Related work . 63
4.4 Model-based learning . 65
4.5 Model-free learning . 66
4.6 Two illustrative examples . 73
4.7 Partial observability . 81

xiii

4.8 An illustrative example . 91
4.9 Concluding remarks . 95

5 Results on Single Robot Navigation . 99
5.1 Introductory remarks . 99
5.2 The experimental setup . 100
5.3 Experimental results . 109
5.4 Concluding remarks . 114

II Multi-Robot Navigation and Learning 117

6 Cooperative Navigation and Markov Games 119
6.1 Multi-robot systems . 120
6.2 Topological navigation with multiple robots 123
6.3 Optimality and equilibria . 128
6.4 Coordination and equilibrium selection 131
6.5 Concluding remarks . 139

7 Reinforcement Learning in Finite Markov Games 143
7.1 Learning in multi-agent systems . 144
7.2 Learning the game . 145
7.3 Learning to coordinate . 148
7.4 An illustrative example . 159
7.5 Concluding remarks . 161

8 Reinforcement Learning in Infinite Markov Games 167
8.1 Introduction . 168
8.2 Infinite state-space Markov games . 169
8.3 Learning the game . 171
8.4 Learning to coordinate . 174
8.5 An illustrative example . 181
8.6 Partial observability . 184
8.7 An illustrative example . 194
8.8 Concluding remarks . 196

9 Results in Multi-Robot Navigation . 201
9.1 Introductory remarks . 202
9.2 The experimental setup . 203
9.3 Experimental results . 211
9.4 Concluding remarks . 217

10 General Conclusions . 219
10.1 Overview of the thesis . 219
10.2 General discussion . 221
10.3 Future work . 233

III Appendices 235

A Some Mathematical Background . 237
A.1 Martingale sequences . 237
A.2 Several useful inequalities . 239
A.3 The law of the iterated logarithm . 240

xiv

A.4 Some notes on measure spaces and norms 240

B Markov Chains and Stochastic Stability 245
B.1 Markov chains and transition probabilities 245
B.2 Irreducibility . 248
B.3 Minorization properties . 249
B.4 Periodicity . 251
B.5 Topology in Markov chains . 252
B.6 Invariant measures . 253
B.7 Recurrence and drift . 254
B.8 Ergodicity . 257
B.9 Limit theorems and the Poisson equation 260
B.10 Discrete state-spaces . 263

C Game Theory and Markov Games . 265
C.1 Strategic games . 265
C.2 Mixed equilibria . 271
C.3 Strictly competitive games . 273
C.4 Fully cooperative games . 274
C.5 Stochastic games . 276
C.6 Fictitious play . 278
C.7 Adaptive play . 279

D Stochastic Approximation . 285
D.1 Convergence of stochastic approximation algorithms 285
D.2 Asymptotic behavior . 291

E Q-learning using sample-based approximation 293
E.1 Sample-based approximation . 294
E.2 Main result . 294
E.3 Proof of Theorem E.2.1 . 298
E.4 Discussion . 304

F Proofs . 307
F.1 Proofs for Chapter 3 . 308
F.2 Proofs for Chapter 4 . 312
F.3 Proofs for Chapter 7 . 321
F.4 Proofs for Chapter 8 . 328

Bibliography . 337

Notation . 365

Index . 371

xv

xvi

List of Figures

1.1 Vaucanson’s duck. 2
1.2 The three Jaquet-Droz automata. 2
1.3 The Great Chess Automaton. 3
1.4 Robotics in art. 4
1.5 Robotics in entertainment. 4
1.6 Science fiction vs. reality I. 5
1.7 Science fiction vs. reality II. 5
1.8 Illustration of the problem. 6
1.9 Contributions in single-agent systems. 10
1.10 Contributions in multi-agent systems. 11

2.1 The “X” marks the spot. 17
2.2 Example of an indoor environment. 18
2.3 Metric referential. 19
2.4 Two grid-based maps. 19
2.5 Two possible region partitions. 20
2.6 Example of a topological map. 21
2.7 Example of a simple automaton. 21
2.8 Finite-state automaton. 22
2.9 State evolution with simple clock structure. 23
2.10 Probabilistic transition diagram. 24
2.11 Distinction between event and action. 28
2.12 Optimal policy. 34

3.1 Example of an indoor environment. 51
3.2 Cumulative reward during learning. 52
3.3 Policy graphs for learnt policies. 53
3.4 Average per-step reward using different learning policies. 55

4.1 Gaussian kernel. 65
4.2 Comparison of V δ, PVV δ and vθ∗ . 68
4.3 Indoor environment for Examples 4.1 and 4.2. 74
4.4 Example 4.1: Cumulative reward during learning. 75
4.5 Detail of the learnt policy. 76
4.6 Example 4.1: Learnt policies. 77

xvii

4.7 Example 4.1: Learnt value functions. 78
4.8 Example 4.2: Cumulative reward during learning. 79
4.9 Example 4.2: Learnt policies. 82
4.10 Example 4.2: Learnt value functions. 83
4.11 Example of an indoor environment. 92
4.12 Cumulative reward during learning (36 b.f.s). 93
4.13 Cumulative reward during learning (16 b.f.s). 94

5.1 isr environment. 102
5.2 mit environment. 102
5.3 pentagon environment. 102
5.4 cit environment. 103
5.5 suny environment. 103
5.6 cmu environment. 103
5.7 The robot, its sensors and actions. 105
5.8 Possible observations. 105
5.9 Effective vs. ineffective policy. 107
5.10 Cumulative reward during learning. 110
5.11 Cumulative reward during learning (cont.). 111

6.1 Example of an indoor environment. 124
6.2 Finite-state automata. 124
6.3 Possible optimal trajectories. 134
6.4 Performance of 2 coordinated robots vs. 2 uncoordinated robots. . . . 138
6.5 Indoor environment with 3 robots. 139
6.6 Performance of 3 coordinated robots vs. 3 uncoordinated robots. . . . 140

7.1 The OAL algorithm for one player. 152
7.2 The CQL algorithm for one player. 154
7.3 Example of an indoor environment. 159
7.4 Cumulative reward during learning. 160
7.5 Cumulative reward during learning (repeated). 164

8.1 The CAQL algorithm for one player. 179
8.2 Example of a continuous indoor environment. 181
8.3 Situation of possible crash. 182
8.4 Cumulative reward during learning. 183
8.5 Example of an indoor environment. 194
8.6 Cumulative reward during learning. 196

9.1 Example of indoor environment. 204
9.2 Modified indoor environment. 204
9.3 w-grid environment. 204
9.4 bridge environment. 205
9.5 isr environment. 206
9.6 mit environment. 206
9.7 pentagon environment. 206

xviii

9.8 cit environment. 207
9.9 suny environment. 207
9.10 cmu environment. 207
9.11 Environment layout and sensor architecture. 208
9.12 The robot, its sensors and actions. 209
9.13 Cumulative reward during learning. 212
9.14 Cumulative reward during learning (cont.). 213
9.15 Uncertainty elimination. 215

10.1 Q-learning vs. SARSA. 225
10.2 Modified test scenario. 230
10.3 Learning performance with modified environment. 230
10.4 Performance after learning with different environments. 231

C.1 Best response graph for the prisoner’s dilemma. 281

E.1 Comparison of Q∗ and Qθ∗ . 295

xix

List of Tables

2.1 Optimal Q and value functions. 33

3.1 Results with ARTQI, Q-learning and SARSA. 53
3.2 Advantages of model-free vs. model-based methods. 57

4.1 Example 4.1: Results with approx. Q-learning and approx. SARSA. . 76
4.2 Example 4.2: Results with approx. Q-learning and approx. SARSA. . 80
4.3 Results with approx. Q-learning and approx. SARSA (36 b.f.s). 93
4.4 Results with approx. Q-learning and approx. SARSA (16 b.f.s). 94

5.1 Nodes in the topological maps. 104
5.2 Transition probabilities. 104
5.3 Observation probabilities. 106
5.4 Experiments with a single robot. 108
5.5 Results with approx. Q-learning. 112
5.6 Results with approx. SARSA. 112
5.7 Optimal results with full observability. 113

6.1 Example of multiple coordinated equilibria. 133
6.2 Results of 2 coordinated robots vs. 2 uncoord. robots. 136
6.3 Results of 3 coordinated robots vs. 3 uncoord. robots. 139

7.1 Results with OAL and CQL. 161
7.2 Results with OAL, CQL-QL and CQL-SARSA. 164

8.1 Results with CAQL. 184
8.2 Results with CAQL in a partially observable scenario. 196

9.1 States in the test scenarios. 205
9.2 Orientation observation probabilities for a single robot. 210
9.3 Starting states for the experiments. 210
9.4 Results with CAQL. 214
9.5 Results without coordination. 214
9.6 Optimal results with full-observability. 214
9.7 Mis-coordinations. 216

xxi

C.1 The game of matching pennies. 267
C.2 The prisoner’s dilemma. 268
C.3 Equivalent rewards for the prisoner’s dilemma. 269
C.4 Fully cooperative game with multiple equilibria. 282

xxii

Ad majorem Dei gloriam

Chapter 1

Introduction

1.1 The world of robotics and intelligent machines 1

1.2 Problem statement . 6

1.3 Structure of the thesis . 8

1.4 Contributions . 10

1.5 Basic nomenclature . 12

In this introductory chapter we present a general motivation for the work

developed in the thesis. We describe the class of robotic navigation problems to

tackle and briefly present the main ideas on the approach pursued in the thesis.

We describe the structure of the thesis and emphasize its main contributions.

1.1 The world of robotics and intelligent machines

In their work, researchers from all times and areas have found a way to gain knowl-
edge about themselves and their world. The strongly debated separation between
faith and science becomes shallow as the scientists are the first to recognize in their
work a path to spirituality. In the words of Carl Sagan, “science is not only com-
patible with spirituality; it is a profound source of spirituality.”

The research in robotics provides a rather obvious connection between Man and
his quest for knowledge, since the most obvious source of inspiration when devel-
oping autonomous/intelligent robots is still Man itself. And the last decades have
witnessed the continuous birth of new and bolder fields of research, not only in
robotics but actually in many fields of related technological and scientific research.
Soccer-playing robots, intelligent houses, automated lawn-cutters and vacuum clean-
ers—where are we heading for?

* * *

2 1. Introduction

Figure 1.1: Vaucanson’s duck (photo from Wikipedia Commons).

a) b) c)

Figure 1.2: The three Jaquet-Droz automata (photos from Wikipedia Commons): a) The
Writer; b) The Musician; c) The Draughtsman.

The early works on robotics date back to the ancient Greece.1 In 350 b.C. the
Greek mathematician Archytas of Tarentum built a wooden bird (the Pigeon), whose
movement was controlled by steam. Another of the first “roboticists” was Ctesibius
of Alexandria, a Greek physicist and inventor who lived around the year 200 b.C.
and was the creator of water clocks that included movable figures.

Later in the 15th century (1495), Leonardo da Vinci designed and built a me-
chanical device that looked like an armored knight. The device was built so that the
knight would move as if there was a real person inside. This interest in automated
machines steadily increased, and a great number of bright people were attracted
into developing complex mechanical systems, called automata, which would mimic
different living objects. This fascination reached its peak around the 18th century
and led to the construction of several astonishing machines, presenting us with some
of the finest examples of mechanical problem solving ever created.

Jacques de Vaucanson, born in France in 1709, built among other automata, a
mechanical duck that quacked, ate, and defecated (Figure 1.1). Each of the moving
wings of Vaucanson’s Duck contained over four hundred moving parts and even
today it remains something of a mystery. The original Duck disappeared.

Pierre Jaquet-Droz was a Swiss-born clock maker, who built three detailed dolls,
the Writer, the Musician and the Draughtsman (Figure 1.2).These figures, presented

1Historical references from http://robotics.megagiant.com/history.html.

http://robotics.megagiant.com/history.html

1.1. The world of robotics and intelligent machines 3

Figure 1.3: The Great Chess Automaton (photo from Wikipedia Commons).

to several kings and emperors of Europe, China, India and Japan, astonished them
with their detailed craftsmanship and automation abilities. For example, the Writer
was build with an input device, allowing the “user” to program several different
movements.

However, one can say that the most famous of all automata ever build was
the Great Chess Automaton, created by the Hungarian Wolfgang von Kempelen
(1734Ű1804).The Great Chess Automaton, or Turk, was built as a human-looking
wooden figure dressed in Turkish clothes, whose trunk emerged out of a large wooden
box filled with gears and wires (Figure 1.3). Von Kempelen claimed the Turk to be
the first “thinking machine” and would challenge any volunteer from the audience
to play chess against the Turk. The machine would move the pieces on its own
and actually used sophisticated chess strategies, as it won most of its matches, even
against experienced players. Von Kempelen traveled all around Europe, exhibiting
his Turk in many cities and before many distinct audiences. It was not until 1836
that the secret of the Turk was revealed.2

* * *

Robotics and artificial intelligence have run a long way since the days of Von
Kempelen’s Turk. Nowadays, robotics encompasses countless fields, ranging from
robotic manipulation to swarm robotics and it is impossible for a single researcher
to grasp all the distinct fields to which research extends. However, the interest in
robotics has reached out to far more than the scientific world and contributions to
the field of robotics now arise from the entertainment industry as well as the artistic
community. Figures 1.4 and 1.5 illustrate some examples of robotic applications in
art and entertainment.

In this robotic frenzy, each individual contribution adds up to an increasingly
large construction leading to the ultimate creation of an artificial intelligent creature:
a humanoid.

2For details on the Turk, see [95] or visit the site
http://www.museumofhoaxes.com/chess_auto.html.

http://www.museumofhoaxes.com/chess_auto.html

4 1. Introduction

a) b)

Figure 1.4: Robotics in art: a) Chico MacMurtie’s Amorphic Robot (photo: courtesy of
Amorphic Robot Works); b) "Robot Sculpture" by Clayton Bailey (photo: courtesy of

www.ClaytonBailey.com.)

a) b)

Figure 1.5: Robotic applications in entertainment: a) BattleBot Mechadon, by Mark
Setrakian, Team Sinister of Los Angeles; b) LEGO Mindstorm.

If such a justification for the interest that robotic research has raised may seem
a little lyric or even simplistic, the fact is that robotic research is surely intrinsi-
cally embedded with humankind’s desire to artificially “produce” one of its own.
And, if some decades ago such desire lied in the realm of scientific fiction, the last
decades have witnessed an astonishing development of technologies that leave room
for no doubt about the near-future possibilities of robotic and artificial intelligence
research.

Artificial intelligence and robotic research have provided us with tangible spec-
imens seemingly arising from science fiction movies; Deep Thought, the gigantic
intelligent computer from Douglas Adam’s “The Hitchhiker’s Guide to the Galaxy”
series has found its counterpart in IBM’s Deep Blue (Figure 1.6); and in robotics,
the examples are even easier to find (Figure 1.7).

As the scenarios under which robots may operate broaden, and the possible
applications of robotic technologies reach into new and demanding fields, a robot’s
ability to autonomously navigate its environment, to explore it and learn from its

1.1. The world of robotics and intelligent machines 5

a) b)

Figure 1.6: Science fiction vs. reality: a) Deep Thought, from “The Hitchhiker’s Guide to
the Galaxy” (Touchstone, 2005); b) IBM’s Deep Blue.

a) b) c)

d) e) f)

Figure 1.7: Science fiction vs. reality: a) 3CPO, from the movies “Star Wars” (20th

Century Fox, 1977); b) Marvin, the depressed robot, from the movie “The Hitchhiker’s Guide
to the Galaxy” (Touchstone, 2005); c) Sonny, from the movie “I, Robot”, (20th Century Fox,

2004); d) SONY’s QRIO; e) HRP-2P, by Kawada Industries; f) Honda’s ASIMO.

experience, and to successfully interact/cooperate with humans and other robots
become matters of central importance. In fact, these are the skills that make a

6 1. Introduction

Robot I

Robot II

Goal I

Goal II

Room 1

Office 1

Room 2

Hallway

Office 2

Room 3

Lab

W.C.

Figure 1.8: Illustration of a possible situation to address.

robot into more than a simple working tool, such as a sledge-hammer. These skills
provide robots with the ability to effectively replace human operators in many tasks
that jeopardize the physical integrity of the latter. In this thesis, we focus on the
problems of navigation, learning and cooperation.

1.2 Problem statement

To describe the class of problems addressed in the thesis, we introduce a rather
general example that suitably illustrates the main aspects of the navigation problems
considered.

Example 1.1. Consider the scenario depicted in Figure 1.8. Two robots, I
and II, are intended to complete some mission, in which they must move from

1.2. Problem statement 7

an initial configuration (marked with the bold circles) to a goal configuration
(marked with the double line circles). Since the process by which the two
robots navigate from the initial to the goal configuration may be too complex
to program by hand, the robots instead receive evaluative feedback from an
exterior user (e.g., a human), that assigns the team with a reward/punishment
for their every movement.3 Each individual robot must learn how to co-
ordinate with the other, avoiding situations that may lead to punishments
(e.g., crashing into each other) and so as to maximize the received reward,
thus accomplishing the mission in the “best” possible fashion.

The two robots work as a team in the sense that the mission is completed
only when both robots reach their goal locations. The robots have no initial
knowledge on their mission and must learn how to perform it by experiencing
and interacting with each other. In this process they must not only learn how
to complete the specified mission, but also how to avoid undesirable situations
(such as crashes) arising from mis-coordination.

We admit the robots to have a topological representation of the envi-
ronment (the dashed diagram) that they use to navigate. To control their
movement, each robot has available a set of high-level primitives (actions)
that govern its movement. The outcome of these primitives has an associated
uncertainty, due to noise in the controllers, wheel slippage, etc. The robots
should take into account this uncertainty when deciding on their trajectory.

The team also has access to the security video-feed from the building, and
uses this as sensory information. This sensory information provides each robot
with an estimate of the configuration of the team in the environment that each
robot can use to individually plan its movement.

In all of this, the robots do not know beforehand what the other robot
will do (there is no explicit communication for the purpose of coordination).
However, to simplify the problem, we do admit that the robots do know a
posteriori the action chosen by the other robot (for example, they estimate it
from the observed movement). �

This example illustrates several important aspects of the class of problems con-
sidered in the thesis. In particular,

• We consider situations where a mobile robot or group of robots must learn how
to complete some navigation task in an environment described topologically ;

• The robots receive evaluative feedback that indicates how well the team is per-
forming. Therefore, this evaluative feedback implicitly “encodes” the specific
task to be accomplished. A typical task is, for example, reaching some target
location/configuration;4

• The robots control their movements by choosing among a finite set of possible
action primitives with uncertain outcome;

3This evaluative feedback, generally provided by a human operator, is intended to “teach” the
robot/robots how to perform a task without showing how to do it. This prevents the human user
to have to explicitly “program” the robot/robots to perform such task.

4Other tasks are also possible, such as following some specified trajectory or avoiding some
particular state. All these specificities are “encoded” in the rewards/punishments provided to the
robots.

8 1. Introduction

• The robots have access to noisy measurements from which they must infer
their current location/configuration;

• The robots do not know beforehand the actions taken by the other robots,
i.e., they do not explicitly communicate. Coordination must emerge as a con-
sequence of the interaction between the robots.

We can summarize all this by stating that the thesis addresses situations where a
team of robots must learn how to perform a given topological navigation task in a
coordinated fashion. As soon as the learning is complete, the robots will be able to
perform this task optimally with no interference from a human operator.

On the other hand, it is important to refer that there are several important topics
of research closely related to the ones described but which we do not address. In
particular,

• We assume the topological representation of the environment is known a priori
and do not address the problem of topological mapping. In Chapter 2 we
provide several references on the topic of mapping;

• We model the navigation task as a sequential decision process. From this per-
spective, robots are seen as high-level decision-makers and we do not address
the implementation of the interface between the high-level decision-maker and
the low-level sensors and actuators. Once again, several references on this
problem can be found in Chapter 2.

The evaluative feedback described above naturally suggests a reinforcement learn-
ing approach and that is the approach followed in the thesis. Our approach is, how-
ever, a “constructive” one. The thesis is organized so as to gradually build from the
simpler problem with a single robot and perfect sensors to the more complex multi-
robot problem with imperfect sensors. A more detailed description of the structure
of the thesis is provided in the next section.

1.3 Structure of the thesis

We divided the thesis in two main parts. Part I addresses single-robot navigation
tasks and Part II presents the multi-robot cooperative navigation scenario.

The structure of both parts is kept similar to facilitate the reading. In each of
the two parts, an initial chapter introduces the basic concepts and notation. The
subsequent chapters elaborate on the ideas presented in this introductory chapter.
Simple examples are produced along the text to illustrate the application of the
different concepts and methods.

Each chapter includes a small table of contents and a brief summary. Also, each
chapter includes a concluding section where a more detailed summary of the chapter
is presented together with some discussion on the topics addressed in it.

Finally, all symbols and acronyms used throughout the text are gathered together
in one appendix, to be found in page 365.

1.3. Structure of the thesis 9

Part I: Single-robot navigation and learning

We start in Chapter 2 by describing several possible approaches to mobile robot
navigation, while introducing the framework of (finite) Markov decision processes
(MDPs). We present some simple methods to find the optimal behavior-rule (or
policy) when all MDP parameters are known and the robot is able to unambiguously
recognize its state in the environment (i.e., it has full state observability). We
illustrate the application of these methods in a simple example.

InChapter 3 we address the problem of learning from experience. After describ-
ing in Chapter 2 several methods that determine the optimal policy when the MDP
parameters are known, we now describe several methods that learn this optimal
policy from interaction with the environment, while still considering the simplifying
assumption of full observability. Once again, we apply these methods to a simple
example.

In Chapter 4 we finally address the problem of learning with imperfect sensors,
i.e., learning in the presence of partial state observability. We provide new results
that identify the conditions under which partial observability in MDPs can be tack-
led using an equivalent infinite MDP. We thus propose two new learning algorithms,
(approximate Q-learning and approximate SARSA), to approximate the optimal pol-
icy in infinite MDPs. We identify the conditions under which these new algorithms
converge and apply them to a simple illustrative example.

Finally, we conclude in Chapter 5 by applying the methods developed in this
first part to several benchmark navigation problems from the literature. The exper-
imental results presented in this chapter assess the applicability of the methods in
more realistic problems.

Part II: Multi-robot navigation and learning

Part II follows a similar structure to that of Part I. In Chapter 6 we discuss sev-
eral important aspects of multi-agent systems and introduce (finite) Markov games
(MGs) as a suitable framework to address this class of systems. We establish a close
relation between the multi-agent framework of MGs and the single-agent frame-
work of MDPs, while emphasizing a new problem arising in the multi-agent setting:
coordination.

We proceed in Chapter 7 by addressing the problem of learning in multi-agent
systems. We once again consider the simplifying assumption of perfect sensors and
describe several methods to determine the optimal joint behavior-rule (or strat-
egy). We then propose a new algorithm (coordinated Q-learning), that combines a
well-known reinforcement learning method (Q-learning) with a sound coordination
mechanism (biased adaptive play). We analyze the properties of this new method
and illustrate its application in a simple example.

In Chapter 8 we extend the approximate Q-learning algorithm from Chapter 4
to multi-agent settings. We also propose a powerful generalization of biased adaptive
play to infinite MGs. We assess its convergence and combine it with approximate Q-
learning to yield a new, convergent algorithm (coordinated approximate Q-learning).
With this algorithm in hand, we address the problem of partial observability in multi-
agent scenarios. Under the simplifying assumption of common observations, we show

10 1. Introduction

General
MDPs

Finite
MDPs

Geomet.
Ergodic
MDPs

Finite
POMDPs

Tabular
Methods

Approx. Q-Learn.
Approx. SARSA

Figure 1.9: Contributions in single-agent systems (in blue). To address geometrically
ergodic MDPs, we introduce approximate Q-learning and approximate SARSA. We also

established a correspondence between finite POMDPs and geometrically ergodic MDPs. The
vertical arrows represent inclusion relations.

that partial observability can once again be addressed by considering an equivalent
infinite problem. We then apply the coordinated approximate Q-learning algorithm
to this equivalent problem. We conclude the chapter with a discussion on several
approaches to more general problems, where common observations are not assumed.

InChapter 9 we apply the methods developed in Chapter 8 to sizeable problems.
The experimental results presented in this chapter assess the applicability of the
methods in more realistic problems.

Finally, we conclude the thesis in Chapter 10. We summarize the main contri-
butions of the thesis, discuss the applicability of the introduced methods and present
some open issues that can be addressed in future research.

1.4 Contributions

As stated in Section 1.2, this thesis tackles mobile robot navigation using a rein-
forcement learning approach. When considering the simpler case of a single robot
and perfect state perception, the topological navigation problem (i.e., navigation
in a topological map) can easily be formulated as a finite Markov decision process
(MDP). We can find abundant methods in the reinforcement learning literature
that adequately solve this class of decision problems. These methods are referred in
Figure 1.9 as tabular methods.

The consideration of imperfect sensors (partial observability) poses significant
difficulties even if a single robot is considered. To tackle this problem, we proposed
in Chapter 4 two new algorithms, approximate Q-learning and approximate SARSA.
In Theorems 4.5.2 and 4.5.3 we identified the conditions that guarantee convergence
with probability one of both methods and provided an interpretation for the obtained
approximation. One essential condition is the geometric ergodicity of the MDP under
consideration.5 Therefore, our convergence theorems extend the use of Q-learning

5Geometrically ergodic MDPs can be seen as “almost stationary” under adequate policies.

1.4. Contributions 11

General
Team MGs

Finite
Team
MGs

Geomet.
Ergodic

Team MGs

Finite
POTMGs
w/ Centr.
Observ.

(Tabular)
CQL

Approx. BAP
CAQL

Figure 1.10: Contributions in multi-agent systems (in blue). We proposed CQL to address
finite team MGs and CAQL to address geometrically ergodic team MGs. We developed
approximate BAP as a coordination mechanism for geometrically ergodic team MGs and

established a correspondence between finite partially observable team MGs with centralized
observations and geometrically ergodic team MGs. The vertical arrows represent inclusion

relations.

and SARSA to geometrically ergodic MDPs, as indicated in Figure 1.9, in blue.
To apply these algorithms to partially observable scenarios, we identified in The-

orem 4.7.4 the conditions that allow us to transform a finite, partially observable
MDP (POMDP) in an equivalent fully observable, geometrically ergodic MDP. With
this new result, we are in position to apply approximate Q-learning and approxi-
mate SARSA to POMDPs. The identification of finite POMDPs with geometrically
ergodic MDPs is therefore an important contribution and is also emphasized in blue
in Figure 1.9.

When moving to multi-robot scenarios, cooperative navigation with perfect state
perception can be formulated using finite team Markov games (MG). As in the
single-agent case, there is a multitude of methods in the literature that adequately
solve this class of decision problems. However, if many such methods are able to
determine the optimal decision rule (or strategy) for this class of problems, few
are able to formally guarantee that the multiple decision-makers (robots) actually
coordinate in any such rule. In Chapter 7, we propose a new algorithm, dubbed
as coordinated Q-learning (CQL). In Theorem 7.3.3 we assess that CQL not only
learns the optimal decision rule but also that all decision-makers coordinate in an
optimal Nash equilibrium with probability one. This is indicated in Figure 1.10 by
the blue arrow between CQL and finite team MGs.

We then propose coordinated approximate Q-learning (CAQL), a novel algo-
rithm that combines approximate Q-learning with approximate biased adaptive play
(ABAP). This algorithm is suited for geometrically ergodic team Markov games,
as indicated in Figure 1.10. In the process of introducing CAQL, we also develop
ABAP, a novel and general coordination mechanism that can be employed in infinite
team Markov games and ensures coordination with probability one. By combining
this result with Theorem 4.5.2, we show that CAQL converges with probability one

12 1. Introduction

while ensuring coordination in an optimal Nash equilibrium in an approximate game.
Finally, aiming at applying CAQL to partially observable scenarios, we introduce

the concept of centralized observations. Under this simplified setting, we gather all
the results in the thesis in Theorem 8.6.1 and identify the conditions that guarantee
a partially observable team MG with centralized observations to be equivalent to a
fully observable, geometrically ergodic team MG, as indicated by the small blue arrow
in Figure 1.10. With this equivalence, we have all the requirements to apply CAQL
to this class of partially observable team MGs.

To conclude, the result in Theorem 8.6.1 can be seen as a general convergence
theorem. By considering restricted classes of MGs (e.g., with a single player or
perfect sensors), we obtain the convergence results for each of the classes considered
along the thesis (finite MDPs, finite team MGs, finite POMDPs, etc.).

Therefore, we can summarize the main contribution of the thesis as being the
unification provided by such convergence theorems that identify the conditions under
which such distinct classes of problems as finite MDPs or partially observable team
MGs can be addressed using a common methodology.

We conclude this introductory chapter by introducing some fundamental nota-
tion used throughout the thesis

1.5 Basic nomenclature

Throughout the thesis, we take all random variables to be defined in a general
probability space (Ω,F ,P [·]) where F is a countably generated σ-field on Ω. For
any non-empty set U ⊂ Ω, we denote by F(U) the σ-field generated by U , i.e., the
minimum σ-field on Ω such that U ∈ F(U). We denote by E [X] the expectation of
the random variable X.

In general, we denote random variables using uppercase letters such as A, B or
X. The corresponding sample values are denoted using lower case letters, such as
a, b or x. Similarly, we denote a stochastic process by a sequence {Xt} and the
corresponding sample trajectories by {xt}. The parameter t is assumed to belong
to some (countable) index set T . If X is a n-dimensional random vector, we may
refer to its ith component either as X(i) or as Xi. If x is a realization of the random
vector X, we also denote by x(i) or xi the corresponding ith component. Vectors
are taken as n× 1-matrices, i.e., as columns.

We write “r.v.”, “r.v.s”, “w.r.t.” and “w.p.1” for “random variable”, “random vari-
ables”, “with respect to” and “with probability one”. Given a r.v. X taking values in
some space X , if µ is a measure on X we say that a predicate P (x) holds µ-almost
everywhere or for µ-almost every x if P (x) holds for all x ∈ X − N , where N is
some µ-null set, i.e., if µ(N) = 0.

Part I

Single Robot Navigation
and

Learning

13

Chapter 2

Topological Navigation and
Markov Processes

2.1 Mobile robot navigation . 16

2.2 Topological maps . 18

2.2.1 Topological representation of the environment 18

2.2.2 Discrete-event models . 21

2.3 Topological localization . 22

2.3.1 Probabilistic localization . 24

2.3.2 Markov chains and localization 25

2.4 Topological navigation . 27

2.4.1 Markov decision processes . 29

2.4.2 Dynamic programming . 31

2.5 Concluding remarks . 33

2.5.1 Summary . 34

2.5.2 Discussion . 35

This is an introductory chapter that provides the bridge between (single) robot

navigation and reinforcement learning. In it, we introduce the fundamental con-

cepts used throughout the thesis, setting up the required formalism to proceed

with the developments in the following chapters.

We start by describing three fundamental issues arising in any navigation prob-

lem: environment representation, localization and navigation. We address each

of these topics from a discrete-event perspective, finally building up to Markov

decision processes and some simple solution methods. We conclude the chapter

by illustrating the use of this framework in mobile robot navigation tasks, where

the environment is suitably represented as a topological map.

16 2. Topological Navigation and Markov Processes

2.1 Mobile robot navigation

The reference to “autonomous systems” may be found in a multitude of contexts,
whenever a system is able to perform some task with minimum interference from a
human operator. Not seldom the reference to autonomous systems appears in the
context of robotic navigation, where an autonomous robot is able to navigate in some
environment. Mobile robot navigation has been one of the most central topics of
research from the early days of robotics. In fact, the usefulness of a mobile robot in
most tasks greatly depends on its ability to move autonomously in its environment.

There is no universal definition of navigation. Under the label of navigation it
is possible to find works on localization, path-planning, trajectory tracking, target
interception among others. We adopt the more intuitive definition of navigation,
according to which “navigation is the process of determining and maintaining a
course or trajectory to a goal location” [90].

The classical approach to navigation models a mobile robot as an autonomous
vehicle, irrespectively of any cognitive abilities of the robot. The movement of the
robot is described using a set of differential equations arising from its kinematics
and dynamics. Classical techniques such as LQG/LTR synthesis [7] or H∞ design
[233] can then be applied to synthesize a controller for the robot. In many cases,
this controller can also be described by a set of differential equations, and provides a
signal for the actuators of the robot, driving it to its objective. Examples of classical
control applications are abundant in the literature [183, 213, 255] and illustrate the
power of such methodologies.

More recently, new techniques have been proposed to address mobile robot nav-
igation that combine the advantages of classical control methods and several ideas
from computer sciences such as genetic algorithms [275] or hybrid automata [77].
These combined approaches have proven to be especially useful in systems subject to
constraints of different kinds (such as non-holonomic). These methods allow, under
certain conditions, a straightforward analysis of stability and robustness and have
been applied to different types of mobile robots, such as omni-directional robots
[331], non-holonomic robots [230] or underwater autonomous vehicles [210].

Nowadays, mobile robot navigation is addressed from widely different perspec-
tives. These approaches range from visual-navigation strategies [184, 317, 340] to
biologically inspired strategies [155, 318], genetic algorithms [115, 123] or neural
networks [176].

* * *

In the definition of navigation considered above, it is implicit that the “goal
location” is clearly identifiable. The most common way to do this is by “marking”
it in some map. This is not such a strange procedure, since it arises from our own
natural way of identifying a goal location (see Figure 2.1).

Good representations of the environment (maps) are as important as the ability
to navigate in such environment and, usually, the latter greatly depends on the
former.

As stated in [200, 324], maps can essentially be divided into 3 categories:

2.1. Mobile robot navigation 17

Figure 2.1: The “X” marks the spot.

• Metric maps;

• Topological maps;

• Hybrid maps.

As navigation tasks become more and more demanding, reliable maps arise as
an essential element in navigation, this leading to an increasing interest in mapping
algorithms. In the last decade, the SLAM problem (simultaneous localization and
mapping) has raised as a field of research on its own, and it is possible to find in the
literature numerous different approaches to the problem of mapping, being metric
[63, 111, 218, 313, 339], topological [57, 150, 270, 325, 347] or hybrid [83, 240, 314,
315].

Nevertheless, recent years have witnessed a particular interest in the use of topo-
logical maps in navigation [217, 229, 250, 297, 324]. Topological maps “are more
suited as a qualitative world model ” [347] and allow a navigation task to be defined
“in terms that are easily related to the robot perceptual capabilities and the robot’s
set of possible actions” [270]. Furthermore, “they provide an inherently scalable lo-
calization structure which relies on robust transitions between the different regions
of the map” [9].

A topological map represents the environment as a discrete set of states (the
nodes in a graph) and the transition information between such states (the edges of
a graph). The definition of the states may still rely on geometric considerations but
can also rely on other qualitative information or topological relations between the
different states [324].

A mobile robot moving in an environment described by a topological map may be
described using discrete-event systems or Markov chains. Such approach to robotic
navigation comes as no novelty and there are numerous examples of application of
discrete-event systems and Markov processes to mobile robot navigation [87, 116,
174, 261, 309].

In this chapter, we address topological navigation (i.e., navigation relying on a
topological map) of a single mobile robot. We build up from a simple discrete-event
model (an untimed automaton) towards the more sophisticated Markov decision
process. In this path, we address the three main questions arising in all navigation

18 2. Topological Navigation and Markov Processes

Room 9

Room 1 Room 4 Room 7

Room 2 Room 5 Room 8

Room 3 Room 6

Goal
Room

Figure 2.2: Example of an indoor environment. The dashed lines do not correspond
to any physical obstacle but merely represent the separation between the rooms.

problems [267]: “where is the robot?”, “where is the goal relatively to the robot?”
and “how does the robot reach the goal?”.

2.2 Topological maps

In this section, we describe topological maps and present a discrete-event model for
the movement of a mobile robot using an untimed deterministic automaton.

2.2.1 Topological representation of the environment

For the sake of clarity, we use the following example extensively in this chapter, to
help clarify the different concepts and methods introduced.

Example 2.1. Consider the indoor environment represented in Figure 2.2. A
mobile robot is supposed to traverse this environment, starting in the area
labeled as «Room 1» and reaching the area labeled as «Room 9». For the sake
of clarity, we signaled Room 9 as the «Goal Room». Consider, for example,
a situation where the environment in Figure 2.2 is a disaster scenario. The
robot will provide immediate medical care to a victim in Room 9 until human
help arrives.

Throughout this chapter, we gradually develop this example to illustrate
the several methodologies presented. �

As already stated, mobile robots need suitable environmental representations to
perform most tasks. It is this environmental representation together with the robot’s
sensory capabilities that allow a mobile robot to determine its own position as well
as that of its goal.

In finding suitable environmental representation, one first solution is to attach a
metric referential {W} to the world and a second metric referential {R} to the robot
(see Figure 2.3). The coordinates of the goal position (xPG , yPG) are then defined
in the world referential, and a controller can be designed to minimize some error
measure such as

ε =
√

(xR − xPG)2 + (yR − yPG)2.

2.2. Topological maps 19

PG

xW

yW

xR

yR

Figure 2.3: Metric referential in the environment of Figure 2.2.

a) Regular grid b) Quad-tree

Figure 2.4: Two grid-based maps. In both figures, the region outlined in red represents the
goal.

This method can be combined with other methods, such as potential fields, to im-
plement obstacle avoidance [20].

However, a metric approach to navigation requires some type of representation
of the obstacles/landmarks in the environment. An environment rich in obsta-
cles/landmarks usually permits accurate localization but requires larger computa-
tional resources (both for mapping and localization) than sparse environments. A
sparse environment, on the other hand, although computationally “cheap” in terms
of mapping, often leads to difficult problems in localization (namely, recovering from
long periods of dead-reckoning localization).

A second solution that comes to mind when deciding on an environmental rep-
resentation is the use of some grid-based approach. The use of grid-based represen-
tations of the environment is not a novelty and several variants can be found in the
literature [78, 297, 310, 341, 342]. In Figure 2.4, two simple grid-based maps are
provided. In the map in Figure 2.4.a), a simple uniform grid divides the environ-
ment into a discrete number of regions or cells. By numbering the cells from 1 to n,
the position of the robot can be referred by the number of the corresponding cell.
However, this uniform grid can be computationally ineffective in environments with
many small obstacles and large, free spaces. Figure 2.4.b) depicts a quad-tree based
representation. This technique, inspired from image segmentation methods, succes-

20 2. Topological Navigation and Markov Processes

Yellow Area

Blue AreaGreen Area

White Area

Goal (Red)
Area

Room 9

Room 1 Room 4 Room 7

Room 2 Room 5 Room 8

Room 3 Room 6

Goal
Room

a) Feature-based b) Context-based

Figure 2.5: Two possible region partitions. In the feature-based partition, color is used as
a distinctive feature to partition the environment into five “regions”. In the context-based
partition, the partition relies on the ability to distinguish «Rooms», which is clearly an

environment-specific ability (hence the designation “context-based”).

sively divides the space into smaller regions (up to some threshold), until each region
is of one of two types: free-space or obstacle. Notice that the quad-tree approach
readily overcomes the ineffective space partition of regular grids, by considering a
finer division in regions with small obstacles and a coarser division in large regions
of free-space.

The use of grid representations for environments is one step closer to abstract en-
vironment representation. Grids provide discrete representations of the environment
and are able to encode obstacles and free space. But it is with the use of topological
maps that mapping reaches a new level of abstraction. As stated in [9, 112], topolog-
ical maps are graph-based descriptions of the environment in which different places
correspond to different states. The distinction between different places makes use of
the concept of distinctive place. This concept plays a central role in the elaboration
and use of such categorized maps, since the environment is partitioned in a discrete
number of regions according to the ability of the robot to distinguish among the
different places. This distinction may arise at different levels, either feature-based
[9, 57, 325] or at a more abstract level [250, 347, 348] (see Figure 2.5).

A topological map can be described as a connected, directed graph G = (V, E),
where V is the set of all nodes (or vertices) in the graph and E is a subset of V ×V .
A pair (i, j) belongs to E if there is a directed edge from vertex i to vertex j in G.

Example 2.1. (cont.) Consider once again the environment of Figure 2.2
with the partition depicted in Figure 2.5.b). The corresponding topological
map is depicted in Figure 2.6. This topological map is a graph G = (V, E),
where

• V = {1, 2, 3, . . . , 9};
• E = {(1, 2), (2, 1), (1, 4), (4, 1), (2, 3), (3, 2), . . . , (8, 9), (9, 8)}.

Each node i ∈ V corresponds to Room i in the environment of Figure 2.5.b).
�

2.2. Topological maps 21

1

2

3

4

5

6

7

8

9

Figure 2.6: Topological map corresponding to the environment of
Figure 2.5.b). We numbered the vertices in the graph according to the room

numbers in Figure 2.5.b).

a

a b

a

aa

1 2 3

4

Figure 2.7: Example of a simple automaton.

Notice that a topological map is merely an environment representation and, as
such, encodes no information regarding the objective of the robot. However, there is
a tight relation between the movement of a mobile robot in an environment and the
topological representation of that environment. That topic is further explored in the
following subsection, where we introduce a discrete-event model for the movement
of the robot.

2.2.2 Discrete-event models

A discrete-event system is a dynamic system with a discrete state-space in which
state transitions occur at discrete instants in time. Such transitions are interpreted
as events and the system is studied only at such event-times. In other words, in
a discrete-event system, state transitions are driven by events rather then by some
clock [55].

Two common models for discrete-event systems are finite-state automata and
Petri nets. An automaton is basically a state-machine, or transition diagram, such
as the one depicted in Figure 2.7.

We notice that a finite-state automaton such as the one in Figure 2.7 can also
be represented as a directed graph. The encircled numbers represent the states of
the automaton and the labels on the arrows represent the events. The state marked
with a double line is referred as a marked state and this notation indicates that, in
a sense, state 4 is a “goal state”.1 Therefore, a finite-state automaton modeling the

1In terms of automaton terminology, the concept of marked state gives rise to the concept
of marked language, which is the set of all strings ending in a marked state. We can think of
these marked strings as being the “desirable” strings generated by the automaton. Noticing that

22 2. Topological Navigation and Markov Processes

1 4 7

2 5 8

3 6 9

E

W

N S

E

W

E

W

E

W

E

W

E

W

N S N S

N S N S N S

Figure 2.8: Finite-state automaton modeling the movement in the
environment of Figure 2.2.

movement of a mobile robot can be obtained directly from the topological map of the
environment. The automaton thus obtained is referred to as navigation automaton
[189].

As stated in [55, 97], it is possible to derive a Markov model from a discrete-event
model such as a finite-state automaton. In particular, there is an equivalence be-
tween finite-state Markov chains and a particular class of stochastic-timed automata.
We briefly address that topic in the next section.

We conclude this section with an example.

Example 2.1. (cont.) Consider once again the environment of Figure 2.2
and the corresponding topological map depicted in Figure 2.6. The finite-state
automaton describing the movement of the robot in the given environment is
presented in Figure 2.8.

Once again, we have labeled the states from 1 to 9 as in the map of
Figure 2.6. Notice, however, that we marked state 9 to emphasize that it is
the goal state. On the other hand, we have labeled the transitions between
states (the events) according to the direction of the corresponding movement.
Therefore, we have for example labeled with N (North) the transition from
state 1 to state 2 and withW (West) the transition between state 9 and state 6.

�

2.3 Topological localization

Localization consists in answering the question “where is the robot” with respect to
some representation of the environment. In the particular case of a topological map,
localization consists in determining the node corresponding to the position of the
robot in the environment.

When addressing mobile robot localization, one must necessarily consider some
time reference to which localization is concerned. This is because a mobile robot

a string is nothing but a sequence of events (a trajectory), marked strings represent the desirable
trajectories: those ending in a marked state.

2.3. Topological localization 23

5

7

6

4

3

2

1

9

8

St
at

es
(1

..9
)

0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.20 1.0
Time (sec)

vN (2) = 0.4

vW (1) = 0.7

vN (1) = 0.2

vE(3) = 0.1

vE(2) = 0.3

vE(1) = 0.5

Figure 2.9: State evolution plot for the automaton of Figure 2.8 with the
clock structure in (2.1).

moves and therefore its position changes with time. Therefore, untimed discrete-
event models such as finite-state automata are not enough to properly address mobile
robot localization.

By appending a clock structure to a discrete-event system, it is possible to an-
alyze the temporal evolution of the state of the system. A clock structure defines
the time instants in which the different events occur [55], given some reference time.
In an automaton with a set of possible events E =

{
e1, . . . , en

}
, a clock structure

is a set of n sequences, ve1 , . . . ,ven , each corresponding to an event ei in E . Each
sequence vei determines the time intervals between two consecutive occurrences of
ei.

Example 2.1. (cont.) Consider once again the automaton in Figure 2.8. A
possible clock structure is

vN = {0.2; 0.4}
vS = ∅
vE = {0.5; 0.3; 0.1}
vW = {0.7}

(2.1)

where the numbers correspond to time in seconds with respect to the initial
time t = 0. The plot of the corresponding state evolution is presented in
Figure 2.9.

To better understand how the clock structure works, notice for example
that vN = {0.2; 0.4}. This means that the event N occurs at time 0.2 seconds
and then at time 0.2 + 0.4 = 0.6 seconds. �

If the clock structure is known, it is possible to determine at each time instant, the
exact state in which the robot is. A finite-state automaton as the one in Figure 2.8
endowed with a clock structure as the one in (2.1) is called a timed automaton.

However, in timed automata there is no uncertainty, i.e., all events occur in
deterministic time instants and the outcome of each event is also deterministic. In

24 2. Topological Navigation and Markov Processes

1 4 7

2 5 8

3 6 9

0.1

0.9

0.1

0.9

0.1

0.9

Figure 2.10: Probabilistic transition diagram obtained from the automaton in
Figure 2.8 when the action N has uncertain outcome. We omitted the event
labels for the sake of clarity. The dashed lines denote uncertain transitions

(associated with the event N).

order to properly model the movement of a robot, uncertainty must be taken into
account and a richer model is necessary.

2.3.1 Probabilistic localization

So far, we admitted that the transitions in an automaton are triggered by events
belonging to some event set E . We now further suppose that some (or all) of these
events have an uncertain outcome. For example, suppose that the robot, when in
state 1, moves to state 2 or 3 with probabilities 0.9 and 0.1 when event N occurs.
Indicating the corresponding probability in each of the transitions of the automaton
yields the transition diagram of Figure 2.10, analyzed in detail in the following
example.

Example 2.1. (cont.) Consider once again the automaton in Figure 2.8 and
suppose that, whenever event N occurs, there is a 0.9 probability of the robot
moving to the adjacent state to the north and a 0.1 probability of the robot
moving two states to the north (see Figure 2.10). The corresponding stochastic
automaton is represented in Figure 2.10. Notice that, if the robot is in states
2, 5 or 8 it is not possible to move two states to the north, and therefore, the
transition always occurs to the adjacent northern state.

A clock structure for this automaton is still a set of 4 sequences,

{vN ,vS ,vE ,vW } ,

each corresponding to an event N , S, E orW . However, it is no longer possible
to determine exactly which is the state of the robot at each time instant. �

When in the presence of uncertainty, localization consists in determining the
probability of being in each state at each time instant t. Probabilistic localization
is a widely studied topic of research [9, 87, 89]. Several approaches to probabilistic
localization have been proposed in the literature, using similar underlying principles,
but applied to different models, both discrete and continuous.

2.3. Topological localization 25

Let Xt be a random variable representing the state of the automaton at time
instant t and suppose that a particular event e ∈ E occurs at some time t. We denote
by Pe(i, j) the probability of Xt+ = j given that Xt = i and event e occurred, i.e.,

P [Xt+ = j | Xt− = i, Et = e] = Pe(i, j), (2.2)

where Et is the event occurred at time t. According to this model, the location of the
robot in the topological map after event e depends only on the location of the robot
immediately before the occurrence of e. This dependence of the state of the robot
solely on the immediate past is similar to the Markov property observable in some
stochastic processes. This, however, is not a mere coincidence, as it is possible to
prove that, with an adequate clock structure, a stochastic timed automata generates
a random process {Xt} that is a Markov chain (see [55, 97] for details).

By using a Markov chain to model the movement of the robot in the environment,
it is no longer necessary to take into account the exact time instants at which events
occur, as established in [55]. Furthermore, the use of Markov chains greatly simplifies
the treatment of localization and navigation, as will soon become apparent.

2.3.2 Markov chains and localization

At this stage, we once again resort to the environment of Figure 2.2 to introduce
Markov chains as a suitable model for the movement of a mobile robot in a topo-
logical map.

Example 2.2. Consider once again the environment of Figure 2.2 and suppose
that a mobile robot moves in that environment, described by the automaton
of Figure 2.8.

Suppose, however, that all the events N , S, E and W have an uncertain
outcome. In particular, suppose that each particular event moves the robot to
the immediate adjacent state in the corresponding direction with probability
0.8; it moves the robot by two states in the corresponding direction with
probability 0.1; and leaves the robot in the same state with probability 0.1.
For example, for the event S, these probabilities can be summarized in the
matrix

PS =



1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.9 0.1 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.1 0.8 0.1 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.1 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 0.1


,

where PS(i, j) represents the probabilities defined in (2.2). The uncertainty
in the transitions resulting from the events can be interpreted as arising from

26 2. Topological Navigation and Markov Processes

external perturbations, wheel slippage, terrain slope, etc. Notice that, as
expected, the limits of the environment restrict the transitions of the robot
(e.g., the robot cannot move south from state 1 nor two states to the south
from state 2). �

Consider once again the r.v. Xt representing the position of the robot on the
map at time instant t (the state of the robot). Let X be the set of all possible states
of the robot, henceforth referred to as the state-space. As seen in the example, if
Xt = i and an event e occurs, the probability of moving from i to j is given by
Pe(i, j), with i, j ∈ X (notice that we have considered this transition probability to
be time-independent).

We have distinguished the transitions between states based on the events that
triggered the transition. For example, we considered a transition triggered by the
event N to be different from a transition triggered by S. If, instead, we only wish to
identify movements of the robot, we could consider a single event, Move, triggering
all transitions. This event would have an uncertain outcome: sometimes it would
correspond to a movement to the North; sometimes it would correspond to movement
to the South, and so on. Notice that this is just a change in the representation and
does not impact the actual movement of the robot.

If there is a single event triggering the transitions between states, the associated
transition probabilities PMove can be denoted by P, omitting the implicit eventMove.
With this formulation, the state of the robot at each time instant only depends on
the state in the immediate past. If we consider the robot to move at discrete instants
in time, t = 1, 2, . . ., this means that the state Xt at each instant t only depends on
Xt−1. This property is known as the Markov property, formally described as

P [Xt+1 = j | Ft] = P [Xt+1 = j | Xt = i] = P(i, j), (2.3)

where Ft = {X0 = i0, X1 = i1, . . . , Xt = i} is the history of the process up to time t.
Any discrete-time stochastic process verifying (2.3) is called a homogeneous Markov
chain.2 We henceforth omit the qualifier homogeneous when referring to Markov
chains, with the understanding that all referred chains are to be taken as homoge-
neous unless explicitly stated otherwise.

A Markov chain is completely described by its state-space X and its transition
probability matrix P. Therefore, we may sometimes refer to a Markov chain as a
pair (X ,P).

By modeling the movement of the robot as a Markov chain, the problem of
localization is easy to solve using standard probability results. Suppose that, at
some time instant t, the robot is in state Xt = i. Using simple inductive reasoning,
it is easy to show that

P [Xt+k = j | Xt = i] =
∑
l∈X

Pk−1(i, l)P(l, j) = Pk(i, j), (2.4)

2The designation homogeneous arises from the fact that the transition probabilities in (2.3) do
not depend on the particular time instant t considered.

2.4. Topological navigation 27

where Pk(i, j) stands for the ijth element of the matrix Pk. The matrix Pk is known
as the k-step transition probability matrix.

Finally, suppose that at time instant t the position of the robot is not exactly
known but the robot is estimated to be in state i with probability µ(i), where µ is
a discrete probability measure on B(X). Since X is finite, it is possible to represent
µ as a vector. Then, at time t+ k the robot will be in state j ∈ X with probability

Pµ [Xt+k = j] =
∑
i∈X

P [Xt+k = j | Xt = i] P [Xt = i] =

=
∑
i∈X

Pk(i, j)µ(i) =

=
(
µ>Pk

)
(j),

where
(
µ>Pk

)
(j) represents the jth component of vector µ>Pk.

2.4 Topological navigation

So far, we introduced topological maps as environment representations for navigation
and Markov chains as dynamic models for the movement of a mobile robot. Within
this framework we modeled the movement of the robot as state transitions in a
Markov chain. However, we have so far disregarded any control that the robot may
have over its own movement.

In fact, we would expect the movement of the robot to result (at least on some
degree) from some “intentional action”, rather than the outcome of some event gen-
erating mechanism as considered so far.3 Furthermore, if the robot must choose
between different possible “actions” to reach its ultimate goal, it is expectable that
different actions have different outcomes and contribute in different extents to the
completion of the robot’s mission. As such, we now introduce the framework of con-
trolled Markov chains. Controlled Markov chains enrich the simpler Markov chain
model by allowing the robot to control its own movement (the trajectories of the
chain).

Let {Pa} be a family of stochastic matrices,4 where a is an index taking values
in some finite set A. Let {At} be some sequence in A and {Xt} a stochastic process
such that

P [Xt+1 = j | Xt = i, At = a] = Pa(i, j).

Clearly, {Xt} verifies the Markov property and is, therefore, a Markov chain. How-
ever, the transition probabilities for this chain now depend on the sequence {At},
usually called the control process. In the context of this thesis, we will refer to the
elements in A as being actions and to the set A as the action-space.

Suppose that a mobile robot is moving in an environment modeled as a topo-
logical map and, at each time instant t, the robot is allowed to choose the value of
At. This means that the robot is able to control (probabilistically) its movement

3Notice that in considering the transitions as being triggered by some event/events we were not
concerned on how such events were generated.

4A stochastic matrix is any matrix M verifying
∑
jM(i, j) = 1.

28 2. Topological Navigation and Markov Processes

Action
Motor ControlDecision-maker

Outcome
(movement)

ROBOT

Event
(label)

Figure 2.11: Distinction between event and action.

by choosing different values for At. This value may depend on the complete past
history of the process and this dependency may be stochastic. Therefore, in general,
the value of the At at time instant t is a r.v. taking values in A. We represent a
controlled Markov chain as a triplet (X ,A,P).

Example 2.1. (cont.) Consider yet again the environment depicted in Fig-
ure 2.2. By now, it should be clear that the movement of a mobile robot in
this environment can be described by a controlled Markov chain (X ,A,P),
where:

• As before, the state-space is X = {1, . . . , 9};
• We now admit that the robot explicitly chooses the direction of its move-

ment, at each time instant. Therefore, we have A = {N,S,E,W};
• Each action a ∈ A moves the robot in the corresponding direction, but

there is some uncertainty in the outcome of each action. In particular,
if the robot takes some action a ∈ A corresponding to one of the 4
possible directions, it will move to the adjacent state in that direction (if
any) with probability p1; it will move two states in that direction with
probability p2 (if possible) or, with a probability p0, it will remain in the
same state.

Notice that, in this model, different actions have (generally) different out-
comes. The robot is now able to choose, at each time instant, the action At
that controls its movement and it should be possible to derive a proper strat-
egy to drive the robot to the goal. Finally, the addition of the control actions
does not affect the ability of the robot to localize, and everything stated in the
previous section on probabilistic localization still holds without any change.

Finally, one remark to emphasize the difference between events in the
sense of Sections 2.2 and 2.3 and actions. Events can be seen as labels for the
outcome of the actions. We present in Figure 2.11 a pictorial representation
of this difference. �

As claimed in the example, the Markov chain model encompasses:

• Localization in the environment, as the state of the chain is related to the
position of the robot in a topological map; so far we assume the robot to be
able to observe such state;

2.4. Topological navigation 29

• Prediction of the consequences of each action by means of the corresponding
transition probabilities;

• Movement control by an adequate choice of different actions at successive time
instants.

In order to be able to “program” the robot to perform a navigation task, it remains
only to define a proper way to describe this task to the robot (and not necessarily
how to accomplish it). For this, we resort to a reward structure to be introduced
next.

2.4.1 Markov decision processes

So far, we have addressed the navigation of a mobile robot in an environment de-
scribed by a topological map by using a controlled Markov chain to model the
movement of the robot. The control parameter of the chain—the action—allows the
robot to control its movement in the environment.

For the robot to be able to perform a desired task, it is imperative to provide it
with a mechanism allowing it to choose the “correct” action at each time instant.

To this purpose, we assume that there is a deterministic function

r : X ×A×X −→ R

assigning a reward r(i, a, j) every time a transition from i to j occurs as a conse-
quence of taking action a. Since the transition from i to j is a random event, we
denote by R(i, a) the random reward received for taking action a at state i. Clearly,

E [R(i, a)] =
∑
j∈X

Pa(i, j)r(i, a, j).

We assume that there is a constant R ∈ R such that |r(i, a, j)| < R for all i, j ∈ X
and all a ∈ A.5

Formally, we define the objective of the robot as the determination of the control
sequence {At} that maximizes the infinite-horizon total discounted reward, defined
as

V ({At} , i) = E

[
∞∑
t=0

γtR(Xt, At) | X0 = i

]
, (2.5)

where 0 ≤ γ < 1 is a discount-factor. As already stated, R(i, a) represents a
random “reward” received for taking action a ∈ A in state i ∈ X . In a way, these
rewards encode the objective/objectives of the robot (e.g., move to some target state,
avoid some dangerous state, follow some trajectory). By choosing its actions so as

5Usually, in the reinforcement learning literature, there is no assumption on the existence of a
function r as the one described. However, the use of the function r greatly simplifies the notation
and the presentation of the results and does not introduce a significant loss in generality. The
assumption on the boundedness of r is tantamount to the standard requirement that the rewards
have uniformly bounded variance.

30 2. Topological Navigation and Markov Processes

to maximize the functional V above, the robot is also choosing its actions so as to
accomplish whatever task is “encoded” in the rewards in an optimal way, as intended.

We refer to the 5-tuple (X,A,P, r, γ) as a Markov decision process (MDP). The
rewards r(i, a, j) are usually known as reinforcements and the problems modeled
as MDPs are therefore known as reinforcement learning problems. Intuitively, one
may think of r(i, a, j) as a “prize” (or punishment, if r(i, a, j) < 0) for taking a given
action a in state i and ending up in state j. Therefore, the rewards provide the
robot with some “feedback” on how good its choice of action a was. This feedback
is usually provided by some entity external to the robot (e.g., a human operator).

With the reward mechanism defined by the function r and the functional V
defined in (2.5), the navigation task for the robot is properly defined. The next
example clarifies how rewards can be used to encode the robot’s goal.

Example 2.1. (cont.) Consider once again the situation described in Exam-
ple 2.1, where a mobile robot moves in the environment depicted in Figure 2.2.
The navigation task consists in reaching Room 9. The Markov decision process
describing the robot and task is the 5-tuple (X,A,P, r, γ) where

• X , A, P are as defined before;

• The reward function r assigns a reward of +10 for every transition triplet
(i, a, j) such that j = 9 and 0 otherwise;

• γ is some discount factor such that 0 < γ < 1.

Notice that the reward function above assigns a positive reward to every
transition that ends in the goal state. Once the reward function is defined,
the purpose of the robot is to choose its actions so at to maximize its total
discounted reward,

V ({At} , i) = E

[∞∑
t=0

γtR(Xt, At) | X0 = i

]
.

Notice that, because of the discount factor γ, rewards that arise further in the
future are “less desirable” than rewards arising in a nearer future. This implies
that the optimal control sequence {At} will move the robot towards the goal
state as quickly as possible.

To further clarify this point, suppose that p1 = 1 and p0 = p2 = 0, i.e., the
actions of the robot have a deterministic outcome. Further suppose that the
robot is at state 8. It can then move to the goal state by choosing action N
and receive a reward of 10. However, it can also choose for example action
E and remain in state 8. In the next time step it can then choose action N
and move to state 9. The expected reward until reaching the goal is 10 in
the first case and 10γ in the second. Since γ < 1, the first course of action is
preferable. �

To conclude this chapter, we briefly address the problem of determining the
optimal control sequence {At} given the MDP (X,A,P, r, γ).

2.4. Topological navigation 31

2.4.2 Dynamic programming

Given an MDP (X,A,P, r, γ), we define the optimal value function V ∗ for each state
i ∈ X as

V ∗(i) = max
{At}

V ({At} , i) = max
{At}

E

[
∞∑
t=0

γtR(Xt, At) | X0 = i

]
.

This value function is known to verify the recursive relation

V ∗(i) = max
a∈A

∑
j∈X

Pa(i, j)
[
r(i, a, j) + γV ∗(j)

]
,

which is a form of the Bellman optimality equation. Notice V ∗(i) represents the
total discounted reward that the robot expects to receive by starting at state i ∈ X
and always acting optimally. We also define the optimal Q-values Q∗(i, a) for each
state-action pair (i, a) ∈ X ×A as

Q∗(i, a) =
∑
j∈X

Pa(i, j)
[
r(i, a, j) + γV ∗(j)

]
. (2.6)

The function
Q∗ : X ×A −→ R,

assigning to each pair (i, a) ∈ X × A the corresponding optimal Q-value, Q∗(i, a),
is referred henceforth as the optimal Q-function. Much like V ∗, Q∗ represents the
total discounted reward that the robot expects to receive by starting at state i ∈ X ,
taking a ∈ A as the first action and always acting optimally afterwards.

From the optimal Q-function it is possible to define a mapping δ∗ : X −→ A as

δ∗(i) = arg max
a∈A

Q∗(i, a) (2.7)

for all i ∈ X . The control process {A∗t} defined by A∗t = δ∗(Xt) is optimal in the
sense that

V ∗(i) = V ({A∗t} , i),
for all i ∈ X . The mapping δ∗ is known as the optimal policy for the Markov decision
process (X,A,P, r, γ).6

More generally, a (stochastic) policy is a mapping δt : X × A −→ [0, 1] that
generates a control process {At} verifying

P [At = a | Xt = i] = δt(i, a),

for all t. In other words, a policy defines the probability of choosing each particular
action in each state at each time instant. Clearly, since δt defines for each i ∈ X

6Although we refer to δ∗ as the optimal policy, this policy is not necessarily unique. However,
all optimal policies yield the same total discounted reward and so the possible existence of multiple
optimal policies does not bring any additional complication.

32 2. Topological Navigation and Markov Processes

a probability distribution over A, it holds that
∑

a δt(i, a) = 1 for all t. We write
V δt(i) instead of V ({At} , i), whenever the control process {At} is generated by a
policy δt and refer to V δt as the value function associated with policy δt.

In the particular case where, for each state i ∈ X , δt(i, a) = 1 for some a ∈ A,
we say that δt is a deterministic policy. In this case, we write δt(i) to denote the
action in A which is taken w.p.1 in state i. The control process {At} thus generated
verifies At = δt(Xt) for all t. On the other hand, if a policy δt does not depend on
t, we say that δt is a stationary policy and denote it simply as δ.

It should be clear from (2.7) that the optimal control sequence can be obtained
by determining the optimal (deterministic and stationary) policy δ∗, which in turn
can be obtained from Q∗. Therefore, the problem of optimally navigating a mobile
robot described by the MDP (X,A,P, r, γ) is “solved” once the function Q∗ is known
for all pairs (i, a) ∈ X ×A.

For the purpose of determining Q∗, we consider once again Equation (2.6). This
expression suggests the following fixed-point iteration

Qk+1(i, a) =
∑
j∈X

Pa(i, j)
[
r(i, a, j) + γmax

b∈A
Qk(j, b)

]
, for all i, a. (2.8)

To show that the iterative process in (2.8) converges to the optimal Q-values, we
define an operator H as

(Hq)(i, a) =
∑
j∈X

Pa(i, j)
[
r(i, a, j) + γmax

b∈A
q(j, b)

]
,

where q : X × A −→ R is any bounded measurable function. The operator H
is a contraction in the sup-norm with contraction factor γ [27]. Therefore, the
convergence of (2.8) is an immediate consequence of the Banach fixed-point theorem.
This method and several standard variations of it are known as value iteration
methods (VI). A good overview of these methods and their convergence properties
can be found in [27]. We will make further use of the operator H in the following
chapters, where stochastic versions of iteration (2.8) are introduced.

Example 2.1. (cont.) We finally bring Example 2.1 to a satisfying conclusion.
Recall that we are considering a mobile robot moving in the environment of
Figure 2.2 and modeled by the MDP (X,A,P, r, γ) described in the previous
example. Suppose that γ = 0.9, p0 = 0.1, p1 = 0.8 and p2 = 0.1.

We applied the VI methodology above and obtained the Q∗ function rep-
resented in Table 2.1.

To provide an interpretation for the obtained Q-values, consider for exam-
ple, those concerning state 9. If the robot chooses either action N or E, and
since no further movement in that direction is possible, the robot will remain
in state 9 and receive a reward of 10 in every time step. Thus,

Q∗(9, N) = Q∗(9, E) =
10

1− γ = 100.

On the other hand, if the robot is in state 8, the optimal action is N . This
means that, if the robot chooses action N , it will move to state 9 with proba-

2.5. Concluding remarks 33

Table 2.1: Optimal Q and value functions for the Markov decision process
from the previous example. The boldface cells represent optimal values.

States Q∗(i, a) V ∗

N S E W

1 71.7 64.5 71.7 64.5 71.7
2 79.4 65.2 79.4 71.5 79.4
3 80.3 71.7 89.2 80.3 89.2
4 79.4 71.5 79.4 65.2 79.4
5 88.0 72.3 88.0 72.3 88.0
6 89.0 79.4 98.9 81.2 98.9
7 89.2 80.3 80.3 71.7 89.2
8 98.9 81.2 89.0 79.4 98.9
9 100.0 89.2 100.0 89.2 100.0

bility 0.9 and remain in the same state otherwise. This means that,

Q∗(8, N) = 0.9

10 + γ
10

1− γ︸ ︷︷ ︸
Value of state 9

+ 0.1
(
0 + γQ∗(8, N)

)
.

Solving this equation readily leads to the value of 98.9.

From Q∗ we can immediately obtain the optimal value function V ∗, simply
by considering the maximum of each line. This yields the function in the last
column of Table 2.1. The optimal policy can also be obtained from Q∗. For
example, in state 1, the two actions yielding maximum reward are N and E.
Suppose that the robot chooses action N and moves to state 2. Again in this
state, actions N and E are both optimal. If, once again, the robot chooses
action N and moves to state 3 then, in state 3, the robot will choose action E
and the same will occur in state 6. We further illustrate the optimal policy in
the diagram of Figure 2.12. The arrows leaving a particular state correspond
to the directions of the optimal actions in that state. For clarity, we have
omitted the optimal actions in the goal state.

�

2.5 Concluding remarks

To conclude this chapter, we summarize the main concepts presented herein. We
briefly discuss the main ideas so far and point out the direction of the presentation
in the following chapters.

34 2. Topological Navigation and Markov Processes

1

2

3

4

5

6

7

8

9

Figure 2.12: Optimal policy for the MDP in the previous example. Notice
that, in this representation, all trajectories obtained by following the arrows

lead to the goal state in a minimum number of steps, as expected.

2.5.1 Summary

The main purpose of this chapter was to introduce MDPs as a suitable framework
for topological navigation. It is an introductory chapter, aiming at establishing the
notation to be used in the forthcoming chapters and to motivate the use of MDPs to
address the problem of navigating a single mobile robot in an environment described
by a topological map.

We started by reviewing several bibliographical references in the topic of au-
tonomous mobile robot navigation, enumerating the main different approaches to
the problem. We defined navigation as the process of maintaining a robot’s course
to a goal location and divided this process into three important steps: defining a
map, localizing the robot in that map and driving the robot towards the goal.

Starting by the mapping problem, we classified maps into three main categories:
metric, topological and hybrid. We opted for a topological representation, valuing
its scalability and high level of abstraction.

We used discrete event systems to model the movement of the robot in a topo-
logical map. In particular, we argued that Markov chains provide a suitable prob-
abilistic framework to the problem of localization, taking into account uncertainty
in the movement of the robot. Markov chains are stochastic processes in which the
state at each time instant depends solely on the immediately past state.

A Markov chain is completely described by a set of transition probabilities that
indicate the probability of moving between any two states in the environment. By
allowing these transition probabilities to depend on a discrete parameter controlled
by the agent—the action—we have a controlled Markov chain. With this set of
actions controlling the transitions between the states of the Markov chain, the robot
is now able to control its trajectory up to some degree of inherent uncertainty in the
transitions.

The introduction of an additional reward-assigning mechanism completes the
definition of a Markov decision process. The reward-assigning mechanism is used to
define an optimality criterion for the robot to meet. In a sense, the rewards “encode”
the mission of the robot.

Finally, we concluded the chapter by presenting a simple dynamic programming
algorithm to compute the optimal control for the robot.

2.5. Concluding remarks 35

2.5.2 Discussion

MDPs arise in a multitude of contexts essentially related to reinforcement learning.
Reinforcement learning differs from other learning paradigms in that the correct ac-
tion is not provided to the robot, as in supervised learning, nor is the robot required
to learn without any feedback on its performance, as in unsupervised learning. In-
stead, a reinforcement signal is provided, in the form of rewards. These rewards
indirectly indicate which should be the proper choice of actions.

The VI method described in this chapter is a dynamic programming (DP) al-
gorithm. It can be computed off-line and only the optimal policy needs to be im-
plemented in the robot. As such, no apparent learning takes place in the process,
for which it would seem strange to classify such approach as reinforcement learning.
However, the fact is that any such problem where the robot assesses the validity of
its choice of actions upon a received reinforcement is classified as a reinforcement
learning problem. In this particular case, learning takes place off-line rather than as
a consequence of interaction with the environment. In the next chapter we describe
other methods that lead to the solution of the MDP (either of V ∗, Q∗ or δ∗) from
direct interaction with the environment. This may be required if, for example, the
robot has no explicit knowledge of the reward function.

The use of MDPs for mobile robot navigation clearly requires some other mech-
anism to interface with the lower level control. In fact, it is necessary to translate at
some lower-level stage the information from the sensors into topological information
for the robot and the high-level action commands into control signals for the robot’s
actuators (such as motors).

The problem of the interface between the abstract topological level and the low
level sensor raw data and actuator control is approached using different perspectives
in the topological navigation works cited in Section 2.1. It is an interesting topic
of research since, as seen, discrete state approaches such as the one described in
this chapter allow the treatment of the navigation problem at a higher level of
abstraction, approaching the human process of navigation. We do not address such
topic in this thesis, but several references can be found along Sections 2.1 and 2.2.

Two final remarks should be made. First of all, in this chapter we have motivated
the use of the MDP framework in mobile robot navigation. In this framework, the
robot must determine a map between states, corresponding to the positions of the
robot, and actions. In practical situations, the robot will estimate its position (the
state) from noisy sensor measurements and there will be unavoidable uncertainty in
this estimation. We postpone the discussion of this issue to Chapter 3, where we
explicitly address the problem of partial observability.

Secondly, the framework of Markov decision processes is suited for a wide range
of different applications, from power systems control [73] to e-mail applications [329].
We adopt in the next chapters the more common computer science nomenclature
and refer to the robot as an agent.

36

Chapter 3

Reinforcement Learning in
Finite State-Spaces

3.1 Reinforcement learning . 38

3.2 Learning and fixed-point computations 39

3.3 Model-based learning . 41

3.3.1 Determining V δ . 42

3.3.2 Determining Q∗ . 43

3.3.3 Convergence of model-based learning 45

3.4 Model-free learning . 46

3.4.1 Determining V δ . 47

3.4.2 Determining Q∗ . 48

3.4.3 Convergence of model-free learning 50

3.5 An illustrative example . 51

3.6 Concluding remarks . 53

3.6.1 Summary . 53

3.6.2 Discussion . 54

In this chapter, we review several reinforcement learning algorithms for finite-

state MDPs. Unlike the VI method in Chapter 2, the methods in this chapter

do not assume any explicit knowledge of the MDP model and rely solely on the

interaction of the agent with its environment.

Specifically, given a policy δ, we feature the functions V δ, V ∗ andQ∗ described

in the previous chapter as fixed-points of corresponding operators and study how

these functions can be determined by direct interaction with the environment. To

this purpose, we review several methods from the literature that build a model for

the underlying Markov process (model-based methods) and then use that model

to determine the desired functions; we also review other methods that directly

determine the desired functions without the need to estimate a model of the MDP

38 3. Reinforcement Learning in Finite State-Spaces

(model-free methods). We identify the conditions under which all these methods

converge and apply them to a simple navigation example.

3.1 Reinforcement learning

Reinforcement learning is a topic of research that addresses the problem of an agent
required to sequentially choose an action from a set of possible actions in order to
meet some optimality criterion. In the problems addressed in the thesis, the agent
is a mobile robot and the optimality criterion is met as long as the robot optimally
accomplishes some navigation task. In the model of Markov processes introduced
in the previous chapter, we saw that different actions may contribute differently to
the accomplishment of the final mission, depending on the state (position) of the
robot. Different actions also influence in different ways the temporal evolution of
such state.

The methods designed to address reinforcement learning problems—commonly
dubbed as reinforcement learning methods—essentially compute a mapping from
the set of all possible states of the system to the set of all possible actions of the
agent, defining which action should be taken in each individual state. As seen in
the previous chapter, such mapping is called a policy and it is customary to define a
utility-function, or value-function, estimating the practical utility of each particular
policy.

Reinforcement learning methods can be divided into two main categories. The
first category comprises the so-called policy-search methods (or actor-only meth-
ods). These algorithms maintain explicit representations of policies and update
such representations using different search strategies. Examples include policy iter-
ation [27, 295], simulated annealing [285], evolutionary algorithms [205] and others
[179, 288].

The second category relies on the computation of value-functions and we refer
to such methods as value-based methods (or critic-only methods). These methods
estimate these utility functions and use them to determine the optimal policy. Exam-
ples include gradient-based search [10, 12], dynamic programming [265] or stochastic
approximation. As claimed in [134], this second class of methods uses the special
structure of reinforcement learning problems as constraints which decrease variance
of the estimates.1

It is not clear if any of the two classes of methods is preferable to the other
and one idea is to devise some combined approach that takes advantage of the
appealing properties of both. Recent years have witnessed an increasing interest in
the so-called actor-critic methods [10, 145, 239, 296]. In this thesis, we focus on
value-based algorithms.

* * *
1Simple policy-search methods which (often) disregard the inherent structure of Markov pro-

cesses usually present high-variance estimates. There are, however, some policy-search methods
which specifically account for this variance, and produce low-variance estimates. See, for example,
[2, 3].

3.2. Learning and fixed-point computations 39

The VI algorithm described in the previous chapter is a value-based method that
computes the optimal Q-function using a dynamic programming approach. Dynamic
programming algorithms like VI are computationally efficient but usually require a
complete model of the Markov process [100, 170, 228].

There are other known value-based reinforcement learning methods that require
little a priori knowledge on the Markov process. Furthermore, they exhibit a per-
formance no worse than that obtained using dynamic programming [16]. Examples
include both prediction methods (e.g., temporal difference learning [289]) and control
methods (e.g., SARSA [263, 289] and Q-learning [332, 333]). The book by Sutton
and Barto [295] provides a comprehensive introduction to reinforcement learning.

Such methods have been exhaustively covered in the literature [27, 295] and,
under mild assumptions, have been proven to converge to the desired value-function
[27, 108, 131, 280]. These proofs have enormously benefitted from the developments
on the convergence theory of stochastic approximation algorithms. Central refer-
ences on the topic are the books by Benveniste et al. [21] and Kushner and Yin
[153].

Several reinforcement learning algorithms have been proposed in the literature
to address MDPs with different optimality criteria from the one proposed in the
previous chapter. For example, instead of the total discounted reward, the decision-
maker could aim at maximizing the average per step reward, as in [4, 178, 322].
However, the total discounted reward criterion has been widely studied and it is
possible to find it in numerous applications [16, 76, 107, 108]. Furthermore, in many
situations, the two aforementioned criteria are equivalent [322].2 In this thesis, we
therefore restrict to the more standard total discounted reward criterion introduced
in Chapter 2.

3.2 Learning and fixed-point computations

In the previous chapter, we have introduced MDPs as a framework to address single-
agent navigation problems. We described an MDP as a tuple (X,A,P, r, γ), where
X is the (finite) state-space, A is the action-space, P represents the transition proba-
bilities for the underlying controlled Markov chain and r is the reward function. The
parameter γ is a discount factor assigning more importance to immediate decisions
than to those further into the future.

As in Chapter 2, in this chapter we only address problems with finite state-
spaces. We also consider that the agent is able to unambiguously perceive its state,
i.e., it has perfect state perception. Only in the next chapter, as we introduce meth-
ods that can handle MDPs with infinite state-spaces, will we be endowed with the
tools to alleviate this assumption of perfect perception. Therefore, we postpone the
discussion of situations where the agent perceives its state with a certain degree of
uncertainty to Chapter 4.

In this chapter, we present several reinforcement learning methods used to de-
termine the optimal value-function for an MDP by direct interaction with the envi-
ronment.

2Equivalence here means that both criteria yield the same optimal policy.

40 3. Reinforcement Learning in Finite State-Spaces

* * *

Recall from the previous chapter that the VI method could be used to generate
a sequence {Qt} of estimates for the optimal Q-values. The VI iteration

Qk+1(i, a) =
∑
j∈X

Pa(i, j)
[
r(i, a, j) + γmax

b∈A
Qk(j, b)

]
(3.1)

determines the fixed point Q∗ of the operator H defined as

(Hq)(i, a) =
∑
j∈X

Pa(i, j)
[
r(i, a, j) + γmax

b∈A
q(j, b)

]
(3.2)

for any mapping q : X × A −→ R. Given a policy δ, the corresponding value
function V δ also verifies the recursive relation

V δ(i) =
∑
j∈X

∑
a∈A

δ(i, a)Pa(i, j)
[
r(i, a, j) + γV δ(j)

]
and is therefore the fixed point of the operator Tδ defined as

(Tδv)(i) =
∑
j∈X

∑
a∈A

δ(i, a)Pa(i, j)
[
r(i, a, j) + γv(j)

]
. (3.3)

for any mapping v : X −→ R. Finally, the optimal value function V ∗ also verifies
the recursive relation

V ∗(i) = max
a∈A

∑
j∈X

Pa(i, j)
[
r(i, a, j) + γV ∗(j)

]
and is therefore the fixed point of an operator T defined for any mapping v : X −→ R

as
(Tv)(i) = max

a∈A

∑
j∈X

Pa(i, j)
[
r(i, a, j) + γv(j)

]
. (3.4)

Using fixed-point iterations such as the one in (3.1), it is possible to determine
(off-line) each of the three-functions V δ, V ∗ and Q∗. Such DP methods are exten-
sively covered in the literature [27, 295]. They are fast and reliable and can be used
to determine any of the three functions V δ, V ∗ and Q∗, for any policy δ. This is
because each of the three functions V δ, V ∗ and Q∗ can be represented in a table of
real entries.3 Therefore, at each iteration it is possible to individually update the
value of V δ, V ∗ and Q∗ at each state i ∈ X or pair (i, a) ∈ X ×A.

However, in order to iterate the operators H, T or Tδ we need to have exact
knowledge of the transition probabilities P as well as of the reward function r. Such
information may not always be available and it would be of interest to devise a
method to determine V δ, V ∗ and/or Q∗ without explicit knowledge of P and r.

3V ∗ and V δ can be represented using a |X | × 1 table containing the value of each state i ∈ X
w.r.t. the policies δ∗ and δ, respectively; Q∗ can be represented using a |X | × |A| table containing
the optimal Q-values.

3.3. Model-based learning 41

Instead, we would like the agent (robot) to learn these functions—V δ, V ∗ and Q∗—
from direct interaction with the environment.

The importance of learning how to act from direct interaction with the envi-
ronment will be particularly evident in Part II, where multiple robots move in a
common environment and must learn a coordinated behavior by interacting with
the environment and with each other. We also remark that, in several situations
considered in the forthcoming chapters, we admit the agent (robot) to have a model
of its movement, i.e., it knows P. It does not, however, know its mission beforehand,
i.e., it does not explicitly know the reward function r.

In the remainder of the chapter we describe two possible approaches to learn the
referred functions by direct interaction with the environment:

• Model-based (Section 3.3): We use a sample path of the MDP (X,A,P, r, γ) to
estimate the transition probabilities P and the rewards r. We then use these
estimates to determine Q∗, V ∗ and/or V δ by performing fixed-point iterations
as described previously;

• Model-free (Section 3.4): We use a sample path of the MDP and apply stochas-
tic approximation to determine Q∗, V ∗ and/or V δ.

Notice an important difference between DP methods like VI and the model-based
and model-free methods to be described. The former encompass iterative algorithms
that can be run off-line, while the latter rely on sample paths obtained by interaction
with the process and are thus naturally on-line.

3.3 Model-based learning

In this section, we address model-based learning.4 In model-based learning, the agent
builds a model of its environment by direct interaction with it. It then uses this
learnt model to determine the functions Q∗, V ∗ and V δ.

Since V ∗ can be determined immediately from Q∗ as

V ∗(i) = max
a∈A

Q∗(i, a),

we focus on methods to determine V δ and Q∗.
The two algorithms presented in this section, ARTVI and ARTQI, are based in

a common working principle: using experience gathered from direct interaction with
the environment, the agent builds statistical estimates P̂ and r̂ of the model param-
eters P and r. These estimated parameters are then used to perform asynchronous
DP updates leading to the functions of interest, V δ and Q∗. As already mentioned,
both these methods are on-line methods (they run as the agent interacts with the
environment).

This technique is known as adaptive real time dynamic programming (ARTDP),
and was first introduced in [17, 47]. Convergence of this method and several possible
variations thereof was established in [113]. The working principle in ARTDP is also

4Model-based learning methods are also known as indirect methods.

42 3. Reinforcement Learning in Finite State-Spaces

similar to the one behind the DYNA architecture [291, 292, 293, 294], the DYNA-Q
architecture [236] and the prioritized sweeping algorithm [203, 204].

3.3.1 Determining V δ

Let (X,A,P, r, γ) be an MDP modeling a sequential decision problem and suppose
that the decision-maker follows a fixed policy δ. We wish to evaluate the value-
function V δ from direct interaction with the environment.

We first notice that, when using a fixed policy δ, it is possible to consider a
non-controlled Markov chain (X ,Pδ), where the transition probabilities Pδ are given
by

Pδ(i, j) =
∑
a∈A

δ(i, a)Pa(i, j).

Since the agent follows the policy δ, its transitions are governed by the transition
probabilities Pδ thus defined.

Suppose then that {it} and {rt} are infinite sample sequences of states and
rewards experienced by the agent when following policy δ. Denoting by nt(i, j) the
number of transitions from state i to state j experienced up to time t, the quantity

P̂t(i, j) =
nt(i, j)∑
k∈X nt(i, k)

(3.5)

is an unbiased estimator of the transition probabilities Pδ(i, j) obtained from the
sample trajectory {it}. It estimates the probability of moving to j when starting in
i by determining the percentage of times that this transition occurred on the total
number of visits to state i.

Incrementally, this estimator can be computed as follows. Let nt(i) denote the
number of visits to state i in the finite sequence {i0, . . . , it}. Then, for each t ∈ T ,
P̂t can be updated as

P̂t+1(i, j) = P̂t(i, j) +
Ii(it)
nt+1(i)

(
Ij(it+1)− P̂t(i, j)

)
, (3.6)

where Ix(·) is the indicator function for x, given by

Ix(z) =

{
1 if z = x;
0 otherwise.

Therefore, every time instant that the agent visits state i and moves to state j,
it increases the estimated transition probability P̂(i, j), as indicated in (3.6), and
decreases all other estimates P̂(i, j′) for j′ 6= j. For i′ 6= i, all the estimated prob-
abilities P̂(i′, ·) remain unchanged. If all states are visited infinitely often (which
occurs, for example, if the chain (X ,Pδ) is ergodic), the sequence {P̂t} will converge
to Pδ w.p.1.

A similar procedure can be used to estimate the function r. In this case, given

3.3. Model-based learning 43

the sample sequences of states and rewards, {it} and {rt}, the iteration

r̂t+1(i, j) = r̂t(i, j) +
I(i,j)(it, it+1)

nt+1(i, j)

(
rt − r̂t(i, j)

)
(3.7)

generates a sequence {r̂t} converging w.p.1 to the function rδ given by

rδ(i, j) = Eδ [Rt | Xt = i,Xt+1=j] =

∑
a∈A δ(i, a)Pa(i, j)∑
b∈A δ(i, b)Pb(i, j)

r(i, a, j),

where, once again, I denotes the indicator function.
Finally, computing at each time instant

Vt+1(it) =
∑
j∈X

P̂t(it, j)
(
r̂t(it, j) + γVt(j)

)
, (3.8)

we obtain a sequence {Vt} converging to V δ w.p.1. This iterative procedure is
referred as adaptive real time value iteration (ARTVI) and its convergence is formally
established in Subsection 3.3.3.

3.3.2 Determining Q∗

Applying ARTDP to the determination of Q∗ involves additional complications that
do not arise in the determination of V δ. In particular, it is necessary to explore the
state-action-space in order to ensure that no optimal actions are left unexplored,
since this could eventually lead to the determination of a sub-optimal Q-function.

Let δ be a stochastic policy verifying δ(i, a) > 0 for all (i, a) ∈ X × A. To
estimate P we modify (3.6) to

P̂t+1(i, a, j) = P̂t(i, a, j) +
I(i,a)(it, at)

nt+1(i, a)

(
Ij(it+1)− P̂t(i, a, j)

)
, (3.9)

where nt(i, a) denotes the number of occurrences of the pair (i, a) in the history up
to time t, given by Ht = {i0, a0, i1, . . . , at−1, it}. To estimate r, we modify (3.7) to

r̂t+1(i, a, j) = r̂t(i, a, j) +
I(i,a,j)(it, at, it+1)

nt+1(i, a, j)

(
rt − r̂t(i, a, j)

)
, (3.10)

where now nt(i, a, j) denotes the number of occurrences of the transition triplet
(i, a, j) in the history Ht.

Under suitable conditions yet to be specified, the estimates {P̂t} converge to P
w.p.1, and the estimates {r̂t} converge to r.5

To compute Q∗, we apply the fixed point iteration in (3.1) using P̂t and r̂t instead

5Notice that since r(i, a, j) is a deterministic function of (i, a, j), the sequence {r̂t} converges
to r point-wise. This is a stronger statement than w.p.1 convergence: for all ω ∈ Ω, r̂t(ω)→ r(ω).

44 3. Reinforcement Learning in Finite State-Spaces

of P and r, i.e.,

Qt+1(it, at) =
∑
j∈X

P̂t(it, at, j)
(
r̂t(it, at, j) + γmax

b∈A
Qt(j, b)

)
. (3.11)

The sequence obtained using this expression, {Qt}, converges to the desired Q∗

w.p.1. This iterative procedure is referred as adaptive real time Q-iteration (ARTQI)
and its convergence is formally established in Subsection 3.3.3.

* * *

We now discuss how the choice of actions of a decision-maker in an MDP changes
as it learns the optimal Q-function. We henceforth refer to the policy used to
explore the environment as the learning policy. The policy whose value-function or
Q-function is learnt is referred to as the learnt policy.

In the following definition, we present the idea of convergence in behavior from
[166].

Convergence in Behavior

A learning agent is said to converge in behavior if its learning policy converges
to a stationary policy as t→∞.

In describing ARTQI we required that δ(i, a) > 0 for all pairs (i, a) ∈ X × A.
The formal justification for this is provided in Theorem 3.3.2. For the moment,
we just take such requirement as necessary and discuss the existence of policies
that actually verify it. There are numerous policies ensuring this condition. As
an example, consider the uniform policy: δ(i, a) = 1

|A| , for all (i, a) ∈ X × A. This
uniform policy does ensure the condition above. However, it does not guarantee that
the agent converges in behavior to the optimal policy δ∗. In other words, the uniform
policy does not guarantee that, as t → ∞, the agent’s choice of actions converges
to optimality (even though its learning policy is stationary from the start).

On the other hand, the agent could simply use the greedy policy w.r.t. Qt. This
is the deterministic policy given by

δQtg (i, a) =

1 if a = arg max
b∈A

Qt(i, b);

0 otherwise,

for each (i, a) ∈ X × A. Notice that this policy depends on the current estimate
of Q∗. If Qt → Q∗, then δQtg → δ∗ and the agent will converge in behavior to the
optimal policy. The problem with this policy is that it does not satisfy δ(i, a) > 0.
This, as argued before, may lead to insufficient exploration of the state-action-space
X ×A and, therefore, does not guarantee that Qt → Q∗.

3.3. Model-based learning 45

To deal with such problem, Singh et al. [280] proposed the use of policies that
have the GLIE property (greedy in the limit with infinite exploration). Given a
function Q : X ×A −→ R, denote by δQg the greedy policy w.r.t. Q.

GLIE Policy

Given an MDP (X,A,P, r, γ) and a functionQ : X×A −→ R, a (non-stationary)
policy δt is greedy in the limit with infinite exploration w.r.t. Q if δt(i, a) > 0 for
all t ∈ T , (i, a) ∈ X ×A and δt → δQg as t→∞.

An example of a GLIE policy is Boltzmann exploration

δt(i, a) =
eQt(i,a)/τt(i)∑
b∈A e

Qt(i,b)/τt(i)
,

where the parameter τt(i) is known as temperature parameter. It is a state-dependent
parameter converging to zero as t→∞, thus ensuring that δt(i, a) > 0 for all (i, a)
and that δt → δ∗ as t→∞ (as long as Qt → Q∗).

More details on GLIE policies can be found in [280].

3.3.3 Convergence of model-based learning

Insofar, we have introduced two model-based learning methods to determine V δ and
Q∗ (ARTVI and ARTQI). Both methods estimate the underlying MDP model as
a tuple (X ,A, P̂, r̂, γ) and use this estimated model to perform DP updates on the
estimates for V δ and Q∗.

We have claimed (rather informally) that both methods converge to the desired
functions, but have not yet established this fact or described the exact conditions
that ensure this convergence. The following statements formalize this claim.

Theorem 3.3.1. Given a finite-state MDP (X,A,P, r, γ) and a stationary policy δ,
the sequence of estimates {Vt} generated by ARTVI according to (3.8) converges to
V δ w.p.1 for any initial estimate V0, as long as every state i ∈ X is visited infinitely
often.

Proof See Appendix F.1. 2

The condition of infinite visits to every state can be reformulated by requiring
the chain (X ,Pδ) to be irreducible (see Appendix B.10). We will see that this
irreducibility assumption will also implicitly arise in the convergence algorithms of
Chapter 4.

As for ARTQI, we restate Theorem 3.3.1 as follows.

46 3. Reinforcement Learning in Finite State-Spaces

Theorem 3.3.2. Given a finite-state MDP (X,A,P, r, γ), the sequence of estimates
{Qt} generated by ARTQI according to (3.11) converges to Q∗ w.p.1 for any initial
estimate Q0, as long as every state-action pair (i, a) ∈ X × A is visited infinitely
often. Furthermore, if ARTQI uses a GLIE policy δt, the agent will converge to δ∗
in behavior.

Proof See Appendix F.1. 2

We conclude this section with the following remark. Reinforcement learning
algorithms can be described according to many different criteria. Some common
classifications include on-line or off-line, model-based or model-free (or, which is the
same, direct or indirect), synchronous or asynchronous, tabular or non-tabular, on-
policy or off-policy and other. The two algorithms described in this section (ARTVI
and ARTQI) are:

• on-line, since learning takes place at run-time (i.e., as the agent interacts with
the environment);

• model-based or indirect, since the functions of interest (V δ and Q∗) are not
computed directly; instead, the algorithms build an explicit model of the MDP
(namely of P and r) that is used to determine the desired functions;

• asynchronous, since not all components of Vt and Qt are updated at each time
step;

• tabular, since the algorithm is designed to handle tabular representations of
V δ and Q∗.

However, the two algorithms differ in the relation between the policy used to interact
with the environment (the learning policy) and the value function learnt: ARTVI
is an on-policy method, while ARTQI is an off-policy algorithm. This designation
broadly means the following: in ARTVI the agent is learning the value for the policy
it is executing ; in ARTQI the agent is learning the value of policy δ∗ while executing
a different policy. In other words, in on-policy methods, the learning policy and the
learnt policy coincide; this does not hold in off-policy methods.

3.4 Model-free learning

We now consider algorithms that directly estimate the functions V δ and Q∗ from
the interaction with the environment, without recurring to any model (learnt or
not). Recall that in the model-based methods in the previous section, the agent
used the experience collected by interacting with its environment to estimate the
model parameters P̂ and r̂. These were in turn used to estimate either V δ or Q∗.

In the model-free algorithms presented herein, the agent uses its experience to
directly estimate V δ and Q∗. It does so by considering stochastic variants of the

3.4. Model-free learning 47

following, already familiar fixed-point iterations

Vk+1(i) =
∑
j∈X

∑
a∈A

δ(i, a)Pa(i, j)
[
r(i, a, j) + γVk(j)

]
(3.12)

and
Qk+1(i, a) =

∑
j∈X

Pa(i, j)
[
r(i, a, j) + γmax

b∈A
Qk(j, b)

]
. (3.13)

The stochastic versions of (3.12) and (3.13) that we introduce next go under
the common name of temporal-differencing methods, for reasons soon to become
apparent. They have been exhaustively studied in the literature, some central
references being [26, 27, 289]. In particular, the temporal differencing algorithm
method used in the determination of Q∗ is known as Q-learning. This algorithm
was first introduced by Watkins in his PhD thesis [333]. From the first appearance
of Q-learning in 1989, this algorithm has been one of the most studied reinforce-
ment learning algorithms, leading to extensive literature and numerous variants
(e.g., [5, 34, 65, 68, 131, 235, 263, 280, 300, 332, 333]).

3.4.1 Determining V δ

One can look at stochastic approximation methods as algorithmic solutions to ad-
dress the problem of determining the zero of a real-valued function h when the
function is not known but noise-corrupted samples of h are available at any desired
point. The algorithm takes the basic form

θt+1 = θt + αtH(θt, Xt), (3.14)

where θt is the current estimate of the zero, {αt} is a sequence of positive step-sizes
and H(θt, Xt) is a noisy sample of h(θt) that depends on the r.v.s Xt. In particular,
considering {Xt} to be some ergodic stochastic process,

h(θ) = E [H(θ,Xt)] ,

where the expectation is taken with respect to the stationary distribution of the
process {Xt} (see Appendix D for a general overview of stochastic approximation
algorithms).

Suppose now that we want to determine the fixed-point θ∗ of an unknown func-
tion h̄, i.e., the point θ∗ verifying

h̄(θ∗) = θ∗

or, equivalently,
h̄(θ∗)− θ∗ = 0.

If we define the function h(θ) = h̄(θ) − θ, determining the fixed-point of h̄ reduces
to determining the zero of h. Applying (3.14), we get

θt+1 = θt + αtH(θt, Xt)

48 3. Reinforcement Learning in Finite State-Spaces

or, equivalently,
θt+1 = θt + αt

(
H̄(θt, Xt)− θt

)
. (3.15)

If θ is a vector in RM , the update in (3.15) can be performed component-wise as

θt+1(i) = θt(i) + αt
(
H̄(θt, Xt)i − θt(i)

)
, (3.16)

where we denoted by H̄(θ,X)i the ith component of H(θ,X).
The function V δ is the fixed point of operator Tδ, given by

(Tδv)(i) =
∑
j∈A

∑
a∈A

δ(i, a)Pa(i, j)
(
r(i, a, j) + γv(j)

)
.

It is possible to rewrite Tδ as

(Tδv)(i) = Eδ [r(i, a, j) + γv(j)] .

If we replace θt by Vt in (3.16) and H̄ by a sampled version of Tδ, we obtain

Vt+1(it) = Vt(it) + αt(it)
(
rt + γVt(it+1)− Vt(it)

)
. (3.17)

The quantities
∆t = rt + γVt(it+1)− Vt(it),

appearing in the right-hand side of (3.17), are known as temporal differences (TD)
and measure a 1-step estimation error, i.e., the difference between the current esti-
mate (given by Vt) and a 1-step-ahead estimate (given by rt + γVt(it+1)). Learning
methods that rely on this estimation error to perform updates are known as temporal
differencing methods. In particular, (3.17) is known as TD(0).6

Similarly to the methods in Section 3.3, (3.17) updates the estimate Vt one
single state at a time. However, if all states are visited infinitely often and the step-
size sequence {αt} verifies some convergence rate conditions, the sequence {Vt} will
converge to V δ w.p.1. Notice furthermore that, in (3.17), we allowed the step-sizes
to depend on the current state it, whose component Vt(it) is to be updated. In fact,
at each time step t, only the component Vt(it) is updated i.e., the updates of the
several components of Vt are done asynchronously. Therefore, allowing the step-sizes
αt to depend on the state to be updated is a simple way of generalizing (3.16) to
cope with the asynchronous update schedule.

3.4.2 Determining Q∗

It is straightforward to replicate the process leading to (3.17) to obtain an algorithm
to compute Q∗. Q∗ is the fixed point of the operator H defined in Section 3.2. This

6The designation TD(0) arises from the fact that this method relies only on the temporal
difference ∆t to perform the updates at each time-step t. It is possible, however, to use in each
iteration the past temporal differences ∆t−1,∆t−2, . . . weighted by a “temporal discount factor” λ,
with 0 ≤ λ ≤ 1. For a general λ the corresponding method is called TD(λ). TD(0) corresponds to
the case λ = 0.

3.4. Model-free learning 49

operator can be written, for each (i, a) ∈ X ×A, as

(Hq)(i, a) = Eδ

[
r(i, a, j) + γmax

b∈A
q(j, b)

]
,

which leads to the iteration

Qt+1(it, at) = Qt(it, at) + αt(it, at)
(
rt + γmax

b∈A
Qt(it+1, b)−Qt(it, at)

)
. (3.18)

The algorithm in (3.18) is known as Q-learning. It is one of the most widely
studied reinforcement learning methods and has led to a vast literature, as seen
in the beginning of this section. Like TD(0), it is a temporal-differencing method,
using the temporal differences

∆t = rt + γmax
b∈A

Qt(it+1, b)−Qt(it, at)

to perform the update on the estimate Qt. It is also asynchronous, updating one
component of Qt at each iteration. As long as every component (each state-action
pair (i, a) ∈ X ×A) is updated infinitely often, Q-learning will converge to Q∗ w.p.1.

It should be clear that, while TD(0) is an on-policy method, Q-learning is an off-
policy method. The learning policy used to sample the state-action-space only needs
to ensure that all state-action pairs are visited infinitely often, but can otherwise be
arbitrary: the agent will learn the function Q∗ independently of the learning policy
used.

There is an on-policy variant of Q-learning, introduced by Rummery and Niran-
jan [263] and further explored by Sutton [289], known as SARSA. SARSA stands for
state-action-reward-state-action, since the method uses a sample 5-tuple

(it, at, rt, it+1, at+1)

to perform the update

Qt+1(it, at) = Qt(it, at) + αt(it, at)
(
rt + γQt(it+1, at+1)−Qt(it, at)

)
. (3.19)

at each time instant. Notice that in (3.19) the temporal-difference ∆t is taken along
the policy δ by using rt + γQt(it+1, at+1) instead of rt + γmaxb∈AQt(it+1, b) as the
1-step-ahead estimate. Clearly, SARSA will converge to the Q-values of the policy
δ. However, Singh et al. [280] have shown that, by using a GLIE learning policy
in SARSA, the algorithm converges to the optimal Q-values as long as every state-
action pair is visited infinitely often. Although referring to [280] for a more detailed
discussion on GLIE policies, a possible and simple way of ensuring a given policy to
be GLIE is to set

∣∣δt(i, a)− δQtg (i)
∣∣ ∈ O(αt(i, a)).7

7We adopted the symbol O in the standard asymptotic notation. Recall that for two positive
functions f, g, we say that f(t) ∈ O(g(t)) iff

lim sup
t→∞

∣∣∣∣f(t)
g(t)

∣∣∣∣ <∞.

50 3. Reinforcement Learning in Finite State-Spaces

To conclude this section, we provide the formal results establishing the conver-
gence of the three model-free methods presented: TD(0), Q-learning and SARSA.
These are standard convergence results from the RL literature.

3.4.3 Convergence of model-free learning

We now formalize the claims presented along this section on the convergence of
TD(0), Q-learning and SARSA. The three results presented assess the convergence
of the three described methods. The proofs can be found in Appendix F and follow
the proofs in several well-known works from the literature [27, 131, 280].

Theorem 3.4.1. Given a finite-state MDP (X,A,P, r, γ) and stationary policy δ,
the sequence of estimates {Vt} generated by TD(0) converges to V δ w.p.1 for any
initial estimate V0, as long as∑

t∈T

αt(i) =∞;
∑
t∈T

α2
t (i) <∞,

and αt(i) = 0 if i 6= it.

Proof See Appendix F.1. 2

The convergence theorem for Q-learning is very similar.

Theorem 3.4.2. Given a finite-state MDP (X,A,P, r, γ), the sequence of estimates
{Qt} generated by Q-learning converges to Q∗ w.p.1, as long as∑

t∈T

αt(i, a) =∞;
∑
t∈T

α2
t (i, a) <∞,

and αt(i, a) = 0 if (i, a) 6= (it, at). Furthermore, if Q-learning uses a learning policy
δt with the GLIE property, the agent will converge in behavior to δ∗ w.p.1.

Proof See Appendix F.1. 2

The convergence result for SARSA requires that a GLIE policy be used for {Qt}
to converge to Q∗. This comes as no surprise, since SARSA is an on-policy method,
as seen in the previous subsection.

3.5. An illustrative example 51

Room 9

Room 1 Room 4 Room 7

Room 2 Room 5 Room 8

Room 3 Room 6

Goal
Room

Figure 3.1: Example of an indoor environment.

Theorem 3.4.3. Consider a finite-state MDP (X,A,P, r, γ) and let δt be a fixed
learning policy with the GLIE property w.r.t. the current estimate Qt. Then the
sequence of estimates {Qt} generated by SARSA converges to Q∗ w.p.1 for any initial
estimate Q0, as long as∑

t∈T

αt(i, a) =∞;
∑
t∈T

α2
t (i, a) <∞,

and αt(i, a) = 0 if (i, a) 6= (it, at). Furthermore, the agent will converge in behavior
to δ∗ w.p.1.

Proof See Appendix F.1. 2

3.5 An illustrative example

Consider the already familiar indoor environment depicted in Figure 3.1. The nav-
igation problem can be described by an MDP (X,A,P, r, γ), where

• X = {1, . . . , 9};
• A = {N,S,E,W};
• Each action a ∈ A moves the robot in the corresponding direction. With

a probability of 0.8 this movement ends up in the adjacent state (in that
direction); with a probability of 0.1 the movement ends up two states ahead
(once again, in the corresponding direction); finally, with a 0.1 probability, it
remains in the same state;

• The reward function r assigns a reward of +10 for every transition triplet
(i, a, j) such that j = 9 and 0 otherwise;

• We consider γ = 0.95.

52 3. Reinforcement Learning in Finite State-Spaces

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Time units

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

ARTQI
QL
SARSA

0 100 200 300 400 500 600 700 800 900 1000

0

0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

ARTQI
QL
SARSA

Figure 3.2: Cumulative reward and greedy choice probability during the 1, 000-time-units
learning period.

We now assume that, whenever the robot reaches the goal state, its position is
randomly reset to any of the other 8 states, independently of the robot’s action.

We applied ARTQI, Q-learning and SARSA to this MDP. The robot was al-
lowed to explore the environment/learn during 1, 000 time units and the obtained
policy was then evaluated for 100 time units. During learning we used Boltzmann
exploration in all three experiments.

Figure 3.2 represents the total undiscounted reward obtained by the agent during
learning, as well as the evolution of the probability of choosing the greedy action.
The solid blue line represents the ARTQI learner, the dashed red line represents the
Q-learner and the dash-dotted green line represents the SARSA learner. Notice that
all three learning algorithms present a similar learning behavior. SARSA is slightly
slower, due to its on-policy updates, but the difference is not significant. Notice that
all methods eventually become greedy, i.e., the probability of choosing the greedy
action goes to 1.

We also tested each of the learnt policies in the environment. We ran each of
the three learnt policies for 100 time units and determined the total discounted
reward obtained in each case. Table 3.1 represents the results obtained. We run
2, 000 independent Monte-Carlo trials and present the average and standard devia-
tion obtained using each of the methods. Notice that the three methods present a
similar performance, as expected, since all three methods converge to the optimal
Q-function.

For the sake of comparison, we also present the value obtained with the optimal
policy, in the line labeled “VI”. Clearly, the performance of all three methods levels
that of VI, which means that all methods learnt the optimal policy.

We conclude this section by presenting in Figure 3.3 the policy learnt by each
of the three methods. Notice that each of the three policy graphs can be obtained

3.6. Concluding remarks 53

Table 3.1: Comparative results for ARTQI, Q-learning and SARSA after the learning
period is complete. We present the average total discounted reward and standard deviation

obtained over 2, 000 independent Monte-Carlo trials.

Method Total Disc. Reward

ARTQI 50.336 ± 5.163
Q-learning 50.373 ± 5.051

SARSA 50.382 ± 5.169

VI 50.515 ± 5.050

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

ARTQI Q-learning SARSA

Figure 3.3: Policy graphs for the 3 learnt policies.

from the one in Figure 2.12, as expected.

3.6 Concluding remarks

To conclude this chapter, we summarize the main ideas presented so far and provide
some hints on the developments yet to come.

3.6.1 Summary

In Chapter 2, we described MDPs as a framework suitable to address single-agent
topological navigation problems. MDPs model situations where an agent is required
to learn to perform a task without being shown how to perform it. Instead, it
receives a reinforcement signal for each action it executes. This setting was applied
to a topological navigation problem with success, as illustrated in a simple example.

In the present chapter, we presented several algorithms to either evaluate a given
policy or learn the optimal policy for a given MDP. In these methods (and unlike
the VI method described in Chapter 2), the agent has little a priori knowledge of
the environment: it does not know the transition probabilities or rewards/penalties
for each action.

We described two classes of methods. We described model-based methods, that
estimate the transition probabilities and rewards for each action and then use these

54 3. Reinforcement Learning in Finite State-Spaces

estimates to either evaluate a given policy or to determine the optimal policy. Es-
timation of the parameters P and r of the MDP model relies on direct interaction
with the environment.

The second class of methods is model-free, in that the agent does not attempt
to learn the MDP parameters. Instead, the agent uses its interaction with the
environment to directly evaluate a given policy or estimate the optimal Q-function.
The three model-free methods presented make use of temporal differences to update
the estimates of the function of interest.

We concluded the chapter by illustrating the use of the three methods in a simple
topological navigation example.

3.6.2 Discussion

In this chapter, we presented several reinforcement learning algorithms that can
be used either to evaluate a policy δ or to determine the optimal Q-values. Un-
der suitable conditions, all the algorithms converge asymptotically to the desired
value/Q-function. Furthermore, several such algorithms also ensure convergence in
behavior to the optimal policy, as long as the learning policy has the GLIE property
(see definition on page 45). In all this presentation, we postponed two important
discussions to these concluding remarks. We address these two topics next.

Exploration vs. exploitation

In the methods described in this chapter, the agent successively refines its estimate
of the function Q. This is achieved through sampling : as the agent visits more and
more state-action pairs, the more accurately it is able to estimate the corresponding
Q-values. On the other hand, while striving to abundantly visit each state-action
pair, the agent is often unable to act optimally, i.e., exploit the knowledge it has
already acquired.

This balance between exploration—choosing non-optimal actions in order to suf-
ficiently visit every state-action pair—and exploitation—acting greedily with respect
to the acquired knowledge—has been an important problem discussed in the rein-
forcement learning literature. The exporation/exploitation tradeoff plays a funda-
mental role in guaranteeing convergence of many reinforcement learning methods
and greatly influences the speed of such convergence.

Figure 3.4 illustrates the influence of different learning policies in the per-step
expected reward. We applied Q-learning to the MDP in the example of Section 3.5.8
For each of three learning policies the agent was now allowed to learn for 104 time
steps. We determined the per-step reward averaged from 2, 000 independent Monte-
Carlo trials. We depict the results obtained with a greedy policy, an ε-greedy policy
with ε = 0.1 and Boltzmann exploration with a temperature parameter decaying at
a rate O(1/n).

The greedy policy improves faster in the beginning, since it always uses all knowl-
edge collected so far. However, due to insufficient exploration, it fails to reach the
optimal performance—its plot eventually settles in a value smaller than that of the

8We report the results for Q-learning, but the conclusions hold in general.

3.6. Concluding remarks 55

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

Time units

C
um

ul
at

iv
e

re
w

ar
d

Learning performance using different policies

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

Time units

C
um

ul
at

iv
e

re
w

ar
d

Detail of the learning performance

Boltzmann

ε = 0.1
ε = 0 (greedy)

ε = 0.1

Boltzmann

ε = 0 (greedy)

Figure 3.4: Average per-step reward using different learning policies.

other two. The ε-greedy policy chooses a random action with probability ε and
behaves greedily otherwise. It exhibits a similar performance to that of the greedy
policy at the beginning, but it quickly surpasses the greedy policy. However, as
it always maintains a positive exploration probability, it never reaches the optimal
performance: with ε = 0.1, the ε-greedy policy will choose a sub-optimal action one
out of ten times. Finally, Boltzmann exploration is the slowest at the beginning
but, due to its decaying exploration rate, it eventually outperforms the other two
policies.

In order for a policy δt to have the GLIE property, it is important to ensure
that not only δt → δg, with δg the greedy policy, but also that sufficient visits to all
state-action pairs are enforced. This can be ensured by properly adjusting the rate
of convergence of δt to δg.9

The compromise between exploration and exploitation is an important topic of
research in the reinforcement learning community. The need for exploration in many
RL methods implies that convergence to optimality is only asymptotic. On the other
hand, in non-stationary environments, persistent exploration policies can be used to
track slow changes in the environment.

Several researchers have addressed the problem of efficient exploration, attempt-
ing to provide strategies that can improve the convergence in behavior of rein-
forcement learning algorithms. Thrun [312] surveys several possible exploration
techniques, distinguishing between directed methods and undirected methods. Undi-
rected methods use randomized action selection to explore alternative policies; di-
rected methods use exploration information (such as trajectory statistics) to guide
the exploration of alternative policies. Many other reinforcement learning works

9As referred in Section 3.4, one possibility consists in setting δt so that δt − δg ∈ O(αt). We
refer to [280] for details on adjusting GLIE policies.

56 3. Reinforcement Learning in Finite State-Spaces

address the problem of exploration:

• Wiering and Schmidhuber [338] address the exploration/exploitation tradeoff
in model-based learning: a modified version of Moore and Atkeson’s prioritized
sweeping algorithm [204] is described, by introducing a new priority schedule.
This algorithm is then combined with different exploration strategies such as
Kaelbling’s interval estimation [133].

• Kearns and Singh [138] propose the E3 “algorithm”, a model-based near-optimal
reinforcement learning with ε-optimal convergence guarantees and polynomial
convergence time. This work establishes the existence of an algorithm that is
able to determine an ε-optimal policy with probability 1 − β in a time that
is polynomial in ε, 1/β, 1/(1 − γ), the size of the MDP and the maximal
reward R. The paper then describes E3 (Explicit explore or exploit) algorithm
verifying the performance bounds described.

• Several other approaches (generally referred under the name of Bayesian RL)
adopt a Bayesian approach to the problem of balancing exploration and ex-
ploitation. Bayesian Q-learning [65] addresses the exploration/exploitation
tradeoff in Q-learning. In the referred paper, the authors consider a prior on
the distribution of the Q-values that is updated as the agent gathers new expe-
rience. Different action-selection rules are proposed and compared. Bayesian
RL is further explored by Duff [74]. In this work, the author formulates the
general Bayesian RL approach by using an extended MDP model (the Bayes-
adaptive MDP—BAMDP) and establishes a close relation between BAMDPs
and partially observable MDPs (POMDPs).10To efficiently tackle BAMDPs,
the author proposes the use of Monte-Carlo methods and function approxima-
tion. Finally, Poupart et al. [242] further extend the work in [74] by describing
several important facts arising from the adopted formulation. These facts lead
to an efficient method to approximate the policy that optimally settles the
exploration/exploitation trade-off.

Further references to the exploration/exploitation tradeoff can be found in the cited
papers.

We return to the exploration/exploitation tradeoff in Chapter 10.

Model-free vs. model-based approaches

Another important issue to discuss is related with the question of whether model-
free methods are preferable or not to model-based methods. This question has
raised significant debate in the reinforcement learning community, with no apparent
conclusions.

Proponents of model-free methods often argue that more experience is required to
learn a good model than to learn a good policy; proponents of model-based methods,
on the other hand, argue that the learnt model can be used to perform unlimited

10A POMDP is an extended MDP model that encompasses uncertain perception of the state of
the environment. This class of problems is dealt with in greater detail in the next chapter.

3.6. Concluding remarks 57

Table 3.2: Advantages of model-free vs. model-based methods.

Advantages

Model-free methods
• Less memory

• Computationally simpler

Model-based methods
• Faster

• Better use of experience

off-line updates of the estimate of Q∗, speeding up the convergence of such methods.
We summarize in Table 3.2 some of the argued advantages and disadvantages of the
two classes of methods.

In [137] these arguments are partially softened: Kearns and Singh establish that
the error bounds and memory requirements for both Q-learning and model-based
learning are basically similar. In other words, both methods require similar amount
of experience to provide a ε-optimal policy and the memory requirements for both
methods are also similar.11

Some methods try to combine the advantages of both approaches. In [293, 294],
Sutton introduces DYNA as an architecture that combines learning, planning and
reacting: in DYNA, the agent uses experience to improve the Q-estimates and to
build a model of the environment. This model is then used to perform further
updates to theQ-estimates to speed up the convergence. This framework was further
explored in the DYNA-Q architecture and the prioritized sweeping algorithm.

* * *

In the presentation so far, we discussed several known methods from the litera-
ture that learn the optimal control sequence in a given environment. Such a control
sequence is generated by a policy that can in turn be computed from a set of real
parameters, the Q-values.

In everything presented so far, the state of the system has been considered finite
and fully observable. The finiteness of the state-space can be justified by our con-
sideration of a topological representation of the environment. Since we are focusing
on topological navigation problems, topological maps provide a natural “decompo-
sition” of the space into a finite set of nodes—the states.

On the other hand, we have implicitly assumed that the agent can access, know
or perceive the true state of the system and this assumption is seldom verified
in practice. Most agents and, in particular, mobile robots make use of sensorial
information to estimate the state of the environment. Therefore, in most practical
situations, the agent can only infer the state of the system/environment from its

11This, in particular, implies that model-based learning can achieve near-optimal performance
with a sparse model.

58 3. Reinforcement Learning in Finite State-Spaces

observations. When this occurs, we refer to the state as having partial observability.
In the presence of partial observability, the agent must choose its actions based not
on the actual state of the process, but on the belief of the agent about the current
state of the process.

In the next chapter we formalize the concept of belief as a probability vector
that indicates the probability of the agent being in each particular state at each
time instant. These real-valued vectors will provide the motivation to extend the
methods from this chapter to problems with infinite state-spaces, as these extended
methods will provide us with the tools to deal with partial observability.

Chapter 4

Generalized Reinforcement
Learning

4.1 Learning and function approximation 60

4.2 Infinite state-space Markov processes 62

4.3 Related work . 63

4.4 Model-based learning . 65

4.5 Model-free learning . 66

4.5.1 Determining V δ . 66

4.5.2 Determining Q∗ . 69

4.5.3 Convergence of Q-learning with function approximation 70

4.5.4 Convergence of SARSA with function approximation 71

4.6 Two illustrative examples . 73

4.7 Partial observability . 81

4.7.1 Partial observability and internal state 84

4.7.2 Geometric ergodicity in associated Markov chains 86

4.7.3 POMDPs and associated MDPs 88

4.7.4 Related work . 90

4.8 An illustrative example . 91

4.9 Concluding remarks . 95

4.9.1 Summary . 95

4.9.2 Discussion . 95

Having introduced in the previous chapters the fundamental concepts on re-

inforcement learning, we are now in position to present the first set of results

contributed in the thesis. In this chapter, we propose new algorithms to tackle

MDPs with infinite state-spaces or with partial observability.

We survey several reinforcement learning algorithms from the literature de-

signed to address MDPs with infinite state-spaces. We analyze the convergence

60 4. Generalized Reinforcement Learning

properties of these methods and point out the main assumptions required to es-

tablish such convergence. We then propose two new learning algorithms that use

linear function approximation. The interest of these algorithms is their extended

applicability, since they include many of the existing methods as particular cases.

We establish the convergence of these algorithms w.p.1. This is one of the main

contributions of this chapter.

We then proceed by addressing problems with partial observability. We show

that, under certain conditions, such problems can be reduced to MDPs with infinite

state-spaces. We further provide a series of new results that guarantee the appli-

cability of the methods previously developed to this class of partially observable

Markov decision processes.

4.1 Learning and function approximation

The reinforcement learning algorithms described in the previous chapters require
an explicit representation of the state-space. This can be a major drawback, since
there are many situations of interest where the state-space is large or even infinite
and, hence, unsuitable for explicit representation.

For example, consider a mobile robot moving in an environment described by a
topological map and suppose that, unlike the approach considered so far, the robot
is not able to determine with complete certainty its current state. Instead, it must
infer its position in the topological map from inaccurate sensor readings. In this
situation, the robot must act upon its belief on its current state, which translates
into a probability distribution over all possible states in the topological map. The
space of all possible probability distributions is a simplex of dimension |X |, and is
therefore a continuous space.1

Decision problems where the agent is required to learn how to act in an infi-
nite number of situations (like MDPs with infinite state-spaces) usually require the
decision-maker to be able to generalize its action-selection rule to situations never
encountered before. Learning mechanisms that exhibit such generalization capa-
bilities include artificial neural-networks and other general function approximation
strategies. These approximations allow for compact approximate representations of
the state-space or the target function. The corresponding learning methods focus
on determining a low dimensional parameter that, when combined with the chosen
function approximation, provides the best estimate to the desired function.

There are numerous works in the topic of generalization. In many such works,
a suitable approximation architecture is proposed and then applied with one’s fa-
vorite learning method [44, 290]. Encouraging results were reported, perhaps the
most spectacular of which by Tesauro’s Gammon player [307, 308]. In his work,
Tesauro combines temporal-difference learning with neural networks, and the im-

1At this moment, we do not pursue the argument that the beliefs on a Markov chain are
Markovian themselves, but mention that this will be formally established later in this chapter.

4.1. Learning and function approximation 61

pressive results of his learning agent have established the applicability of function
approximation in reinforcement learning problems.

Several other works provided formal analysis of convergence when RL algorithms
are combined with function approximation. We refer the early works by Baird
[10, 11, 12], Boyan [45, 46], Gordon [101, 103], Tsitsiklis and Van Roy [320, 321],
Szepesvári [301, 302] and several others [8, 15, 28, 207, 225, 238, 244, 296].

* * *

From the first appearance of temporal-difference methods in 1988 [289], this
class of algorithms has been extensively studied, and has lead to a wide literature
and numerous variations. In its essence, temporal-difference learning methods are
stochastic approximation algorithms, and most of the convergence proofs available
in the literature make use of more or less sophisticated results from the theory of
stochastic approximation algorithms.

As seen in Chapter 3 and further detailed in Appendix D, stochastic approxima-
tion algorithms can be used to determine the fixed point θ∗ of an unknown map h
by using the iteration

θt+1 = θt + αt
[
H(θt, Xt)− θt

]
, (4.1)

where H is a “perturbed” version of h and {Xt} is a random noise sequence. Notice
that the form of (4.1) is very similar to the update rule for TD(0) in (3.17), Q-
learning in (3.18) and SARSA in (3.19). In the referred methods, determining V δ(i)
or Q∗(i, a) for all i ∈ X or all pairs (i, a) ∈ X × A in the case of finite state and
action-spaces reduces to the determination of finite dimensional “vectors” in R|X | or
R|X |×|A|. Each component of such vector is the value of V δ(i) for a state i or the
optimal Q-value, Q∗(i, a), for a state-action pair (i, a).

However, when addressing problems in which X is infinite, these algorithms can
not be used as originally defined. This is particularly clear by observing the update
equations (3.17), (3.18) and (3.19). In these equations, the values of Vt or Qt are
updated for each individual state i or pair (i, a). If X is infinite, there are infinitely
many such states/pairs, and infinite memory is required to store them.

In this chapter, we describe several approaches from the literature specifically
designed to handle decision problems with infinite state-spaces. In particular, we
describe model-based and model-free algorithms to approximate both V δ and Q∗

that make use of different approximation techniques to deal with the infinite state-
space.

Our contributions in this chapter include convergence results for Q-learning and
SARSA with function approximation, that we dub as approximate Q-learning and
approximate SARSA. The results presented herein extend those from several other
works in the literature, where Q-learning has been shown to converge using several
particular approximation strategies (such as “soft” state-space discretization [279]
and interpolation [302]). In fact, many such methods can be cast as particular
cases of the new method proposed here. Our results also extend those on [238]
on the convergence of SARSA by providing an interpretation for the obtained limit
point when the learning policy has the GLIE property. Another contribution of this
chapter is the identification of several conditions that establish the applicability of
approximate Q-learning and approximate SARSA in partially observable scenarios.

62 4. Generalized Reinforcement Learning

4.2 Infinite state-space Markov processes

When considering MDPs with infinite state-spaces, some minor modifications in the
notation are mandatory. We introduce such modifications next.

Let X be a compact subspace of Rp and {Xt} a X -valued controlled Markov
chain with a finite action-space A. The transition probabilities for the chain are
given by a probability kernel

P [Xt+1 ∈ U | Xt = x,At = a] = Pa(x, U),

where U ∈ B(X). As in finite MDPs, the expected total discounted reward is given
by

V ({At} , x) = E

[
∞∑
k=0

γkR(Xk, Ak) | X0 = x

]
,

and r is now a measurable function such that

E [R(x, a)] =

∫
X
r(x, a, y)Pa(x, dy).

The purpose of the agent is once again to determine the control sequence {At} that
maximizes V ({At} , x). The optimal value function V ∗ now verifies the modified
form of the Bellman optimality equation

V ∗(x) = max
a∈A

∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy),

and the optimal Q-values, Q∗(x, a), are defined for each state-action pair (x, a) ∈
X ×A as

Q∗(x, a) =

∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy).

As in the finite state-space case, the optimal policy is the mapping δ∗ : X −→ A
given by

δ∗(x) = arg max
a∈A

Q∗(x, a), for all x ∈ X .

Notice that in this infinite setting the definitions of stochastic policy, deterministic
policy and stationary policy carry on from those in a finite setting with no modifi-
cation. The operators Tδ and H introduced in Chapter 3 now take the form

(Tδv)(x) =

∫
X

∑
a∈A

[
r(x, a, y) + γv(y)

]
δ(x, a)Pa(x, dy), (4.2)

(Hq)(x, a) =

∫
X

[
r(x, a, y) + γmax

b∈A
q(y, b)

]
Pa(x, dy). (4.3)

Because of the fact that X is now an infinite set, it is no longer possible to
straightforwardly apply any of the update rules in (3.17), (3.18) and (3.19), since
these stochastic approximation algorithms update the corresponding functions for
each individual point in their domain (and there are infinitely many such points

4.3. Related work 63

now).
We will now review several related works from the literature. We will explore

some of these works in greater detail further ahead in this chapter to facilitate
the comparison with our own methods and to provide a global perspective on the
fundamental works on RL in infinite settings.

4.3 Related work

In this section we survey several works from the literature that are related in some
way to the new algorithms introduced in this chapter.

The early works by Gordon [103] and Tsitsiklis and Van Roy [320] provide con-
vergence analysis for several RL methods using function approximation. The two
referred papers portray similar results, although with a slightly different setting and
focus on variations of dynamic programming using function approximation. There
is also a brief discussion on how stochastic variations of these algorithms (closer
in spirit to the Q-learning algorithm) can be used. These stochastic variations are
essentially equivalent to the Q-learning algorithm with soft-state aggregation por-
trayed in [279], as pointed out in [27].

Soft-state aggregation is extensively studied in [279]. In this work, the authors
propose the use of a “soft”-partition of the state-space: the state-space is split into
“soft” regions (each state x belongs to region i with a probability pi(x)) and an
“average” Q-value Q(i, a) is defined for each region-action pair. Each of these re-
gions is then treated as a “hyper-state” and the method uses standard Q-learning
updates to determine the average Q-values for each region. The function Q∗ is then
approximated for a state-action pair (x, a) as Q∗(x, a) ≈∑i pi(x)Q(i, a).

In a different work, Tsitsiklis and Van Roy [321] provide a detailed analysis of
the approximate temporal difference algorithm (approximate TD) for policy evalua-
tion. The authors provide comprehensive results regarding the convergence and/or
divergence of such method when a linear function approximation is used. Given
a stationary policy δ whose value function V δ is to be estimated, a parameterized
linear family V of functions is used to approximate V δ. The authors establish that
the sequence of estimates obtained by approximate TD closely follow those of an
associated globally asymptotically stable ODE and thus converge to the unique equi-
librium point of such ODE. They also provide an interpretation of the approximation
obtained as the fixed point of a composite operator PVTδ, where PV is an orthogonal
projection and Tδ is a TD operator. The authors also provide error bounds on the
obtained approximation (see Subsection 4.5.1 and [326] for further details).

Least-squares temporal difference learning methods (LSTD) depart from the
work by Tsitsiklis and Van Roy and propose an alternative method to compute
the same approximation [45, 46]. As established by Tsitsiklis and Van Roy [321],
approximate TD-learning converges in the limit to a parameter vector θ∗ that verifies
a linear system of the type

Aθ∗ + b = 0,

where the matrices A and b arise from a “stationary version” of the algorithm.
LSTD estimates directly the matrices A and b from the sample trajectories of the

64 4. Generalized Reinforcement Learning

underlying Markov chain, thus converging to the same limiting approximation and
with some extra argued advantages [46]. Although not exactly in the line of the
algorithms described herein, it is important to mention LSTD as closely related
with approximate TD.

Two other works are closely related with those above and are worth mentioning.
In [244], the authors provide an off-policy algorithm for policy evaluation using
linear function approximation. Unlike approximate TD, the algorithm in [244] uses
episodic updates. This means that the process is allowed to run for a fixed number
of time-steps (episode) before an update is performed. The process is then reset and
another episode starts. The authors establish convergence w.p.1 of their method
and provide similar error bounds to those obtained by Tsitsiklis and Van Roy [321].
In another work, Perkins and Precup [238] establish the convergence of SARSA
with linear function approximation if the learning policy verifies some regularity
conditions. In this chapter we provide a more complete version of the result in
[238] by establishing convergence of SARSA with linear function approximation while
providing an interpretation for the obtained approximation if a GLIE learning policy
is used.

Szepesvári and Smart [302] address the problem of policy optimization in infinite
settings. In this paper, the authors propose a version of Q-learning that approxi-
mates the optimal Q-values at a given set of sample points and then uses convex
interpolation to estimate the optimal Q-function at any query point. This method,
dubbed interpolation-based Q-learning (IBQL), uses a spreading function similar to
the one used in multi-state Q-learning [252, 300]. As in [321], the authors estab-
lish convergence w.p.1 of the algorithm and provide an interpretation of the limit
point as the fixed-point of a composite operator PĤ, where P is a projection-like
operator and Ĥ can be interpreted as a modified TD-learning operator. We remark
that IBQL includes Q-learning with soft-state aggregation as a particular case, by
considering an adequate convex interpolator.

Atkeson et al. [8] describe the application of local weighted regression methods to
estimate the model (namely the kernel P and the reward function r) in a continuous-
state reinforcement learning problem and this fundamental idea is generalized in
[225]. In the latter work, Ormoneit and Śaunak Sen [225] establish convergence
in probability and derive the limiting distribution of the obtained approximation.
They also address the bias-variance tradeoff in reinforcement learning problems.

All the described methods have been shown to converge in some sense. How-
ever, methods that allow the use of general function approximations (such as the
approximate TD) only allow policy evaluation, while methods that allow policy op-
timization are only shown to converge with very particular architectures of function
approximation. The results produced in this chapter extend the existing methods
in that they allow policy optimization using more general function approximation
architectures.

* * *

In Chapter 3 we described model-based and model-free methods, both for policy
evaluation and policy optimization. For consistency, we will follow a similar course of

4.4. Model-based learning 65

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

G
(x

)

Figure 4.1: Gaussian kernel.

action in this chapter. As such, we review in greater detail the model-based method
in [225] that can be used both for policy evaluation or optimization. We also review
the model-free method of Tsitsiklis and Van Roy [321] for policy evaluation and
finally proceed by introducing our two model-free methods for policy optimization,
approximate Q-learning and approximate SARSA.

4.4 Model-based learning

In this section, we review in greater detail the kernel-based reinforcement learning
algorithm in [225]. Kernel-based learning is a model-based reinforcement learning
algorithm that, in its essence, approximates the dynamic programming operator H
introduced in (4.3) using kernel-based methods.

The authors start by considering a mother kernel G that is univariate and non-
negative (e.g., the Gaussian kernel—see Figure 4.1). Then, given a sample history
H = {s1, . . . , sm} of m transition tuples si = (xi, ai, ri, yi), where yi is the state
succeeding xi when action ai is taken, the operator H is approximated by

Ĥq(x, a) =
∑
si∈H

k(xi, x)Ia(ai)
[
ri + γmax

b∈A
q(yi, b)],

where k is a history-dependent kernel defined as

k(xi, x) =
G
(
‖xi−x‖

b

)
∑

sj∈H G
(
‖xj−x‖

b

) ,
b is a bandwidth parameter and Ia is the indicator function for the set {a}.

The authors also provide convergence guarantees for this method: under suitable
conditions on the bandwidth parameter b,

∥∥∥Ĥq −Hq
∥∥∥
∞

is shown to converge to 0 in

66 4. Generalized Reinforcement Learning

probability as the number m of samples in the history goes to infinity. Furthermore,
the authors also derive the limiting distribution of the obtained approximation Q̂∗.

The same exact procedure can be used to determine V δ, by sampling the history
according to the policy δ and eliminating the actions from the equations. The kernels
k(xi, x) are then be used to estimate the operator Tδ instead of H.

The algorithm and the formal convergence result and proofs can be found in
[225].

4.5 Model-free learning

We now consider algorithms that directly approximate the functions V δ and Q∗ by
interacting with the environment, using a similar stochastic approximation approach
as described in Section 3.4. The algorithms presented in this section use the agent’s
experience to estimate the fixed points of Bellman-like operators related to Tδ and
H (defined in (4.2) and (4.3)) using stochastic approximation.

4.5.1 Determining V δ

Let (X,A,P, r, γ) be an MDP with infinite state-space X , admittedly a compact
subset of Rp.2 Given a policy δ, the corresponding value-function V δ is to be deter-
mined. V δ verifies the following recursive relation

V δ(x) =

∫
X

∑
a∈A

[
r(x, a, y) + γV δ(y)

]
δ(x, a)Pa(x, dy). (4.4)

It is straightforward from (4.4) that the desired value function V δ is the fixed point
of Tδ as defined in (4.2).

Let V = {vθ} be a family of functions, vθ : X → R, parameterized by a finite
dimensional parameter θ ∈ RM . In particular, suppose that the family V is a linear
space in that, if v1, v2 ∈ V , then so does αv1 + v2 for any α ∈ R. As such, V
can be represented as the linear span of a set of M linearly independent functions
ξi : X −→ R, and each v ∈ V can be written as

v(x) =
M∑
i=1

ξi(x)θ(i) = ξ>(x)θ,

for all x ∈ X , where θ(i) is the ith component of the vector θ ∈ RM and ξ(x) is a
vector in RM with ith component given by ξi(x). V is a hyperplane of dimension M
in the space of all measurable functions v : X −→ R.

Given a policy δ and the corresponding sample trajectories {xt}, {at} and {rt},
define the sequence {θt} recursively as

θt+1 = θt + αtξ(xt)∆t (4.5)

2In the original work, Tsitsiklis and Van Roy [321] consider X to be countably infinite, but this
assumption was later extended to subsets of Rp [326]. In our presentation we admit compacity of
X for simplicity.

4.5. Model-free learning 67

where ∆t is the temporal difference

∆t = rt + γVt(xt+1)− Vt(xt),

and Vt(x) is given by
Vt(x) = ξ>(x)θt.

Under some regularity assumptions on the MDP (X,A,P, r, γ) (to be specified
below), the sequence {θt} generated by (4.5) converges w.p.1 to the vector θ∗ such
that

vθ∗(x) = (PVTδvθ∗)(x), (4.6)

where PVv represents the orthogonal projection of v into the linear space V . In
other words, vθ∗(x) is the fixed point of the combined operator obtained from the
orthogonal projection PV and the TD operator Tδ.

In order to ensure that the projection operator PV is well defined, we consider
the space of all square-measurable functions v : X −→ R endowed with the inner
product

〈v1, v2〉 =

∫
X
v1(x)v2(x)dµ(x), (4.7)

where µ is the invariant probability measure associated with the Markov chain
(X ,Pδ). Since the operator Tδ is a contraction w.r.t. the norm induced by the
inner-product in (4.7), the ODE associated with (4.5) has in θ∗ a globally asymp-
totically stable equilibrium point. Standard results from stochastic approximation
then ensure the convergence of {θt} w.p.1.

Tsitsiklis and Van Roy [321] also provide a bound on the error between the
obtained function vθ∗ and the actual value-function V δ as a function of the distance
between V δ and the hyperplane V . This bound is given by∥∥vθ∗ − V δ

∥∥
2
≤ 1√

1− β2

∥∥V δ − PVV δ
∥∥

2
, (4.8)

where β is the contraction factor of the composite operator PVTδ.
Figure 4.2 illustrates the relation between V δ, PVV δ and vθ∗ . The dashed lines

represent the possible trajectories of the algorithm, converging to the limit point
vθ∗ . The plane represents the space V and PVV δ is the orthogonal projection of the
desired function V δ on V . The point vθ∗ described by (4.6) is the fixed point of
the combined operator PVTδ and corresponds to the point in V where Tδ operates
orthogonally to that hyperplane.

We now present without proof the main result from [321]. A more formal pre-
sentation of the ideas in this subsection can be found in [321, 326]. We henceforth
refer to this method as approximate TD(0).

Theorem 4.5.1. Let (X,A,P, r, γ) be a Markov decision process with compact state-
space X ⊂ Rp and δ a fixed stationary policy. Assume the Markov chain (X ,Pδ)

68 4. Generalized Reinforcement Learning

Tδ

Tδ⊥V

V δ

PVV δ

vθ∗

VTδ

Figure 4.2: Difference between the projection PVV δ of V δ on the space V and the function
vθ∗ in (4.6). The solid blue lines represent the application of Tδ and the dotted lines

represent the orthogonal projection on V, PV . The dashed blue line represents a possible
trajectory of the algorithm. Notice that, in vθ∗ , Tδ is orthogonal to V.

to be geometrically ergodic with invariant probability measure µX , where Pδ is the
transition kernel for the chain obtained by following policy δ.

Let Ξ = {ξi, i = 1, . . . ,M} be a set of M bounded, linearly independent functions
defined on X and taking values in R.

Then, the following hold.

1. Convergence

For any initial condition θ0 ∈ RM , the algorithm

θt+1 = θt + αtξ(xt)
(
rt + γVθt(xt+1)− Vθt(xt)

)
(4.9)

converges w.p.1 as long as the step-size sequence {αt} verifies∑
t

αt =∞
∑
t

α2
t <∞.

2. Limit of convergence

Under these conditions, the limit θ∗ of (4.9) verifies

Vθ∗(x) = (PVTδVθ∗)(x), (4.10)

where PV denotes the orthogonal projection operator on V defined by

(PQV)(x) = ξ>(x)Σ−1EµX [ξ(z)V (z)] .

and the matrix Σ is given by

Σ = EµX

[
ξ(x)ξ>(x)

]
.

4.5. Model-free learning 69

4.5.2 Determining Q∗

We now extend the approach by Tsitsiklis and Van Roy [321] described in the pre-
vious section to accommodate policy optimization. The two algorithms proposed
herein, dubbed approximate Q-learning and approximate SARSA, and correspond-
ing analysis of convergence, constitute one of the fundamental contributions of this
chapter.

Let (X,A,P, r, γ) be an MDP with infinite state-space X , admittedly a compact
subset of Rp. We want to determine the optimal Q-function, verifying the following
recursive relation

Q∗(x, a) =

∫
X

[
r(x, a, y) + γmax

b∈A
Q∗(y, b)

]
Pa(x, dy) (4.11)

or, equivalently,
Q∗(x, a) = (HQ∗)(x, a).

Once again, we consider a family of functions Q = {Qθ} parameterized by a
M -dimensional parameter vector θ ∈ RM . We admit Q to be a linear space in that,
if q1, q2 ∈ Q, then so does αq1 + q2 for any α ∈ R. Q is therefore the linear span of
a set of M linearly independent functions ξi : X ×A −→ R, and each q ∈ Q can be
written as

q(x, a) =
M∑
i=1

ξi(x, a)θ(i)

for all pairs (x, a) ∈ X × A. Q is a hyperplane of dimension M in the space of
all measurable functions q : X × A −→ R. If Ξ = {ξi, i = 1, . . . ,M} is a set of M
linearly independent functions, we interchangeably use Q(θ) and Qθ to denote the
function

Qθ(x, a) =
M∑
i=1

ξi(x, a)θ(i) = ξ>(x, a)θ.

Given a policy δ and the corresponding sample trajectories {xt}, {at} and {rt},
define the sequence {θt}

θt+1 = θt + αtξ(xt, at)∆t, (4.12)

where ∆t is the temporal difference

∆t = rt + γmax
b∈A

Qθt(xt+1, b)−Qθt(xt, at). (4.13)

We refer to such update rule as approximate Q-learning.
As in Chapter 3, it is possible to devise an on-policy version of (4.13) using the

alternative temporal difference

∆t = rt + γQθt(xt+1, at+1)−Qθt(xt, at). (4.14)

We refer to the algorithm thus obtained as approximate SARSA.
In the remainder of this section we establish conditions under which the algorithm

(4.12) converges using both (4.13) and (4.14).

70 4. Generalized Reinforcement Learning

4.5.3 Convergence of Q-learning with function approximation

To prove convergence of the algorithm (4.12) using the temporal difference in (4.13),
we make use of a standard result from stochastic approximation, reproduced in
Appendix D as Theorem D.1.1. The details of the proof can be found in Appendix F.

Let δ be a stationary policy and (X ,Pδ) the corresponding Markov chain with
invariant probability measure µX . Denote by Eµδ [·] the expectation w.r.t. the prob-
ability measure µδ defined for every set Z × U ⊂ X ×A as

µδ(Z × U) =

∫
Z

∑
a∈U

δ(x, a)µX(x).

Theorem 4.5.2. Let (X,A,P, r, γ) be a Markov decision process with compact state-
space X ⊂ Rp. Assume the Markov chain (X ,Pδ) to be geometrically ergodic with
invariant probability measure µX , where Pδ is the transition kernel for the chain
obtained by following a stochastic policy δ verifying δ(x, a) > 0 for all a ∈ A and
µX-almost all x ∈ X .

Let Ξ = {ξi, i = 1, . . . ,M} be a set of M bounded, linearly independent functions
defined on X×A and taking values in R. In particular, admit that

∑N
i=1 |ξi(x, a)| ≤ 1

for all (x, a) ∈ X ×A.
Then, the following statements hold:

1. Convergence

For any initial condition θ0 ∈ RM , the algorithm

θt+1 = θt + αtξ(xt, at)
(
rt + γmax

b∈A
Qθt(xt+1, b)−Qθt(xt, at)

)
(4.15)

converges w.p.1 as long as the step-size sequence {αt} verifies∑
t

αt =∞
∑
t

α2
t <∞.

2. Limit of convergence

Under these conditions, the limit θ∗ of (4.15) verifies

Qθ∗(x, a) = (PQHQθ∗)(x, a), (4.16)

where PQ denotes the orthogonal projection operator on Q defined by

(PQQ)(x, a) = ξ>(x, a)Σ−1Eµδ [ξ(z, u)Q(z, u)] .

and the matrix Σ is given by

Σ = Eµδ

[
ξ(x, a)ξ>(x, a)

]
.

4.5. Model-free learning 71

Proof See Appendix F.2. 2

In the proof of the theorem, we carefully establish each of the assertions of the
theorem. To prove the first assertion we write (4.15) in the form

θt+1 = θt + αt+1H(θt, Xt+1), (4.17)

and establish that the trajectories of the algorithm closely follow those of an asso-
ciated ODE. We then show independently that this associated ODE has a globally
asymptotically stable equilibrium point, which in turn implies the convergence of
(4.15) w.p.1.

To prove the second assertion of Theorem 4.5.2, we provide an interpretation of
the equilibrium point of the ODE as the fixed point of a composite operator.

To convey a deeper insight on the conditions of the Theorem, we remark that
the geometric ergodicity assumption and the requirement that δ(x, a) > 0 for all
a ∈ A and µX-almost all x ∈ X can be interpreted as a continuous counterpart to
the usual condition that all state-action pairs are visited infinitely often. In fact,
geometric ergodicity implies that all the regions of the state-space with positive µX
measure are “sufficiently” visited [201], and the condition that δ(x, a) > 0 ensures
that, at each state, every action is “sufficiently” tried.

On the other hand, geometric ergodicity guarantees that the Markov chain
(X ,Pδ) converges exponentially fast to stationarity, and thus the analysis of con-
vergence of the algorithm can be conducted in terms of a “stationary version” of
it.3

We also notice that the requirements on the basis functions ξi simply guarantee
(in a rather conservative way) that no two functions ξi lead to “colliding updates”,
as in the known counter-example by Baird [11].4

4.5.4 Convergence of SARSA with function approximation

Convergence of the algorithm in (4.14) is essentially a consequence of Theorem 4.5.2
and is summarized in the following result.

Theorem 4.5.3. Let (X,A,P, r, γ) be a Markov decision process with a compact
state-space X ⊂ Rp. Let (δθ)t be a fixed learning policy with the GLIE property
w.r.t. the estimate Qθ(x, a) = ξ>(x, a)θ. Suppose, furthermore, that δt(x, a) > 0 and
that there is a constant C > 0 such that for each t ∈ T and each (x, a) ∈ X ×A

|(δθ)t(x, a)− (δθ′)t(x, a)| ≤ C ‖θ − θ′‖ . (4.18)

3In particular, exponential convergence to stationarity ensures that the analysis of the trajec-
tories of the sequence {θt} can be performed in terms of the trajectories of an associated ODE, as
mentioned above.

4Suppose, for example, that two basis functions ξ1 and ξ2 were used, with ξ1 = −ξ2. Then, the
corresponding updates would always have opposite signs and the contribution of these functions
in the final approximation would always be zero.

72 4. Generalized Reinforcement Learning

Assume the Markov chain (X ,Pθ) to be geometrically ergodic with invariant proba-
bility measure µθX , for every θ. We denote by Pθ the transition probabilities for the
chain obtained by following policy (δθ)t, with fixed θ.

Let Ξ = {ξi, i = 1, . . . ,M} be a set of M bounded, linearly independent functions
defined on X×A and taking values in R. In particular, admit that

∑N
i=1 |ξi(x, a)| ≤ 1

for all (x, a) ∈ X ×A.
Then, the following hold.

1. Convergence

For any initial condition θ0 ∈ RM , the algorithm

θt+1 = θt + αtξ(xt, at)
(
rt + γQθt(xt+1, at+1)−Qθt(xt, at)

)
(4.19)

converges w.p.1 as long as the step-size sequence {αt} verifies∑
t

αt =∞
∑
t

α2
t <∞.

2. Limit of convergence

Under these conditions, the limit θ∗ of (4.15) verifies

Qθ∗(x, a) = (PQHQθ∗)(x, a), (4.20)

where PQ denotes the orthogonal projection operator on Q defined w.r.t. the
measure µθ∗X .

Proof See Appendix F. 2

We conclude this section by presenting the following immediate corollary of The-
orems 4.5.2 and 4.5.3.

Corollary 4.5.4. Let (X,A,P, r, γ) be an MDP with compact state-space X ⊂ Rp.
The sequence {θt} generated by (4.15) converges to a limit point θ∗ verifying

Qθ∗(x, a) = (PQHQθ∗)(x, a), (4.21)

as long as the conditions of Theorem 4.5.2 hold. Furthermore, if the agent uses a
GLIE learning policy (δθ)t verifying the conditions of Theorem 4.5.3, the agent will
converge in behavior to the greedy policy w.r.t. Qθ∗.

Before concluding this section, we analyze the practical implications of the con-
ditions stated in the previous theorems in terms of Markov decision processes. A
more general discussion on the practical implications (in terms of robotic systems)

4.6. Two illustrative examples 73

of the several conditions required by the different convergence theorems along the
thesis is postponed to Chapter 10.

First of all, the conditions listed are sufficient, meaning that it is possible that
convergence may occur even if some (or all) of the conditions fail to hold. On
the other hand, apart from the standard condition on the step-size sequence {αt},
Theorem 4.5.2 requires two essential conditions to ensure convergence: one on the
function set Ξ and the other on the Markov chain.

The condition on the functions in Ξ depends only on the implementation, and is
therefore, not too restrictive. Given a set of bounded, linearly independent functions,
a simple normalization process ensures these functions to verify

∑M
i=1 |ξi(x, a)| ≤ 1

for all (x, a) ∈ X ×A.
The only “worrisome” condition is the one related with the geometric ergodicity

of the Markov chain obtained from the learning strategy. Geometric ergodicity of
a Markov chain basically implies that the chain quickly converges to a stationary
behavior and we can, therefore, study any properties of the stationary chain by direct
sampling. This definition is, however, far from rigorous and we refer to Appendix B
for a formal definition.

Geometric ergodicity can be established using several possible approaches (see
Theorems B.8.2 through B.8.4 in Appendix B). In Section 4.7 we apply a simple
procedure to establish geometric ergodicity of a continuous chain obtained from
a related discrete chain. This approach requires the chain (X ,Pδ) to verify the
Feller property, stating that the transition kernel Pδ is “well-behaved”, in that the
transition probabilities do not abruptly change around each point in X .5 As long
as this property holds, it is relatively simple to verify geometric ergodicity.

It so happens that, in the applications envisioned herein, the Feller property is a
rather fair assumption, and geometric ergodicity is not an unreasonable requirement
for convergence. In a very broad sense, as already stated, this requirement is closely
related to the requirement of sufficient exploration in the classical RL convergence
results.

4.6 Two illustrative examples

We now analyze two continuous versions of the example used in the previous chap-
ters.

Example 4.1. Consider the indoor environment depicted in Figure 4.3. A
mobile robot is intended to navigate from the bottom-left corner to the goal
region, signaled with the bold, red line. The environment is a 1 × 1 square
and the state of the robot at each time instant is represented as a pair (x,y)
of coordinates.6 The coordinates of the corner in the goal region are (1, 1).

5In other words, considering two sufficiently close states x, y ∈ X , the probability of moving
from x to some open set O ∈ B(X) is not too different from the probability of moving from y to
O. We once again refer to Appendix B for a formal definition.

6We use boldface symbols x and y to denote the physical coordinates of the robot to distinguish
from the symbols x and y used to denote generic elements of the state-space X .

74 4. Generalized Reinforcement Learning

Goal

Figure 4.3: Indoor environment for Examples 4.1 and 4.2.

The navigation problem can be described by an MDP (X,A,P, r, γ), where

• X = [0; 1]× [0; 1];

• A = {N,S,E,W};
• Each action a ∈ A moves the robot in the corresponding direction of a

random amount taking values uniformly between 0 and 0.3;

• The reward function r assigns a reward of +10 for every transition triplet
(x, a, y) such that ‖y − (1; 1)‖∞ < 0.1 and 0 otherwise;

• We consider γ = 0.95.

When the agent reaches the goal region, its position is randomly reset to any
point in the room, independently of the agent’s action.

We applied approximate Q-learning and approximate SARSA to this MDP.
The robot was allowed to explore and learn during 2 × 104 time steps, and
the obtained policy was then evaluated for 100 time steps. During learning we
used Boltzmann exploration in all experiments.

We ran four experiments, each using a different set of basis functions, to be
found in page 370. In Figure 4.4 we depict the total reward obtained during
learning in each of the four experiments. In Table 4.1 we present the total
discounted reward obtained during the 100 time-steps test period.

In each of the plots of Figure 4.4, the solid blue line represents the Q-
learner and the dashed red line represents the approximate SARSA learner. For
each of the 4 experiments (corresponding to a different set of basis functions)
we depicted the total reward obtained by the robot during learning and the
probability of choosing the optimal action. Expectedly, as this probability
approaches 1, the performance of the robot should improve, since the robot
explores much less and abundantly exploits the information collected during
the learning. This is easily seen from the plots by observing the slope of the
learning curve. Another important aspect is that, in all 4 examples, the final
slope of the curve is similar for both approximate Q-learning and approximate
SARSA. Noticing that the slope of the curve is a “rough” indicator of the
performance of the robot, we can conclude from the plots in Figure 4.4 that
in all 4 experiments both methods converged to a similar performance. This
is expected because, as seen in Theorems 4.5.2 and 4.5.3, both approximate

4.6. Two illustrative examples 75

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5000

10000

Time units

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5000

10000

15000

Time units

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

a) Grid-based b) Plane-based

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5000

10000

15000

Time units

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5000

10000

15000

Time units

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

c) Exp-based d) Kernel-based

Figure 4.4: Example 4.1: Cumulative reward and greedy choice probability during
the 2× 104-time-units learning period. The solid blue line represents the results with

approximate Q-learning and the dashed red line represents the results with
approximate SARSA.

Q-learning and approximate SARSA converge to the same approximation, if
using the same set of basis functions. Finally, just like in the finite-state case,
approximate SARSA is slightly slower, due to its on-policy updates.

On the other hand, there are some slight differences between the plots of
the different experiments. This is due to the representational power of the cho-
sen set of basis functions. Although the methods are guaranteed to converge,
these guarantees do not imply anything on the quality of the approximation.
Therefore, a set of basis functions that allows a more accurate representation of
the optimal Q-function will learn faster and exhibit better final performance.
Although the differences observed with the 4 sets of functions used are not
significant (the final slope of the learning curve is approximately the same in
all 4 plots), other sets of basis functions could possibly lead to much sharper
differences.

We also tested each of the learnt policies in the environment. We ran each
of the learnt policies for 100 time units and determined the total discounted
reward obtained in each case. Table 4.1 represents the results obtained. We
have run 2, 000 independent Monte-Carlo trials and present the average and
standard deviation obtained using each of the methods. Once again, both

76 4. Generalized Reinforcement Learning

Table 4.1: Example 4.1: Comparative results for approximate Q-learning and
approximate SARSA after the learning period is complete. We present the average
total discounted reward and standard deviation obtained over 2, 000 independent

Monte-Carlo trials.

Method Q-learning SARSA

Grid-based 8.474 ± 1.728 8.576 ± 1.706
Plane-based 8.221 ± 1.751 8.188 ± 1.700
Exp-based 8.212 ± 1.716 8.134 ± 1.701

Kernel-based 8.554 ± 1.687 8.573 ± 1.710

0.9 0.92 0.94 0.96 0.98 1 1.02

0.9

0.92

0.94

0.96

0.98

1

x

y

Optimal policy for Q−learning

Figure 4.5: Detail of the policy obtained using Q-learning with a plane-based
approximation (detail of Figure 4.6).

methods present a similar performance, since they are both expected to con-
verge to a similar approximation of the optimal Q-function. Also, the differ-
ence in performance when comparing the different sets of basis functions are
not significant.

We present in Figure 4.5 a detail of the learnt policy around the goal region
for approximate Q-learning in one of the experiments. The complete policy
is plotted in Figure 4.6 for both approximate Q-learning and approximate
SARSA, for the 4 sets of basic functions. The detail in Figure 4.5 should
help to clarify the different patterns observed in the policy representations of
Figure 4.6, by comparison.

Notice that, although the policy representations corresponding to approx-
imate Q-learning and approximate SARSA are not always coincident, they
correspond to similar optimal behavior. This can be seen if we interpret the
directional lines in Figure 4.6 as flux lines describing the movement of the
robot. Then, starting at any position in the 1 × 1 square, all policies will
drive the robot to the goal region. The differences between Q-learning and
SARSA are easily understood if we realize that they have very different sam-
pling methods.7 The finite learning time and the different sampling method
account for the differences between the learnt policies (different trajectories,
rewards and updates).

7The fact that Q-learning is an off-policy method and SARSA is an on-policy method necessarily
implies that they follow different learning policies and, therefore, sample the state-space in distinct
ways.

4.6. Two illustrative examples 77

Q-learning SARSA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for Q−learning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for SARSA

a) Grid-based approximation;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for Q−learning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for SARSA

b) Plane-based approximation;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for Q−learning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for SARSA

c) Exp-based approximation;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for Q−learning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for SARSA

d) Kernel-based approximation;

Figure 4.6: Example 4.1: Policies learnt by approximate Q-learning and
approximate SARSA for different sets of basis functions.

78 4. Generalized Reinforcement Learning

Q-learning SARSA

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

2

4

6

8

10

12

x

Value surface for Q−learning

y

V
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

2

4

6

8

10

12

x

Value surface for SARSA

y

V
(x

,y
)

a) Grid-based approximation;

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

5

10

15

20

25

x

Value surface for Q−learning

y

V
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

5

10

15

20

x

Value surface for SARSA

y

V
(x

,y
)

b) Plane-based approximation;

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

5

10

15

20

25

x

Value surface for Q−learning

y

V
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

5

10

15

20

x

Value surface for SARSA

y

V
(x

,y
)

c) Exp-based approximation;

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

5

10

15

20

x

Value surface for Q−learning

y

V
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

5

10

15

x

Value surface for SARSA

y

V
(x

,y
)

d) Kernel-based approximation;

Figure 4.7: Example 4.1: Value-functions learnt by approximate Q-learning and
approximate SARSA using different sets of basis functions.

4.6. Two illustrative examples 79

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2000

0

2000

4000

6000

Time units

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5000

0

5000

10000

Time units

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

a) Grid-based b) Plane-based

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5000

0

5000

10000

Time units

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5000

0

5000

10000

Time units

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

c) Exp-based d) Kernel-based

Figure 4.8: Example 4.2: Cumulative reward and greedy choice probability during
the 2× 104-time-units learning period. The solid blue line represents the results with

approximate Q-learning and the dashed red line represents the results with
approximate SARSA.

On the other hand, the different patterns observed in Figure 4.6 when
comparing the different approximations used are clearly due to the differences
between the basis functions chosen. Each basis function defines a surface
over the 1 × 1 square and the different patterns in Figure 4.6 arise from the
intersections of those surfaces. To further clarify this point, we present in
Figure 4.7 the surfaces representing the obtained value functions forQ-learning
and SARSA using the different sets of basis functions. �

Example 4.2. To further explore the application of the algorithms, we repeated
all tests in a modified version of the previous problem. In this modified version,
we penalized the agent with a reward of −0.1 every time-step, except on the
goal region, in which we kept the same reward of +10. Notice that this does
not affect the optimal policy, but it does affect the value function. The robot
was once again allowed to explore and learn during 2 × 104 time steps and
the obtained policy was then evaluated for 100 time units. The results are
presented in Figure 4.8 and Table 4.2.

80 4. Generalized Reinforcement Learning

Table 4.2: Example 4.2: Comparative results for approximate Q-learning and
approximate SARSA after the learning period is complete. We present the average
total discounted reward and standard deviation obtained over 2, 000 independent

Monte-Carlo trials.

Method Q-learning SARSA

Grid-based 6.223 ± 1.799 6.641 ± 1.707
Plane-based 6.476 ± 1.665 6.712 ± 1.754
Exp-based 6.616 ± 1.710 6.506 ± 1.671

Kernel-based 6.714 ± 1.718 6.606 ± 1.660

Figure 4.8 represents the total reward obtained by the robot during the
learning period. Once again, the solid blue line represents the approximate
Q-learner and the dashed red line represents the approximate SARSA learner.
Because of the similarity between this problem and the one considered previ-
ously, all comments on the former problem apply to the current one.

However, the simple inclusion of the negative payoff leads to some inter-
esting effects that are worth commenting. In the previous example, the robot
only received feed-back upon reaching the goal, where it would get a payoff of
+10. During the learning period, due to the required exploration, it would be
possible for the robot to move about the environment for a long period of time
without getting any reward. This means that the updates of both methods
would rely on the information gathered around the goal region. Therefore,
the differences between the functions learnt by approximate Q-learning and
approximate SARSA were justified merely by the different frequencies with
which each method could eventually visit this region.

In this problem, all regions of the state-space contribute with information
used in the updates. This means that the differences between the trajectories
of both methods during learning will have a larger influence on the learnt
value functions (in finite time). However, from Figure 4.8 we can conclude
that, in spite of these differences, both methods were still able to reach a
similar performance.

When tested in the environment for 100 time units, the total discounted
reward obtained in each case is presented in Table 4.2. We have run 2, 000
independent Monte-Carlo trials and present the average and standard devia-
tion observed using each of the methods. As we had concluded from observing
Figure 4.8, the results in Table 4.2 also confirm that both methods present a
similar performance. Notice the difference between the results in Tables 4.1
and 4.2: because of the negative rewards at each time-step, even the optimal
policy will lead to an inferior payoff, when compared with the one observed in
Example 4.1.

To conclude this section we present in Figures 4.9 and Figure 4.10 the learnt
policy and value function for the current problem. We emphasize, once again,
the much sharper differences between the policy/value-function learnt when
using approximate Q-learning and those learnt using approximate SARSA.
Nevertheless, as can easily be confirmed from Figure 4.9, both algorithms still

4.7. Partial observability 81

manage to learn an optimal policy.
�

4.7 Partial observability

In this section we finally address the problem of partial observability. So far, we
considered that the agent was able to unambiguously perceive its current state and
act accordingly. However, it is a fact that in most real situations autonomous agents
have limited sensing capabilities and are not able to completely determine the current
state of their surroundings. Instead, they have access to a set of noisy measurements
from which they must infer the value of that state. When this happens, agents are
said to have partial observability.

For example, if we consider the particular case of mobile robot navigation, actual
robots rely on sensorial data to determine their state/location in the environment.
Any procedure relying on sensor data should account for the noise in the mea-
surements and it is reasonable to admit partial observability when modeling the
navigation of a mobile robot. In problems with partial observability, the decision-
maker must act based on its observations and past history. This information can be
used to estimate the actual state, but this estimate is generally accurate only up to
some degree of uncertainty.

The uncertainty arising from partial observability is a complex problem to deal
with in learning situations. The most widely used algorithms in the reinforcement
learning literature assume that the learning agent is able to determine the state of
the system unambiguously. When this assumption fails, all those methods present
severe limitations and yield, in general, poor policies.

The extension of reinforcement learning methods from fully observable environ-
ments to to their partially observable counterparts is far from easy. In fact, although
partial observability allows more realistic modeling in many problems, this added
modeling ability comes at a significant cost in complexity, since even algorithms us-
ing complete models of the environment are often untractable [164, 175, 177, 206].

In spite of all this, there are still numerous examples in which the straightfor-
ward application of RL algorithms to partially observable scenarios led to impressive
results, examples for which those methods were not primarily designed [173]. Such
successes gave rise to a significant effort to extend reinforcement learning algorithms
into the world of partial observability.

Partial observability in mobile robot navigation

In Chapter 2 we justified the use of topological maps in part for its scalability:
topological maps represent an environment as a (usually finite) graph. Also, as
seen in Chapter 2, this representation gives rise to a finite-state MDP model for the
navigation of the robot. But in the previous sections we have introduced several
methods to approximate V δ and Q∗ in MDPs with infinite state-spaces. It would
seem that topological navigation would relieve us from having to resort to these
more elaborate algorithms, which require more stringent assumptions than those in
Chapter 3.

82 4. Generalized Reinforcement Learning

Q-learning SARSA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for Q−learning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for SARSA

a) Grid-based approximation;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for Q−learning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for SARSA

b) Plane-based approximation;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for Q−learning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for SARSA

c) Exp-based approximation;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for Q−learning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Optimal policy for SARSA

d) Kernel-based approximation;

Figure 4.9: Example 4.2: Policies learnt by approximate Q-learning and
approximate SARSA for different sets of basis functions.

4.7. Partial observability 83

Q-learning SARSA

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−5

0

5

10

15

x

Value surface for Q−learning

y

V
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−2

0

2

4

6

8

10

x

Value surface for SARSA

y

V
(x

,y
)

a) Grid-based approximation;

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.8

−0.6

−0.4

−0.2

0

x

Value surface for Q−learning

y

V
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.5

−0.4

−0.3

−0.2

−0.1

0

x

Value surface for SARSA

y

V
(x

,y
)

b) Plane-based approximation;

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

5

10

15

20

x

Value surface for Q−learning

y

V
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

5

10

15

20

x

Value surface for SARSA

y

V
(x

,y
)

c) Exp-based approximation;

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−5

0

5

10

15

x

Value surface for Q−learning

y

V
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−5

0

5

10

15

x

Value surface for SARSA

y

V
(x

,y
)

d) Kernel-based approximation;

Figure 4.10: Example 4.2: Value-functions learnt by approximate Q-learning and
approximate SARSA for different sets of basis functions.

84 4. Generalized Reinforcement Learning

On the other hand, as already stated, in all the Markov processes considered so
far it is implicitly assumed that the state Xt of the process is accessible to the agent,
i.e., the agent has full observability. In fact, the very definition of policy introduced
implies that an agent chooses its actions as a function of the state of the process.

However, the assumption of full observability is seldom verified in practice. Mo-
bile robots interacting in the real world are able to perceive the state of the process
(i.e., their location in the environment) by means of their sensors, which are often
subject to errors and noise. This means that any such perception of the state has
necessarily some inherent uncertainty and the model provided by the framework of
MDPs does not account for such uncertainty.

In the remainder of the chapter, we discard the full observability assumption.
We describe the framework of partially observable Markov chains and partially ob-
servable MDPs (POMDPs), while analyzing some fundamental consequences of the
loss of observability in terms of the theory of Markov chains.

We re-cast a partially observable finite state-space Markov chain as a fully observ-
able infinite state-space Markov chain. This leads to a central result that describes
the stability/ergodicity properties of this associated fully-observable Markov chain
in terms of the stability/ergodicity/observability properties of the original partially-
observable chain.

This result establishes the applicability of the methods developed in this chapter
to topological navigation problems that include partial observability, extending the
Markov decision process model used so far.

4.7.1 Partial observability and internal state

In the theory and methods described so far in this chapter, we have considered
general, infinite state-space Markov processes. We now return to the less general
situation addressed in Chapter 3. In particular, the Markov processes in the re-
mainder of the chapter admittedly have a finite state-space X . As will soon become
apparent, the introduction of partial observability, even in this finite setting, imme-
diately leads back to the infinite state-space scenario. Nevertheless, and unless is
explicitly stated, we admit X to be finite.

Let (X ,P) be a finite state-space Markov chain. Let Z be a finite set of possible
observations and suppose that, at each time instant, the state Xt of the chain is
not observable. Instead, a random measurement Zt is “issued” that depends on the
state Xt of the chain according to an observation probability given by

P [Zt = z | Xt = i] = O(i, z), (4.22)

Notice that, as indicated in (4.22), O(i, ·) is a discrete (probability) measure on Z,
since Z is finite. The function O determines the probability of making a particular
observation z ∈ Z as a function of the current state Xt and is referred as the
observation probability function. Notice that, since both X and Z are admitted
finite, P and O can be represented by matrices.

A partially observable Markov chain (also known as a hidden Markov model)
is defined as a 4-tuple (X ,Z,P,O), where X and Z are the state and observation
spaces and P and O are the transition and observation probability matrices.

4.7. Partial observability 85

Let πt be a discrete probability measure on X conveying the probability distri-
bution of the state Xt over the set X at time instant t. We write Xt ∼ πt to denote
the fact that the r.v. Xt is distributed according to πt. Since X is assumed finite,
πt is a vector with ith component given by

πt(i) = P [Xt = i | Ft] , (4.23)

where Ft represents the history of the process up to time t.
Suppose, now, that at time instant t the chain is in state i ∈ X with probability

πt(i) and a transition occurs, governed by the transition probabilities in P. Suppose,
furthermore, that an observation Zt+1 = z is made at time instant t+1. Some explicit
computations lead to

P [Xt+1 = j | Zt+1 = z,Xt ∼ πt] =

=
P [Xt+1 = j, Zt+1 = z | Xt ∼ πt]

P [Zt+1 = z | Xt ∼ πt]
=

=
P [Zt+1 = z | Xt+1 = j,Xt ∼ πt] P [Xt+1 = j | Xt ∼ πt]∑
k∈X P [Zt+1 = z | Xt+1 = k,Xt ∼ πt] P [Xt+1 = k | Xt ∼ πt]

.

Using the Markov property, this leads to

P [Xt+1 = j | Zt+1 = z,Xt ∼ πt] =

=

∑
i∈X P [Zt+1 = z | Xt+1 = j] P [Xt+1 = j | Xt = i] P [Xt = i | Xt ∼ πt]∑
i,k∈X P [Zt+1 = z | Xt+1 = k] P [Xt+1 = k | Xt = i] P [Xt = i | Xt ∼ πt]

=

=

∑
i∈X O(j, z)P(i, j)πt(i)∑
i,k∈X O(k, z)P(i, k)πt(i)

=

=

∑
i∈X πt(i)P(i, j)O(j, z)∑
i,k∈X πt(i)P(i, k)O(k, z)

.

As such, given the observation Zt+1 = z, the update rule for πt is given by

πt+1(j) = Π(πt, z)j =

∑
i∈X πt(i)P(i, j)O(j, z)∑
i,k∈X πt(i)P(i, k)O(k, z)

. (4.24)

It is known that the vector πt is a sufficient statistic for Xt [51] and it “records”
all observations made so far in a single probability vector.8 Notice, furthermore,
that πt+1 depends exclusively on the parameters P and O of the process and on the
previous probability vector πt, which implies that, in this sense, it verifies the Markov
property.

As such, consider the stochastic process {πt} where πt is as defined by (4.23).9
Suppose that |X | = n. Then, since each πt is a probability vector, it lies in Rn and,

8A sufficient statistic for Xt means that no probability distribution on X is more “accurate”
than πt given the whole history of the process up to time t.

9Notice that the randomness in πt is due to the dependence on the observations Zt which are
random variables.

86 4. Generalized Reinforcement Learning

in particular, in the n− 1-dimensional simplex Sn defined as

Sn =

{
x ∈ Rn |

n∑
i=1

xi = 1

}
.

As a subset of Rn, Sn is endowed with all the metric and topological properties of Rn.
In particular, considering the usual topology in Rn, Sn is a compact, separable and
metrizable topological space and these properties permit the utilization of several
results from the theory of Markov chains on topological spaces.

Given any partially observable Markov chain (X ,Z,P,O), we can define an equiv-
alent fully-observable Markov chain (Sn, P̄), where n = |X | and the kernel P̄ is given,
for any π ∈ Sn and any set U ∈ B(Sn), by

P̄(π, U) =
∑
z∈Z

∑
i,j∈X

π(i)P(i, j)O(j, z)IU(Π(π, z)),

where Π(π, z) is as defined in (4.24) and IU(π) is the indicator function for the set
U , defined as

IU(π) =

{
1 if π ∈ U ;

0 otherwise.

The state πt of the new chain is now a vector in Sn and can be interpreted as
an internal state of the agent, tracking the state Xt of the original chain. Since
the ith coordinate of πt describes the belief that the underlying state of the chain is
Xt = i, it is common to refer to πt as the belief-state of belief-vector at time t and
that designation shall also be adopted henceforth.

4.7.2 Geometric ergodicity in associated Markov chains

We have just established that a partially observable Markov chain (X ,Z,P,O) can
be recast as a fully observable Markov chain (Sn, P̄) with an infinite state-space.
We have also emphasized the fact that Sn is a subset of Rn and, consequently, it
is a compact, separable and metrizable topological subspace of Rn with the usual
topology.

We proceed the study of partially observable stochastic chains by defining the
properties required from the chain (X ,Z,P,O) to ensure the stability of the tra-
jectories of the chain (Sn, P̄). In particular, we aim at providing conditions on P
and/or O ensuring that the fully observable, infinite state-space chain (Sn, P̄) is ge-
ometrically ergodic. This result will prove of great use when addressing partially
observable Markov decision processes, in the next subsection. In fact, this class
of Markov processes can also be recast as a fully observable, infinite state-space
counterpart to which the methods of Section 4.5 can be applied.

The new results derived herein constitute the second fundamental contribution
of this chapter and provide all the necessary means to conclude the analysis of
convergence of the reinforcement learning methods in partially observable scenarios.

* * *

4.7. Partial observability 87

In this subsection we establish the geometric (in fact, uniform) ergodicity of the
chain (Sn, P̄) by means of three distinct lemmas, in which we separately identify the
conditions under which

• (Sn, P̄) is ψ-irreducible;

• (Sn, P̄) is aperiodic;

• Sn is petite.10

Once these facts are properly established, geometric ergodicity of the chain (Sn, P̄)
follows trivially from Theorems B.4.2 and B.8.4 in Appendix B.

The three facts above are established formally in the following results.

Lemma 4.7.1. Let (X ,Z,P,O) be a partially observable Markov chain. Then, if
(X ,P) is irreducible and there is an observation z ∈ Z and a state i∗ ∈ X such that,
for all i ∈ X ,

O(i, z) =

{
1 if i = i∗;

0 otherwise,

the Markov chain (Sn, P̄) is ψ-irreducible.

Proof See Appendix F. 2

Lemma 4.7.2. Let (X ,Z,P,O) be a partially observable Markov chain verifying the
conditions of Lemma 4.7.1. Then, if (X ,P) is aperiodic, so is (Sn, P̄).

Proof See Appendix F. 2

Lemma 4.7.3. Let (X ,Z,P,O) be a partially observable Markov chain. Then, if
the conditions of Lemmas 4.7.1 and 4.7.2 are met, the state-space Sn of the chain
(Sn, P̄) is petite.

Proof See Appendix F. 2

Now, Lemma 4.7.1 through 4.7.3 together with Theorems B.4.2 and B.8.4 lead
to the following concluding result.

10Formal definitions of ψ-irreducibility, aperiodicity and petiteness in Markov chains can be
found in Appendix B.

88 4. Generalized Reinforcement Learning

Theorem 4.7.4. Let (X ,Z,P,O) be a partially observable Markov chain. Suppose
that the chain (X ,P) is irreducible and aperiodic (and therefore ergodic). Suppose,
furthermore, that there is an observation z ∈ Z and a state i∗ ∈ X such that, for
all i ∈ X ,

O(i, z) =

{
1 if i = i∗;

0 otherwise.

Then, the Markov chain (Sn, P̄) is geometrically ergodic.

Remark: We notice that the observability condition in this theorem is less
stringent than it may appear. It simply requires that there is at least one
identifiable state, i.e., one state that the agent can unambiguously identify.
This is often the case in many useful applications. For example, in robotic
navigation tasks the goal of the robot is usually an identifiable state. �

4.7.3 POMDPs and associated MDPs

So far, we have addressed partial observability in Markov chains. Partially observ-
able MDPs arise naturally from partially observable Markov chains by considering
a control process and a reward function.

Therefore, a partially observable Markov decision process (POMDP) is a tuple
(X ,A,Z,P,O, r, γ). The parameters X , A, P, r and γ are as defined in Chapter 2
and define the “underlying MDP”. Grossly stated, a POMDP is an MDP with partial
observability as featured by the pair (Z,O). The set Z is the finite observation-
space and O is the observation probability function: for each action a ∈ A, Oa(i, z)
represents the observation probability

Oa(i, z) = P [Zt+1 = z | Xt+1 = i, At = a] .

We emphasize the fact that the observations Zt+1 depend on the action At in the pre-
vious time instant. This dependence simply adds greater generality to the POMDP
model. It allows, for example, to include in the POMDP model perceptual effects
arising from changes in orientation of a robot, active sensing, etc.

From a POMDP we can derive a fully observable MDP with infinite state-space
by reasoning as in Subsection 4.7.1. Consider the belief state πt, each component of
which indicates the probability of being in each state i ∈ X at time t. This means
that the belief πt is a vector in Rn (n = |X |) with ith component given by

πt(i) = P [Xt = i | Ft] .

If the agent takes an action At = a, the updated belief at time t + 1 given the
observation Zt+1 = z is given by an expression equivalent to (4.24). Explicitly, the

4.7. Partial observability 89

updated belief state πt+1 is

πt+1(j) = Πa(πt, z) =

∑
i∈X πt(i)Pa(i, j)Oa(j, z)∑
i,k∈X πt(i)Pa(i, k)Oa(k, j)

. (4.25)

Apart from the index a, (4.25) and (4.24) are essentially equivalent.
For this associated infinite-state MDP, we define the transition probability ker-

nels P̄a as
P̄a(π, U) =

∑
z∈Z

∑
i,j∈X

π(i)Pa(i, j)Oa(j, z)IU(Πa(π, z)),

where Πa(π, z) is defined in (4.25). Define the reward r̄ associated with a transition
(π, a, π′) as

r̄(π, a, π′) =
∑
i,j∈X

π(i)Pa(i, j)r(i, a, j).

With P̄ and r̄, we obtain a fully observable MDP (Sn,A, P̄, r̄, γ) associated with the
POMDP (X ,A,Z,P,O, r, γ), where Sn denotes once again the n − 1-dimensional
probability simplex.

Remark: Notice that the reward as defined above corresponds to the expected
immediate reward for being in each state i with probability π(i) and taking
action a. It does not depend on the belief π′ after the transition. This means
that the rewards in the associated MDP (Sn,A, P̄, r̄, γ) do not depend on the
observations Zt, which is true. �

In the new MDP (Sn,A, P̄, r̄, γ), it is straightforward to define a deterministic
policy δ as a mapping

δ : Sn −→ A
that determines an action for each belief-state in Sn. A stochastic policy is defined
analogously, by assigning to each belief-state a probability distribution over A.

As in Chapter 2, given a policy δ, the corresponding value-function V δ is

V δ(π) = Eδ

[
r̄(π, a, π′) + γV δ(π′)

]
.

The optimal value function V ∗ verifies the Bellman equation

V ∗(π) = max
a∈A

E
[
r̄(π, a, π′) + γV δ(π′)

]
,

and the optimal Q-function verifies

Q∗(π, a) = E
[
r̄(π, a, π′) + γmax

b∈A
Q∗(π′, b)

]
.

More intuitive and well-known expressions for these functions can readily be

90 4. Generalized Reinforcement Learning

obtained by replacing P̄ and r̄ by the corresponding definitions, yielding

V δ(π) =
∑
i,j∈X

∑
a∈A

δ(π, a)π(i)Pa(i, j)

[
r(i, a, j) + γ

∑
z∈Z

Oa(j, z)V δ(Πa(π, z))

]
;

V ∗(π) = max
a∈A

∑
i,j∈X

π(i)Pa(i, j)

[
r(i, a, j) + γ

∑
z∈Z

Oa(j, z)V ∗(Πa(π, z))

]
;

Q∗(π, a) =
∑
i,j∈X

π(i)Pa(i, j)

[
r(i, a, j) + γ

∑
z∈Z

Oa(j, z) max
b∈A

Q∗(Πa(π, z), b)

]
.

With the definition of V δ, V ∗ and Q∗ we complete the presentation of the theo-
retical framework needed to apply approximate Q-learning and approximate SARSA
to POMDPs. In the remainder of the section, we review some bibliographical ref-
erences on POMDPs and, in the next section, we conclude the chapter with an
illustrative example.

4.7.4 Related work

There are numerous works in the literature surveying partially observable Markov
decision problems. Cassandra [52] presents a comprehensive introduction to this
class of problems. More developed approaches can be found in [2, 51]. Murphy
[209] surveys several algorithms designed to handle partially observable scenarios;
Hasinoff [120] reviews model-free reinforcement learning methods that address par-
tial observability and Hauskrecht [121] analyzes several value-based methods for
problems with partial observability.

The methods specifically developed to address decision problems in partially
observable scenarios can grossly be divided into three main classes, namely:

(A) Exact methods that seek to determine the exact optimal policy or a correspond-
ing value-function from which the optimal policy can be determined. Exact
methods include several dynamic-programming-based algorithms (such as the
witness algorithm [163] or incremental pruning [54]) and others [37, 346].

(B) Methods for particular problems. The methods in this class are designed to
address specific problems, exhibiting particular properties. A few examples can
be found in [19, 109, 187, 264, 271].

(C) Approximate methods that provide sub-optimal solutions. This is, by far, the
widest and most diverse of all three classes and includes numerous algorithms
supported by either formally justified approximations [15, 18, 30, 119, 122, 199,
219, 231, 284] or by more heuristic reasoning [48, 93, 195, 262, 309, 311].11

11The list of bibliographic references provided does not intend to be exhaustive in any way,
but merely to convey an idea of the huge amount of work addressing partial observability in
reinforcement learning problems. Many of the references provided herein contain themselves further
references for the interested reader.

4.8. An illustrative example 91

In most of these methods, the agent maintains some internal state that is mapped
to a corresponding action according to some policy. This internal state provides the
agent with some record of the past history of actions/observations that allows to
“overcome” the problem of partial observability. There are also some works in the
literature which simply disregard partial observability and treat the observations as
actual state measurements [132, 173, 237]. This approach, however simple it may
be, can lead to arbitrarily poor policies, as argued in [278].12

Clearly, of the three classes of methods described above, the methods in class C
are those more widely applicable. Approximate Q-learning and approximate SARSA
(seen as POMDP solutions methods) naturally fall within this category.

Our methods also exhibit several other interesting properties as POMDP solu-
tion methods. First of all, both our methods are belief-based, since both methods
determine policies as mappings from belief-vectors to actions. In robotic terms,
a belief vector provides an estimate on the position of the robot in the environ-
ment, taking into account the uncertainty arising from the observations. Therefore,
computing/updating a belief-vector corresponds to localizing the robot and is tan-
tamount to the so-called Markov localization [87, 88, 89]. Therefore, beliefs arise
naturally in robotic applications and have been successfully applied in several real-
world navigation tasks (see references above).

On the other hand, the value function V ∗ for the MDP (Sn,A, P̄, r̄, γ) is known to
have specific properties. In particular, it is convex and, in some situations, piecewise
linear.13 These properties can be taken into consideration when choosing the basis
functions in our algorithms. For example, we can use the projections of the belief-
vector in each of its components as basis function, yielding an approximation to the
optimal value function that will be necessarily piecewise linear. That is the approach
followed in the next chapter.

4.8 An illustrative example

We return to the problem introduced in Chapter 2 and consider the indoor environ-
ment in Figure 4.11. A mobile robot must navigate to the signaled goal room. At
each time instant, the robot can move in any of the four possible directions: North
(N), South (S), East (E) and West (W). An internal sensor allows the robot to
determine when the goal room is reached. The robot has no other sensors available.

This navigation problem can be modeled as a POMDP (X ,A,Z,P,O, r, γ),
where

• X , A, P and r are as in the example of Chapter 3;

• Z = {∅, Goal};
12A more detailed argument on the limitations of reactive/memoryless policies can be found in

[164].
13In a general POMDP, a policy is called finitely transient if the corresponding value function

is piecewise linear. We abusively say that a POMDP is finitely transient if the optimal policy is
finitely transient. V ∗ is piecewise linear iff the POMDP is finitely transient [52].

92 4. Generalized Reinforcement Learning

Room 9

Room 1 Room 4 Room 7

Room 2 Room 5 Room 8

Room 3 Room 6

Goal
Room

Figure 4.11: Example of an indoor environment.

• O represents the observation probability function. For i = 1, . . . , 8, O(i, ∅) = 1.
For i = 9, O(i, Goal) = 1;

• γ = 0.95.

Whenever the agent reaches the goal state, its position is randomly reset to any of
the other 8 states, independently of the agent’s action.

Notice that, since the robot is only able to observe the goal location, the set
of possible observations has only two elements: ∅, corresponding to the null obser-
vation, and Goal, the observation corresponding to the goal state. The goal state
clearly verifies the conditions of Lemma 4.7.1 and the algorithms in Section 4.5 can
be applied with guaranteed convergence.

We applied approximate Q-learning and approximate SARSA to the associated
MDP, defined as the tuple (Sn,A, P̄, r̄, γ). We used a simple set of 9× 4 functions,
each associated with one component of the belief-vector and one action, i.e.,

Ξ = {ξ1,N , . . . , ξ9,N , ξ1,S, . . . , ξ9,W}

with each ξi,a given by
ξi,a(π, b) = π(i)Ia(b).

This corresponds to a total of 9 × 4 scalar parameters θ(i, a), one for each pair
(i, a). In the fully observable case, the learnt parameters corresponded to the actual
optimal Q-values, one parameter for each state-action pair (i, a). Using the set of
basic functions described above, the number of learnt parameters is the same as in
the fully observable case: for each state i ∈ X and action a ∈ A there is one function
ξi,a ∈ Ξ and a corresponding parameter θ(i, a).

As in the fully observable case, the robot was allowed to explore/learn during
1, 000 time units and the obtained policy was then evaluated for 100 time units. We
use a similar learning time in the fully and partially observable scenarios to allow a
better comparison of our results in the presence of partial observability with those
obtained with full observability. During learning we used Boltzmann exploration in
all experiments.

Figure 4.12 represents the total reward obtained by the robot during learning.
The solid blue line represents approximate Q-learning and the dashed red line rep-

4.8. An illustrative example 93

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

Time units

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

Figure 4.12: Cumulative reward and greedy choice probability during the 1, 000-time-units
learning period, using a set of 36 basis functions. The solid blue line corresponds to
approximate Q-learning and the dashed red line corresponds to approximate SARSA.

Table 4.3: Comparative results for approximate Q-learning, approximate SARSA and
incremental pruning (labeled as “Optimal”) after the learning period is complete. We used a
set of 36 belief-based basis functions. We present the average total discounted reward and

standard deviation obtained over 2, 000 independent Monte-Carlo trials.

Method Total Disc. Reward

Approx. Q-learning 41.680 ± 4.941
Approx. SARSA 41.639 ± 4.846

Optimal 41.651 ± 4.982

resents approximate SARSA. Notice that both learning algorithms present a similar
learning behavior. Notice that no significant difference between the methods is
perceivable.

We also tested each of the learnt policies in the environment. We ran each
learnt policy for 100 time units and determined the total discounted reward obtained
in each case. We have run 2, 000 independent Monte-Carlo trials and present in
Table 4.3 the average and standard deviation obtained using each of the methods.
For comparison, we also present the optimal results, obtained using the incremental
pruning algorithm [54]. Notice that the two learning methods present a similar
performance, as expected, since both converge to the same approximation. The
remarkable thing is that both methods exhibit optimal performance in the given
environment.

Approximate Q-learning when used with the set of functions described in the

94 4. Generalized Reinforcement Learning

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

Time units

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

Figure 4.13: Cumulative reward and greedy choice probability during the 1, 000-time-units
learning period, using a set of 16 basis functions. The solid blue line corresponds to
approximate Q-learning and the dashed red line corresponds to approximate SARSA.

Table 4.4: Comparative results for approximate Q-learning and approximate SARSA using
a kernel-based approach, after the learning period is complete. We used a set of 16

kernel-based basis functions. We present the average total discounted reward and standard
deviation obtained over 2, 000 independent Monte-Carlo trials.

Method Total Disc. Reward

Approx. Q-learning 41.513 ± 4.866
Approx. SARSA 41.580 ± 4.945

previous test corresponds to the linear-Q algorithm introduced in [169]. In this
work, the author reports similar results to those in Table 4.3 in a similar problem
(the 4× 4 grid problem).

To further explore the applicability of our proposed methods, we ran a second
set of tests using a kernel-based approximation with only 4× 4 basis functions. The
results are presented in Figure 4.13 and Table 4.4.

Notice that, by comparing the results in Table 4.4 with the optimal results in
Table 4.3, we conclude that the algorithms also attain optimal performance using this
second set of basis functions. However, instead of learning 9×4 = 36 parameters, we
are able to use a more compact representation and learn only 4×4 = 16 parameters.
This representation is even more compact that the one used in the optimal, fully
observable MDP in Chapter 3, that also learnt 36 parameters (the Q-values).

We conclude by summarizing the main conclusions from this example. First of
all, using a very simple belief-based approximation we are able to reproduce the
performance obtained with an exact method (incremental pruning). Furthermore,

4.9. Concluding remarks 95

we are able to still attain optimal performance even when using a more restricted
set of basis functions. Finally, our experimental results agree with those provided
in [169]. The added value in our approach arises from the established convergence
guarantees of our method, whose application in [169] was only empirically motivated.

4.9 Concluding remarks

To conclude this chapter, we summarize the main ideas presented so far. We discuss
the applicability of the reinforcement learning framework introduced in the two
previous chapters to single-robot navigation problems. We also hint on how this
framework can be extended to multi-agent settings, a topic to be developed in the
second part of this thesis.

4.9.1 Summary

In Chapters 2 and 3, we described Markov decision processes as a suitable framework
to address single-agent topological navigation problems. We discussed several known
methods from the literature that learn the optimal control sequence in a given
environment. Such control sequence is generated by a policy that can, in turn, be
computed from a set of real parameters, the Q-values.

However, in the two referred chapters, two essential assumptions were made:

• The state-space X was finite;

• At each time instant, the agent (robot) was able to perceive its state Xt with
no uncertainty.

If the use of topological maps provides an argument in favor of the first assumption,
the second assumption is seldom verified in real application scenarios.

In this chapter we introduced generalizations of the methods in Chapter 3 specif-
ically designed to alleviate the previous assumptions. In particular, we extended Q-
learning and SARSA, combining both methods with linear function approximation.
The new methods thus obtained, dubbed as approximate Q-learning and approx-
imate SARSA, can be applied in problems where the state-space is infinite. We
established convergence w.p.1 of both methods and provided an interpretation of
the obtained approximation as the fixed-point of a Bellman-like operator.

We then addressed the problem of partial observability. A decision problem is said
to have partial observability if it violates the second of the two assumptions above.
We described a method to reformulate this class of problems as fully observable
problems with infinite state-spaces and proposed the application of approximate
Q-learning and approximate SARSA to such equivalent problems.

We concluded the chapter by illustrating the use of the proposed methods in a
familiar topological navigation example.

4.9.2 Discussion

In this chapter, we presented several reinforcement learning algorithms that can be
used either to evaluate a policy δ or to determine the optimal Q-values. These meth-

96 4. Generalized Reinforcement Learning

ods differ from those in the previous chapter in their capability to cope with problems
with infinite state-spaces. Under suitable conditions, identified in Theorems 4.5.2
and 4.5.3, all the algorithms converge asymptotically to an approximation of the de-
sired function. Similarly to the algorithms in the previous chapter, the algorithms
presented herein also ensure convergence in behavior to the optimal policy w.r.t. the
learnt approximation, as long as the learning policy has the GLIE property.

In all this presentation, we postponed the discussion of several important issues
to these concluding remarks. We address these issues next.

Quality of approximation and error bounds

In Section 4.5 we introduced approximate Q-learning and approximate SARSA and
established the convergence of both methods to a fixed-point of a Bellman-like op-
erator. This operator resulted from the composition of the Bellman operator H
(defined in (4.3)) and the orthogonal projection PQ on a finite dimensional hyper-
plane Q. This approach is similar to the one pursued by Tsitsiklis and Van Roy [321]
with the main difference that the method in the referred work is a policy evaluation
method, while the methods introduced in this chapter allow policy optimization (by
approximating the optimal function Q∗). However, unlike [321], we are unable to
provide error bounds for the obtained approximation.

Our methods converge to the function Q(θ∗) verifying the fixed-point recursion
in (4.16). This means that, if the set of functions Ξ chosen is such that Q∗ ∈ Q,
both methods will actually converge to Q∗. However, as the distance between Q∗

and Q increases, the performance of the methods will (expectedly) degrade. This
means that the functions in the chosen linear space Q provide poor approximations
of the desired function and there are no practical guarantees on its usefulness (in
terms of the corresponding greedy policy).

The algorithm in [321] suffers from a similar disadvantage. However, the error
bounds derived in that work are reassuring in that they state that the performance
of approximate TD(0) “gracefully” degrades as the distance between V δ and V in-
creases. For our methods we have no such error bounds available and, as such, cannot
guarantee such “graceful” degradation in performance. Ensuring similar bounds as
those in [321] would require significant changes in the method and would impose
more stringent restrictions on the possible approximation architectures. We present
in Appendix E an alternative method for which error bounds can be derived.

In any case, when using function approximation, the functions should be chosen
so as to include all available information regarding the true function to be estimated.
Van Roy [326] briefly addresses the problem of how to choose “adequate” basis
functions. The interpolation method by Szepesvári and Smart [302] suggests a
natural choice of basis functions that is guaranteed to converge to the optimal Q-
function as the number of sample points increases. We refer to the concluding
remarks in Chapter 10 for further references on this topic.

Projections and norms

In Theorem 4.5.2, several conditions are listed that ensure the convergence of the
methods addressed therein. We briefly review those conditions:

4.9. Concluding remarks 97

• We require the sampled Markov chain to be geometrically ergodic, a condition
that simply ensures that the average obtained from the sample trajectories is
close to the expectation w.r.t. the corresponding stationary measure;

• We require the step-size sequence {αt} to verify the customary summability
conditions. This is a standard condition from stochastic approximation that
ensures that the temporal differences used in the updates are properly averaged
over time;

• We require the functions in Ξ to be bounded and linearly independent. In
particular, we require that

∑
i |ξi(x, a)| ≤ 1 for all (x, a).

We now focus on the last condition and analyze its implications.
We start by noticing that, if the set of functions Ξ is not linearly independent, we

can simply remove the linearly dependent functions. Since the linear space spanned
by the set of functions remains unchanged when the linearly dependent functions are
removed, the generalization capabilities of the algorithm do not improve by adding
linearly dependent functions.

On the other hand, the fact that the functions ξi are bounded together with the
fact that the rewards r are bounded, ensures that the iterations θt of the algorithm
remain bounded. This is a central condition when analyzing the trajectories of the
algorithm by means of the associated ODE.

Finally, w.r.t. the condition
∑

i |ξi(x, a)| ≤ 1, several observations are in order.
First of all, Tsitsiklis and Van Roy [321] make use of the fact that the TD operator Tδ

is a contraction in the 2-norm to establish the convergence of approximate TD(0). In
fact, the orthogonal projection PV is non-expansive in this norm (since it is naturally
defined in the corresponding inner-product space) and the combined operator PVTδ

is a contraction in the 2-norm. This single fact is fundamental in guaranteeing the
existence of the corresponding fixed-point, the convergence of the algorithm and the
referred error bounds.

The fact that the operator H used in Q-learning is a contraction in the sup-norm
makes it hard to define a “projection” operator that is non-expansive in the sup-norm
and projects any function to Q.14 To avoid this difficulty, we impose the condition
that

∑
i |ξi(x, a)| ≤ 1 for all x, a. When studying the associated ODE θ̇t = h(θt) we

are able to decompose h into two functions h1 and h2 such that h(θ) = h1(θ)−h2(θ).
Since one of these functions is a contraction and the other is a non-expansion, we
are able to establish convergence w.p.1 of approximate Q-learning without requiring
the combined operator PQH to be contractive.

Finally, the condition above is not too restrictive, in that a simple normalization
can guarantee its verification. Furthermore, several known approximation strategies
trivially verify such condition (e.g., discretization [266], “soft”-discretization [279] or
convex interpolation [302]).

14Szepesvári and Smart [302] define a projection-like operator that is shown to be non-expansive
in the sup-norm. In Appendix E we use a similar projection-like operator to establish the conver-
gence and error bounds of a sample-based Q-learning algorithm. The proof of convergence of both
these methods immediately follows from the arguments above.

98 4. Generalized Reinforcement Learning

Applicability to partially observable scenarios

In Section 4.7, we applied approximate Q-learning and approximate SARSA to par-
tially observable Markov decision processes by reformulating finite POMDPs as a
fully observable MDPs with infinite state-space. Tracking the state of an associated
MDP reduces to tracking the belief-state πt that can easily be computed from the
original POMDP parameters as in (4.25).

Notice that tracking the belief-state, i.e., maintaining an updated belief-state at
each time instant t ∈ T , implies that the agent must have a model of the POMDP.
In particular, it requires the knowledge of the parameters P and O. This is less
general than the approach adopted in most reinforcement learning methods, where
no model of the system is assumed.

In our mobile robot navigation problem, this corresponds to stating that the
robot has a model (at least a probabilistic model) of its dynamic behavior and
sensors, but not on the mission. This is a reasonable assumption in many cases,
and allows us to deal with partial observability. Also, as will be seen in the next
chapter, our methods are able to tackle complex navigation problems, with hundreds
of states, problems which are computationally untractable with exact methods.

Finally, notice that the overall conditions required to ensure convergence of the
methods in this chapter in partially observable scenarios are extremely similar to
the requirements for convergence in fully observable scenarios. In fact, as seen in
Chapter 3, convergence of Q-learning requires infinite visits to each state-action
pair, this condition being verified if the chain is ergodic. Convergence in partially
observable scenarios simply requires one extra condition: that at least one state is
identifiable. In navigation problems (and in several other benchmark problems from
the POMDP literature) this condition is always verified.

* * *

With the methods presented in this chapter, we conclude the theoretical study
of single-agent topological navigation problems, from a learning perspective. In the
next chapter we conclude this first part of the thesis by applying this methodology
to several different problems of increasing complexity.

In the second part of the thesis, we extend the study developed so far to multi-
agent systems. We introduce Markov games (or stochastic games) as a multi-agent
extension of Markov decision processes. The extreme similarities between the two
frameworks are evident: a Markov decision process can be seen as a Markov game
with a single player.

Our approach to multi-agent problems is similar to the one pursued in this first
part: we describe several known reinforcement learning algorithms for Markov games
and extend these algorithms to problems with infinite state-spaces. We then ad-
dress the problem of partial observability, far more complex when there are multiple
decision-makers than in single-agent problems.

Chapter 5

Results on Single Robot
Navigation

5.1 Introductory remarks . 99

5.2 The experimental setup . 100

5.2.1 The scenarios . 101

5.2.2 The robot . 101

5.2.3 The experiments . 106

5.3 Experimental results . 109

5.3.1 Discussion . 109

5.4 Concluding remarks . 114

5.4.1 Summary . 114

5.4.2 Discussion . 114

We introduced in Chapter 4 the necessary methods to address general single-

robot topological navigation problems. In this chapter we apply this framework

and methods to several navigation problems.

We describe the general robot model used and the POMDP framework arising

from this model. We present several complex navigation problems and apply our

reinforcement learning algorithms to these problems. We verifies that the necessary

convergence conditions are met in each of the considered problems and evaluate

the performance of our methods in such complex scenarios.

5.1 Introductory remarks

In this chapter, we propose the application of the methodology developed in the
previous chapters to more elaborate problems. In the previous chapter, we already
evaluated the performance of these methods on an extremely small toy problem.

100 5. Results on Single Robot Navigation

In that problem, we dealt with a POMDP with only 9 states, 2 observations and
4 possible actions. This simple example helped us to evaluate the performance of
the proposed methodology and compare it with the performance of the optimal so-
lution. However, in that problem, the optimal policy was very simple and easily
implemented even with few observations. As such, it provides us with little infor-
mation on how useful the methods developed so far can be in actual topological
navigation problems.

On the other hand, determining optimal solutions is computationally too expen-
sive for large POMDPs (with more than a few states) and this prevents us from
conducting a similar comparison in larger, more complex problems. In other words,
the performance of approximate methods (such as those proposed in the previous
chapter) cannot be compared with that of the actual optimal policy when consider-
ing large environments.

The set of problems addressed in this chapter (some of which have already been
addressed in other works), constitute benchmarks in the POMDP literature [51] and
seek to experimentally assess the usefulness of this model and corresponding solu-
tion methods in relatively large-sized problems. Although no comparison with the
optimal policy is possible, we can use the fully observable solution as a performance
upper bound, knowing however that this bound will seldom be tight.1

We consider a fully autonomous mobile robot navigating in several large and
complex environments and apply the algorithms described in the previous chapter
to “control” the decision-making process. The main goal of the chapter is to illus-
trate the successful application of reinforcement learning methods in mobile robot
navigation with partial observability.

It is important to refer once again that, since the optimal solution for these
problems is unavailable, we compare the performance of our methods with that of
an omniscient robot—one that is able to observe the actual state of the process at
all times. The policy implemented by such omniscient robot can readily be obtained
by any of the methods described in Chapters 2 and 3. Clearly, if our results are close
to those of the omniscient robot, we know that they must also be close to optimal.

In this chapter, we start by describing the applications considered. We describe
the environments, the robot and derive the POMDP model describing each naviga-
tion problem. We then describe the experiments conducted and the results obtained
with approximate Q-learning and approximate SARSA using a simple, linear approx-
imation. We briefly comment on these results and compare the performance of our
methods with that of the omniscient robot.

5.2 The experimental setup

In this section, we describe the scenarios, the mobile robot and the obtained POMDP
model for the different experiments.

1The optimal policy in the presence of partial observability can, in general, be much worse than
the optimal fully observable policy, as shown in [278].

5.2. The experimental setup 101

5.2.1 The scenarios

We consider six possible scenarios of application, four of which have been used as
benchmarks in several POMDP works [51]. Specifications for these environments can
also be found on-line at Cassandra’s POMDP page.2 In this page it is also possible
to find several references to other works where the results of several methods in
these benchmark problems are reported and compared.

All scenarios are simplified representations of existing environments, namely

• isr is a coarse representation of the 7th floor of the ISR building, at IST;

• mit is Cassandra’s simplified model of the 8th floor of MIT’s Computer Science
building;

• pentagon was inspired by the Pentagon building, with an inner and outer
hallway;

• cit is Cassandra’s coarse model of the 4th floor of the CIT building, Brown
University;

• suny represents the 1st floor of the Computer Science building, SUNY at
Stony Brook;

• cmu represents the 7th floor of the Computer Science buiding, at Carnegie-
Mellon University.

The several scenarios are sketched in Figures 5.1 through 5.6. Each of the cells in
the figures is represented as a different node in the corresponding topological map.
The number of nodes in the topological representation of the six environments is
summarized in the second column of Table 5.1. The cells in dark represent rooms and
the remaining cells represent corridors. The passages between rooms and corridors
(i.e., doorways) are narrower than those between adjacent corridor cells. The cells
marked with a bold border and an arrow correspond to initial/goal states for the
robot, as detailed in the continuation. In particular, blue states correspond to initial
states while red states correspond to goal states.

We consider that, in each cell, the robot can be in one of four possible orienta-
tions, according to the four compass directions: N , S, E and W . The number of
states for the corresponding POMDP models is summarized in the third column of
Table 5.1.

5.2.2 The robot

We address the problem of a mobile robot moving in the environments depicted in
Figures 5.1 through 5.6. In each of the environments, the robot must reach a target
state that it is able to unambiguously identify upon reaching it. In this goal state,
the orientation of the robot is irrelevant.

For the purposes of our experiments we admit that some low-level control ensures
motor control, obstacle avoidance, etc., so that we can focus on the navigation

2http://www.cs.brown.edu/research/ai/pomdp/

http://www.cs.brown.edu/research/ai/pomdp/

102 5. Results on Single Robot Navigation

I.S.R.

N

Figure 5.1: Topological representation of the isr environment with 43 nodes.

M.I.T.

N

Figure 5.2: Topological representation of Cassandra’s mit environment with 49 nodes.

Pentagon

N

Figure 5.3: Topological representation of Cassandra’s pentagon environment with 52
nodes.

5.2. The experimental setup 103

N
C.I.T.

Figure 5.4: Topological representation of Cassandra’s cit environment with 70 nodes.

S.U.N.Y.

N

Figure 5.5: Topological representation of Cassandra’s suny environment with 74 nodes.

C.M.U.

N

Figure 5.6: Topological representation of the cmu environment with 133 nodes.

104 5. Results on Single Robot Navigation

Table 5.1: Nodes in the topological representations of the isr, mit, pentagon, cit, suny
and cmu environments.

Environment # Nodes # States

isr 43 169
mit 49 193

pentagon 52 205
cit 70 277

suny 74 293
cmu 133 529

Table 5.2: Outcome probabilities for the different actions.

Action Outcome

No action Turn left Turn backTurn left
0.05 0.90 0.05

No action Turn right Turn backTurn right
0.05 0.90 0.05

No action Move forwardMove forward
0.10 0.90

problem from a higher level of abstraction, as intended.3 At each time instant, the
robot has 3 available actions: turn left, turn right and move forward.4 The outcome
of each of these actions is not deterministic, in that each action can lead to an
“unexpected” effect. For example if the robot takes the action “Turn Left”, it may
happen that the orientation does not change or that, instead, the robot turns back.
This uncertainty is summarized in Table 5.2, where each action is described in terms
of the possible outcomes. In the case above, the action “Turn Left” succeeds with
a probability of 0.9 and has an unexpected outcome with a probability 0.1 (be it a
180o turn or no turn at all).

The robot has 3 onboard sensors, one on each side of the robot and one on
the front of the robot (see Figure 5.7). To simplify the problem, we consider that
the sensor data received by the decision-maker is already processed. We admit the
processed data from each of the sensors to take one of three possible values:

• Wall, indicating that there is a wall next to the sensor;

3We once again refer the discussion in Chapter 2 on the interface between the high-level and
the low-level control of the robot.

4Clearly, the consideration of only the 3 referred actions implies that the robot will be non-
holonomic.

5.2. The experimental setup 105

Sensor 1

Sensor 2

Sensor 3Robot

Move
Forward

Turn
Right

Turn
Left

Figure 5.7: The robot, its sensors and actions.

Free space

WallDoor

Figure 5.8: Possible observations.

• Door, indicating that there is a doorway in or out of a room, next to the sensor;
and

• Free space indicating that there is a hallway in front of the sensor (see Fig-
ure 5.8 for an illustration).

Also, when the robot reaches the goal, it receives a specific signal, which also con-
stitutes a possible observation.

Observations are also prone to errors (arising both during the measuring and/or
the processing phases) and there is a non-zero probability of a misclassification in
the observations. The agent has a total of 28 possible observations (3 for each of the
3 sensors and the extra Goal observation). Table 5.3 summarizes the probabilities

106 5. Results on Single Robot Navigation

Table 5.3: Observation probabilities.

“True” observation Outcome

Wall Door FreeWall
0.90 0.05 0.05

Wall Door FreeDoor
0.15 0.70 0.15

Wall Door FreeFree space
0.03 0.07 0.90

GoalGoal
1.00

governing the errors in the observations of the robot (for each sensor). For example,
suppose that there is a wall next to one of the sensors. Once processed, the sensor
will provide the observation “Wall” with a 0.9 probability. It will observe a “Door”
with a 0.05 probability and “Free space” with a 0.05 probability.

Notice that the probabilities summarized in Tables 5.2 and 5.3 correspond to
the dynamic model and the sensor model of the robot. The process by which these
models can be derived is discussed in several works in the literature, such as [53,
274, 277]. The values used correspond to those in [51] so as to facilitate comparison.
We adhered to the same experimental setting since this will allow us to compare our
results with those reported in the referred work.

Finally, the robot receives a reward of +10 every time it reaches the goal state
and 0 every other time step. We consider a discount factor γ = 0.95.

5.2.3 The experiments

We used a simulator to generate state transitions, observations and immediate re-
wards in the several environments described above. For each experiment, the start-
ing state is chosen according to Table 5.4 and the initial belief state corresponds to a
uniform distribution over all non-goal states. Once the robot reaches the goal state,
its position is randomly reset, this time to any of possible states in the environment
(except the goal) and the belief is also reset to the initial uniform distribution.

For all experiments, we allowed the learning algorithms to explore the environ-
ment for 105 time steps. This long learning period is to make sure that the robot
has enough time to explore all its action-space and all the belief-space (which is a
continuous space with a dimensionality corresponding to the number of states in the
underlying MDP). We also conducted a series of trials with each learnt policy to
evaluate its performance. In all experiments, a single trial consisted of a truncated
trajectory of 250 simulated steps starting from the initial state. The immediate re-

5.2. The experimental setup 107

Figure 5.9: Comparison of two policies in environments of different sizes.

wards were appropriately discounted and then added to yield a sample of the total
discounted reward. As in all experimental results reported along the thesis, this was
repeated for 2, 000 independent Monte-Carlo trials and the results reported are the
averages over all trials.

In each trial we also verify whether the robot is able to successfully reach the
goal state within the 250 time steps. We thus determine the percentage of successful
trials, in which the robot was able to reach the goal. This percentage provides us
with a second performance measure assessing the usefulness of the learnt policy in
terms of the navigation capabilities of the robot.

We emphasize the utility of this second performance measure: in the large sce-
narios considered, the percentage of “successful missions” conveys a better indication
on the performance of the robot than the total discounted reward. To understand
why this is so, consider the following very simple example.

Example 5.1. Consider the two environments in Figure 5.9. In both situations,
a robot starts at the state marked with a “×” and must reach the state with
a bold border and marked with an arrow. Upon reaching the goal state, the
robot receives a reward of +10 and remains there forever. For simplicity, we
assume that the transitions are deterministic. The discount factor considered
is γ = 0.95.

In the situation depicted in the upper part of Figure 5.9, the robot just
follows a random policy, moving randomly either to the left or to the right.
Some simple computations lead to the conclusion that the value of the initial
state is, in this case, 8.33.

In the situation depicted in the lower part of Figure 5.9, the robot follows
the optimal policy, i.e., always moves to the right towards the goal state.
However, due to the length of the environment, the value of the initial state is
4.88. Notice the difference in the value of the initial state from the situation
where the robot follows a random policy in a small environment.

However, suppose now that we evaluate the percentage of times that the
robot is able to reach the goal within 14 steps. In this situation, the robot
following the optimal policy will reach the goal 100% of the times. The robot
following a random policy has a non-zero probability of not reaching the goal
state and, therefore, its performance will be inferior. �

108 5. Results on Single Robot Navigation

Table 5.4: Set of experiments with a single robot.

Experiment Description Figure

isr1 Starting state: blue; Goal state: red 5.1
mit1 Starting state: blue; Goal state: red 5.2

pentagon1 Starting state: blue; Goal state: upper red 5.3
pentagon2 Starting state: blue; Goal state: lower red 5.3

cit1 Starting state: blue; Goal state: rightmost red 5.4
cit2 Starting state: blue; Goal state: upper red 5.4
cit3 Starting state: blue; Goal state: lower red 5.4

suny1 Starting state: blue; Goal state: upper red 5.5
suny2 Starting state: blue; Goal state: lower red 5.5
cmu1 Starting state: blue; Goal state: leftmost red 5.6
cmu2 Starting state: blue; Goal state: rightmost red 5.6

This simple example clearly shows the importance of also using the second per-
formance measure in our experiments. And, although not immediately evident, it
also provides a rationale for considering trials of 250 time-steps: not only it allows
us to compare our results with those in other works in the literature [51] but also
allows a reasonable time for the robot to reach the goal in any of the environments
even if the robot “gets lost” along the way.

Back to our experiments, in each trial the robot starts at the state marked in
blue in Figures 5.1 through 5.6 and must reach a particular goal state, marked in
red. Table 5.4 describes the goal state for each of the experiments conducted, as
well as the reference figure.

We applied approximate Q-learning and approximate SARSA to the MDP ob-
tained from the original POMDP. Recall that both methods should use a set of basis
functions verifying ∑

i

|ξi(x, a)| ≤ 1

for all (x, a) ∈ X × A, if convergence is to be guaranteed. The beliefs πt arise as
a natural set of basis functions in the MDP (Sn,A, P̄, r̄, γ), since

∑
i πt(i) = 1 by

definition. Therefore, for this set of experiments, we use a set of belief-based basis
functions, as in the example in the previous chapter. In particular, we use as basis
functions

Ξ = {ξi,a, i = 1, . . . , |X | , a = 1, . . . , |A|} ,
with each ξi,a given by

ξi,a(π, u) = π(i)Ia(u),

for all u ∈ A and π ∈ Sn. Recall that Ia(u) denotes the indicator function for the set
{a} ⊂ A. With this set of basis functions, approximate Q-learning corresponds to
the linear-Q algorithm described by Littman et al. [169]. Furthermore, the parame-
ter vector learnt by the algorithm has the same dimension as the Q-functions for the

5.3. Experimental results 109

underlying MDP and we used the so-called QMDP-values to initialize the parameter
vector and speed the learning process.5 We used Boltzmann exploration to ensure
a suitable exploration/exploitation tradeoff.

5.3 Experimental results

We present in Figures 5.10 and 5.11 the cumulative reward obtained during the
learning period. The total discounted reward obtained by the learnt policy and
the percentage of successful missions for approximate Q-learning and approximate
SARSA are summarized in Tables 5.5 and 5.6, respectively.

5.3.1 Discussion

We now discuss the results of the experiments summarized in Figures 5.10 and 5.11
and in Tables 5.5 and 5.6 .

We start by comparing approximate Q-learning and approximate SARSA. From
Figures 5.10 and 5.11, we conclude that both algorithms exhibit similar performance,
as expected. This is clear by observing that the learning curves for approximate Q-
learning (solid blue line) and approximate SARSA (dotted red line) are essentially
similar (i.e., both curves stabilize in a similar slope). Also, when comparing the per-
formance obtained with the learnt policies (summarized in Tables 5.5 and 5.6) no
significant difference between the two methods is observed.6 Since the POMDPs for
all scenarios verify the conditions of Theorem 4.7.4 and therefore the associated fully
observable MDPs verify the conditions of applicability of approximate Q-learning
and approximate SARSA, both methods are expected to converge, as they do. Fur-
thermore, because we used the same basis functions with both methods, the limit
of convergence with both methods is, once again as expected, the same.

To assess the usefulness of the learnt policies, we provide in Table 5.7 the per-
formance of the optimal policy in the underlying fully observable MDP. Recall that
exact methods are of little use in environments with the dimensions of those used
in the experiments and the optimal fully observable policy provides an upper bound
on the performance of our methods.

As expected, the optimal fully-observable policy is always able to reach the goal:
since the state is fully observable there is no ambiguity on the robot’s position in
the environment and the robot can therefore choose the optimal action and move
efficiently towards the goal. On the other hand, the results described in Tables 5.5
and 5.6 correspond to situations in which the robot can only infer its position from
the noisy observations and from the past history. As we argued already, in most

5The QMDP values correspond to the optimal Q-values in the underlying MDP.
6Once again we remark that the convergence guarantees for both methods are asymptotic.

This implies that, since the agent only learns for a finite number of steps—105—there will be some
differences in the learnt approximations. These differences arise from the different ways by which
each method samples the state-space, as argued in Chapter 4. In the finite learning period, the
difference in the learning policies is not yet completely averaged out and is more clearly noticeable
in the larger environments. However, and as seen in the results, even with a finite number of
training steps, the differences in performance are not very significant. Further discussion can be
found in Chapter 10.

110 5. Results on Single Robot Navigation

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

a) isr1; b) mit1;

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4
C

um
ul

at
iv

e
re

w
ar

d
Learning performance

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

c) pentagon1; d) pentagon2;

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

e) cit1; f) cit2;

Figure 5.10: Cumulative reward and greedy choice probability during the 105-time-units
learning period. The solid blue line represents the results with approximate Q-learning and

the dashed red line represents the results with approximate SARSA.

5.3. Experimental results 111

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

a) cit3; b) suny1;

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

c) suny2; d) cmu1;

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

e) suny2.

Figure 5.11: Cumulative reward and greedy choice probability during the 105-time-units
learning period (continued). The solid blue line represents the results with approximate
Q-learning and the dashed red line represents the results with approximate SARSA.

112 5. Results on Single Robot Navigation

Table 5.5: Total discounted reward and percentage of successful missions in the 11
experiments using approximate Q-learning after the learning period is complete. We present
the average total discounted reward and standard deviation obtained over 2, 000 independent

Monte-Carlo trials.

Experiment Total Disc. Reward Success %

isr1 3.960 ± 1.491 100.00 %
mit1 3.983 ± 1.039 100.00 %

pentagon1 7.478 ± 2.050 100.00 %
pentagon2 4.962 ± 2.018 100.00 %

cit1 4.372 ± 1.211 100.00 %
cit2 4.078 ± 1.069 99.95 %
cit3 1.484 ± 0.525 99.55 %

suny1 0.726 ± 0.541 99.90 %
suny2 1.016 ± 0.350 99.85 %
cmu1 2.889 ± 1.089 99.30 %
cmu2 0.800 ± 0.460 84.30 %

Table 5.6: Total discounted reward and percentage of successful missions in the 11
experiments using approximate SARSA after the learning period is complete. We present the
average total discounted reward and standard deviation obtained over 2, 000 Monte-Carlo

trials.

Experiment Total Disc. Reward Success %

isr1 3.759 ± 1.476 99.95 %
mit1 3.952 ± 1.129 99.95 %

pentagon1 7.411 ± 2.131 100.00 %
pentagon2 4.817 ± 1.771 99.95 %

cit1 4.187 ± 1.215 100.00 %
cit2 4.080 ± 1.071 99.95 %
cit3 1.562 ± 0.581 99.85 %

suny1 0.898 ± 0.527 99.95 %
suny2 1.162 ± 0.410 99.80 %
cmu1 3.178 ± 1.784 97.25 %
cmu2 0.630 ± 0.333 85.20 %

of the environments there is strong perceptual aliasing : many states “look alike”,
and the robot must often disambiguate its position before heading to the goal state.
Therefore, it is expectable that the robot will take longer to reach the goal and
collect the reward. This is indeed so and the total discounted reward observed with
the learnt policies is somewhat smaller than the total discounted reward obtained
with the fully observable policy (Table 5.7).

Also notice the differences in the total reward observed in experiments on the
same environment, e.g., between cit1 and cit3 or cmu1 and cmu2. These differences

5.3. Experimental results 113

Table 5.7: Total discounted reward and percentage of successful missions in the 11
experiments using the optimal policy for the underlying MDP. We present the average total
discounted reward and standard deviation obtained over 2, 000 independent Monte-Carlo

trials.

Experiment Total Disc. Reward Success %

isr1 11.210 ± 2.076 100.00 %
mit1 6.083 ± 1.096 100.00 %

pentagon1 12.519 ± 2.075 100.00 %
pentagon2 9.009 ± 1.672 100.00 %

cit1 9.472 ± 1.636 100.00 %
cit2 5.630 ± 1.140 100.00 %
cit3 4.411 ± 0.912 100.00 %

suny1 2.164 ± 0.537 100.00 %
suny2 1.852 ± 0.470 100.00 %
cmu1 6.412 ± 1.330 100.00 %
cmu2 1.493 ± 0.321 100.00 %

are justified by 2 main factors: the distance to the goal and the perceptual aliasing in
the environment. The distance to the goal, as seen in Example 5.1, greatly affects the
total discounted reward received by the robot, because the longer it takes the robot
to reach the goal, the more discounted its reward will be. Perceptual aliasing also
affects the total discounted reward, although not as directly. In fact, in environments
where the perceptual aliasing is more pronounced, the robot will “get lost” more
often, therefore taking longer to reach the goal and consequently receiving rewards
that are more severely discounted. By inspecting the environment representations in
Figures 5.1 through 5.6 it is clear to see that the differences in the total discounted
reward are either due to the distance (e.g., in pentagon or cmu) or perceptual
aliasing (e.g., in cit).

In spite of all this, the success of the robot in the navigation missions is nearly
flawless, using either of the two learning algorithms. In all experiments, the agent
was able to reach the goal approximately 90% of the times, this success rate being
closer to 100% in all but the largest problems. We also emphasize the fact that
performance was measured upon 250-time-step runs, and 7 of the test scenarios
have more than 250 states. This implies that the success rate does not arise from a
“lucky guess” on the choice of actions or by exhaustive exploration of the state-space,
since in most scenarios this would not guarantee that the goal state is ever visited.

We conclude this discussion by referring that similar results have been reported
in [51]. In the referred work, the authors apply the Linear-Q algorithm, which is
nothing more than approximate Q-learning with the set of basis functions used in
this chapter. However, the approach in [51] lacked theoretical support in terms of
convergence and obtained approximation, and the Linear-Q algorithm was validated
only experimentally, by applying it to several benchmark problems such as mit,
pentagon, cit and suny. The results in Chapter 4 of this thesis provide the

114 5. Results on Single Robot Navigation

lacking theoretical support for the approach in [51]. Furthermore, the results in this
chapter also replicate those in the aforementioned paper using a different approach,
namely approximate SARSA.

5.4 Concluding remarks

We conclude the chapter with a broad overview of all ideas introduced in this first
part of the thesis. We briefly review the main contributions of this part and discuss
the general applicability of the RL methodology to topological navigation tasks. We
also hint on how this framework can be extended to multi-agent settings, a topic to
be developed in the second part of the thesis.

5.4.1 Summary

In this chapter we tested the algorithms described in the previous chapters in several
large benchmark problems from the literature.

In particular, we considered large navigation problems where a mobile robot
with limited sensing capabilities must navigate from an initial position to a target
position. The robot does not know beforehand its target position and must learn
how to reach it as it navigates in the environment.

We applied approximate Q-learning and approximate SARSA to this set of prob-
lems and verified that, in all situations, the robot is able to learn its path to the
target position, exhibiting a nearly-perfect performance (i.e., the robot is able to
reach the goal close to 100% of the test runs).

5.4.2 Discussion

The results presented in this chapter leave no doubts on the applicability of rein-
forcement learning methods to robot navigation tasks. We were able to apply the
methods derived within this first part of the thesis to sizeable problems from the
literature. Furthermore, the methods present a remarkable performance even in the
presence of strong perceptual aliasing.

We further remark that although the use of approximate reinforcement learn-
ing in partially observable scenarios is not new (see, for example, [51, 122, 169]),
our approach contributes novel convergence guarantees, non-existent in partially
observable settings.

However, we should also point out that robot navigation tasks are generally
well-structured. For example, in robot navigation tasks it is not unreasonable to
assume that the robot has a probabilistic model of its behavior. The existence of a
distinctive state (such as a goal state) is also a reasonable assumption. Furthermore,
robot navigation tasks exhibit some locality in the transitions, i.e., the robot cannot
perform arbitrary “jumps” between the states in the environment. This means that
if the robot is in state i at time instant t, only the states around i are likely to
be visited at time t + 1. This simplifies belief tracking and certainly contributes
for the fact that, as seen in the results presented in this chapter, a simple linear

5.4. Concluding remarks 115

approximation seems to be powerful enough to yield satisfactory results in this class
of problems.

All these features, peculiar to robot navigation tasks, probably make this class
of problems particularly amenable to the methods described herein and contribute
to the success observed in the experiments. They justify (in part) the fact that such
a simple approximation architecture as the one used displays such a remarkable
performance.

When addressing general decision problems, and in the presence of partial ob-
servability, it is not likely that such a simple approximation architecture will work,
especially in problems where perceptual aliasing requires information gathering de-
cisions.7 As an example, in [231] the authors describe a problem that specifically
requires information gathering decisions and the optimal value function can not be
properly approximated as the linear combination of a set of basis functions. Al-
though the convergence results presented in the previous chapter guarantee that
approximate Q-learning and approximate SARSA do not oscillate or diverge as long
as the problem under consideration is reasonably well structured, there is no guar-
antee on the usefulness of the obtained policy. As argued in Chapter 4, the quality
of the obtained solution depends on a great deal on the set of basis functions used in
the approximation. Therefore, care must be exerted upon choosing these functions,
taking into consideration all useful information about the problem.

* * *

In the second part of the thesis, we turn to multi-agent systems. We address
problems in which a group of robots must navigate in a common environment from
an initial configuration to a final configuration. We essentially follow a similar course
of action to the one in this first part, considering the model provided by Markov
games as the natural extension of MDPs to multi-agent settings.

Once the framework is established, we proceed by surveying several well-known
reinforcement learning methods from the literature. We discuss important prob-
lems such as coordination and equilibrium selection and how these problems can be
tackled from a learning perspective. We then address problems with infinite state-
spaces and discuss partial observability in multi-agent settings. As will become clear
from that discussion, partial observability is far more complex when there are mul-
tiple decision-makers interacting in a common environment than it is in single-agent
problems.

7We refer to the discussion in [51, 231].

Part II

Multi-Robot Navigation
and

Learning

117

Chapter 6

Cooperative Navigation and
Markov Games

6.1 Multi-robot systems . 120

6.2 Topological navigation with multiple robots 123

6.2.1 Navigation and distributed control 123

6.2.2 Markov games . 127

6.3 Optimality and equilibria . 128

6.4 Coordination and equilibrium selection 131

6.4.1 Team games . 131

6.4.2 Equilibrium selection . 135

6.5 Concluding remarks . 139

6.5.1 Summary . 140

6.5.2 Discussion . 141

Much like Chapter 2 in the first part of the thesis, this is an introductory

chapter that provides the liaison between multi-robot navigation and the reinforce-

ment learning framework. We describe Markov games, the multi-agent “version”

of MDPs, and generalize the fundamental concepts from Part I to multi-robot

settings.

Since we are interested in cooperative multi-robot systems, we go over three

fundamental issues that must be addressed in any cooperative multi-agent systems:

the task to be addressed, the mechanism of cooperation and the performance

measure for the team. In considering Markov games as a multi-agent extension of

MDPs, we establish this framework to settle the first two of the three fundamental

issues above. Finally, we address the problem of coordination and equilibrium

selection, thus settling the remaining of the three issues.

120 6. Cooperative Navigation and Markov Games

6.1 Multi-robot systems

In the first part of this thesis, we addressed single-robot navigation problems from a
learning perspective. Given a mobile robot moving in an environment described as
a topological map, the robot must learn how to execute a predefined navigation task
by interacting with the environment. We used POMDPs as a modeling framework
and successfully applied RL methods to address these problems.

In this second part of the thesis, we move to more elaborate navigation problems
in which a team of mobile robots must cooperatively interact to reach a common goal.
We assume that there is no explicit way for any of the robots to know before-hand
what the other robots will do. In other words, if cooperation is to arise from the
interaction of the multiple robots, it cannot be supported by communication. This
assumption is referred as absence of explicit communication.

The motivation to extend the work presented so far to multi-robot scenarios can
be found in many different successful applications of multi-robot systems [50]. As
argued by Cao et al. [50], it is not hard to establish a justification for the study of
multi-robot systems (MAS):

• Many missions found in practice are inherently too complex (or even impossi-
ble) for a single robot to execute;

• The use of multiple robots may lead to a substantial improvement in the overall
performance;

• The use of multiple robots with simple motor/sensorial capabilities is often
more cost-effective and fault-tolerant than the use of a single complex and
powerful robot;

• “Cooperative mobile robotics can possibly yield insights into fundamental
problems in the social sciences (organization theory, economics, cognitive psy-
chology), and life sciences (theoretical biology, animal ethology)”.1

The study of multi-robot systems constitutes a discipline on its own and ad-
dresses those many situations in practice in which information, sensing and/or ac-
tuation are inherently distributed.2 After all, a single robot, independently of its
sensorial and motor capabilities, is necessarily spatially limited.

* * *

When approaching general multi-agent systems (MAS) from a cooperative point-
of-view, it is fundamental that “cooperation” is properly defined. There are numer-
ous definitions of cooperation, such as “the association of persons or businesses for
common, usually economic, benefit” or “joint action toward a common end or pur-
pose”.3

1Cited from [50], Section 1, lines 14-18.
2See the discussion on distributed artificial intelligence in the work by Gasser [92].
3Definitions from http://dictionary.reference.com/.

http://dictionary.reference.com/

6.1. Multi-robot systems 121

Even in the multi-agent literature, explicit definitions of cooperation are seldom
found and vary according to the application in consideration. Definitions of coop-
eration include “joint behavior directed toward some goal in which there is common
interest or reward” [14], “some form of interaction, often based on communication”
[186] and “joint action so as to create a progressive result, such as increasing per-
formance or time saving” [245]. All these definitions, though providing different
perspectives on cooperation, are bound by two common concepts: interaction of
multiple agents with mutual benefit resulting from it. This will be the general defi-
nition of cooperation that we consider in this thesis.

In the literature on cooperative MAS, it is possible to find a wide range of
applications in which cooperation is advantageously implemented. Examples in-
clude task decomposition/allocation [35, 36], distributed learning and knowledge [92,
287], management of distributed information [75], correctness and fault-tolerance on
multi-agent systems [149], etc. In these different approaches, the attention of the
research community is focused on the three “fundamental” issues for cooperation
[50]: the task to accomplish, the mechanism of cooperation and the performance of
the multi-agent system. The different ways in which MAS address each of these
issues permit the definition of a taxonomy that groups MAS in different classes. We
refer to [50] for a detailed classification of cooperative MAS.

In this thesis we are interested in addressing cooperative robotics from a learning
perspective. In terms of the fundamental issues referred above, we want a team of
robots to learn the task to perform and the mechanism of cooperation to emerge from
the mutual interaction among the different robots and the environment. As already
stated, we assume that there is no explicit communication between the agents. This
assumption emphasizes the need for a cooperation mechanism that does not rely on
communication but, instead, arises from the (silent) interaction between the robots.
We will return to this problem in Section 6.4.

Nevertheless, it is important to refer several examples in the literature in which
communication plays a central role in the learning process. If we assume that com-
munication between agents is free and unlimited, then multiagent decision processes
reduce to single agent decision processes [246, 247]. Even if communication is not
free, it may be used advantageously to decrease the overal complexity of the multi-
agent decision problem [212].

In [256, 257, 258], an algorithm is proposed to assess in which situations com-
munication may bring the agents actual benefits, taking into consideration commu-
nication constraints such as communication cost or bandwidth limitations. In [91],
multiple interacting agents learn a common ontology for communication, so that
all assign the same meaning to the exchanged messages. In this paper, the agents
learn to assign a common meaning to a set of symbols, so that they can effectively
communicate and use this communication to act cooperatively in a joint task. This
work thus features communication as one of the purposes of the learning process.

In another work, Ohko et al. [224] approach the problem of communication re-
duction, in which a group of communicating agents learns how to optimize the load
of communication between them. Learning leads the agents to avoid broadcasting
in favor of directed communication, thus reducing the overall communication traffic
and consequently decreasing the load of communication.

122 6. Cooperative Navigation and Markov Games

Matarić [185] discusses how communication can improve the learning process.
In particular, communication is featured as a tool to reduce the undesirable effects
of locality in the learning of cooperative behaviors. In fact, each robot learns from
the local information it gathers in each location it visits and, as argued in [185],
communication can facilitate global cooperative behaviors to emerge. The author
explores the use of communication from two different perspectives: communication
as sensing [185, Sec. 3] and communication as reinforcement [185, Sec. 4].

In the line of [185], Tan [305] addresses the different uses of communication
in learning, and compares the use of communication to the sharing of sensations,
learning episodes and learnt policies.

However, as argued in [272], communication is often slow and expensive and
should be used with care. Agents relying too much on communication may fail to op-
erate when communication fails and are more prone to suffer from misinterpretations
arising from faulty communication. In [117], the problem of distributed knowledge is
addressed and the authors establish that common knowledge is unattainable, which
may harden the design of distributed protocols (such as cooperation protocols) for
a group of communicating agents.

Furthermore, as argued in [75, Sec. VI], communication in MAS can affect the
overall performance of the system by introducing a “distraction”. In fact, effective
communication requires that each agent determines which information should be
sent to which agent at what time, taking into consideration numerous factors. Com-
munication can consume resources otherwise applicable in the execution of the task
without necessarily introducing significant improvements in the overall performance.
Tsitsiklis and Athans [319] discuss the difficult problem of deciding when the use of
communications is beneficial in a distributed decision-making system.

* * *

In this chapter, we address topological navigation of a group of mobile robots
assuming that the robots cannot communicate their actions so as to ensure cooper-
ation. We consider navigation tasks in which the robots must move from an initial
configuration to a final configuration in a topological map, while avoiding mutual
collisions and other undesirable situations. We describe an adequate generalization
of MDPs that explicitly accounts for the existence of multiple decision-makers. We
address three fundamental questions arising in cooperative MAS [50]: “what is the
task?”, “how is the performance of the group inferred?” and “what is the mechanism
for cooperation?”

The presentation in this second part of the thesis will closely follow that of Part I.
Once the basic tools to address multi-robot problems are laid down in this chapter,
we move in Chapter 7 to the description of several simple solution methods. We
leave to Chapter 8 the treatment of more complex problems. Only in this chapter
will we address situations with partial observability, adopting an approach in all
aspects similar to the one followed in Chapter 4 for single-agent scenarios.

6.2. Topological navigation with multiple robots 123

6.2 Topological navigation with multiple robots

We consider the problem of a group of robots moving from an initial configuration to
a final configuration. The goal of the group is to jointly attain the final configuration.
Even if this goal amounts to each robot reaching its corresponding position, we are
interested in addressing situations in which the robots act as a team and jointly
strive to reach the goal of the team (i.e., reaching the goal configuration).

In this section we assess how the co-existence of multiple robots in a common
environment carries additional difficulties that do not arise in single-robot situations
(such as resource sharing or colliding interests). We propose the use of Markov games
(also known as stochastic games) to explicitly account for the existence of multiple,
independent decision-makers that must interact to accomplish their missions.

6.2.1 Navigation and distributed control

Suppose that a group of N mobile robots is to accomplish some navigation task in
a common environment. As in Chapter 2, we assume a topological representation
of the environment. In the case of multi-robot systems, the use of topological maps
offers further advantages besides the ones argued in Chapter 2. Consider, for exam-
ple, a group of heterogeneous robots navigating in a common environment. The use
of a topological representation of the environment can convey a common and unified
representation of the environment. Topological maps are high-level representations
of the physical environment where the robots move and the mechanism “translating”
the sensorial information of a robot into its location in the topological map may dif-
fer from one robot to another, while sharing the same topological representation of
the environment.

We emphasize once again that, as stated in Chapter 1, robots are to be under-
stood as high-level decision-makers. We do not address the problem of the interface
between the high-level decision-making and the low-level sensors and actuators. We
also disregard the problem of partial state observability in this chapter and postpone
the discussion of that problem until Chapter 8.

To introduce the Markov game framework, we start by considering a group of
robots where the decision-making process is centralized. This situation, even if ac-
counting for the position/movement of multiple robots, is not significantly different
from the one considered in single-agent scenarios. Therefore, we can determine a
“composite” MDP, describing the movement of the group of robots in the environ-
ment. We illustrate this in the following example.

Example 6.1. We return to our recurrent example and consider once again
the indoor environment represented in Figure 6.1, where now we account for
the existence of two mobile robots.

The two robots (I and II) must traverse this environment, robot k = I, II
starting in the area labeled as «Start Room k» and striving to reach the area
labeled as «Goal Room k». The movement of each robot can be modeled
independently using an automaton as in Chapter 2. The automata for this
example are depicted in Figure 6.2

124 6. Cooperative Navigation and Markov Games

Room 9

Room 1 Room 4 Room 7

Room 2 Room 5 Room 8

Room 3 Room 6

Goal
Room II

Goal
Room I

Start
Room II

Start
Room I

Figure 6.1: Example of an indoor environment.

1 4 7

2 5 8

3 6 9

E

W

N S

E

W

E

W

E

W

E

W

E

W

N S N S

N S N S N S

E

W

E

W
1 4 7

2 5 8

3 6 9

E

W

N S

E

W

E

W

E

W

N S N S

N S N S N S

Robot I Robot II

Figure 6.2: Finite-state automata modeling the independent movement of each of
two robots in the environment of Figure 6.1.

The two automata in Figure 6.2 can be combined to yield a 81-state au-
tomaton describing the joint movement of the two robots in the environment.
In this composite automaton, the state of the team describes the positions
of both robots in the environment; the transitions between the states of the
automaton correspond to joint movements of the robots. We can take ad-
vantage of the automaton representation to get an MDP describing the joint,
controlled movement of both robots and the goal for the team. If the state of
robot k, with k = I, II at time t is given by Xk

t , we denote the state of the
group as a pair Xt = (XI

t , X
II
t), taking any of 81 possible states: (1, 1), (1, 2),

. . ., (1, 9), . . ., (9, 9). We denote the set of individual states for each of the two
robots by X k, k = I, II and the set of all joint states by X .

At each time instant, each robot has 4 actions available, namely North
(N), South (S), East (E) and West (W); the action taken by a robot k at
time t is denoted as Akt . There are 16 possible joint actions: (N,N), (N,S),
(N,E), (N,W), . . ., (W,W); we denote by At the joint action At = (AI

t, A
II
t).

Finally, we admit the movement of each robot to be independent. This means
that if P

(k)

ak
(ik, jk) denotes the probability of robot k moving from state ik

to state jk when the individual action ak is taken,4 the probability of moving
from the joint state (iI, iII) to the joint state (jI, jII) given the combined action

4We write P(k) instead of Pk to avoid confusion with the k-step transition kernel Pk.

6.2. Topological navigation with multiple robots 125

(aI, aII) is

P
[
Xt+1 = (jI, jII) | Xt = (iI, iII), At = (aI, aII)

]
= P

(I)

aI (iI, jI)P(II)

aII (iII, jII).
(6.1)

We denote the transition probability in (6.1) by Pa(i, j), where i = (iI, iII),
j = (jI, jII) and a = (aI, aII).5 Finally, given a transition triplet (i, a, j), with
i, j ∈ X and a ∈ A, if j = (9, 3) then both agents receive a reward of +20.

Summarizing, this multi-robot navigation task can be modeled using an
MDP (X,A,P, r, γ), where

• X = X I ×X II = {(1, 1), . . . , (9, 9)};
• A = AI ×AII = {(N,N), . . . , (W,W)};
• P and r represent the transition probabilities and reward function and

are defined above.

�

Remark: We make a parenthesis to clarify the notation introduced in the
previous example. In the symbols ik, jk, ak appearing in the example, the
superscript k should not be seen as a label but as part of the symbol. In
other words, to index the actions in AI we use the symbol aI and similarly for
AII. We use the general notation (aI, aII) to refer to any combination of the
elements of AI and AII and not only to those where the action of both robots is
the same; therefore, the symbols aI and aII should be interpreted as consisting
of two distinct indices (like m and n). The superscripts are meant only to
explicit the agent to which each index refers. On the other hand, and unless
if explicitly stated, a simple symbol such as i, j or a should be interpreted as
a tuple i = (ik), j = (jk) or a = (ak). We will use this notation extensively
throughout the remainder of the thesis. �

We notice that, in the previous example, the actions taken by one robot can
be chosen independently of the position of the other robot. In other words, if each
robot performs its “individual” task while completely disregarding the existence of
a second robot in the environment, the group of robots will still perform optimally.
This means that the task described is decoupled : the optimal centralized controller
can be implemented in each robot by ignoring the presence of other agents in the
environment. The robots can act independently without any concern on cooperation
or any other interaction.

However, in the general situation, this decoupling may not be possible. To see
this, consider the more elaborate example below.

5We are implicitly considering that the movement of each robot is independent of the movement
of the other.

126 6. Cooperative Navigation and Markov Games

Example 6.2. Consider the exact same navigation problem featured in Ex-
ample 6.1. Suppose, however, that both robots receive a reward of −10 every
time they end up in the same room. This can be interpreted, for example,
as a “crash penalty”, designed to prevent the robots from wandering too close
to one another and eventually crash. In terms of the reward function, this
translates in setting r(i, a, j) = −10 if jI = jII.

Notice that the “crash penalty” is chosen smaller (in absolute value) than
the reward obtained for reaching the goal. This means that the robots will try
to avoid moving to the same room, but only if this does not preclude them
from reaching the goal. The purpose of this is to prevent situations in which
both robots “freeze” in some safe state to avoid crashing. We also remark that
the crash penalty does not actually prevent the robots from crashing. The
purpose of this penalty is, instead, to “discourage” them from moving into
situations where crashes may occur.

This problem can be modeled using an MDP (X,A,P, r, γ) where, now,

• X , A and P are as in Example 6.1;

• The reward function r assigns a reward of +20 for every transition triplet
(i, a, j) such that j = (9, 3), −10 for every transition triplet (i, a, j) such
that jI = jII and 0 otherwise.

We can apply any of the techniques described in Chapters 2 and 3 to
determine an optimal policy for this MDP. By following such a policy, we have
the guarantee that the group of robots will perform optimally in this scenario.
This optimal (joint) policy dictates an individual policy for each of the robots
in the group that depends not only on the position of that robot but also on
the position of the other robot. This was not the case in the previous example,
where each robot could choose its actions independently of the position of the
other robot. �

In our study of MDPs, we established the existence of an optimal value function
V ∗ for each MDP (X,A,P, r, γ). From V ∗, an optimal policy δ∗ can be determined.
However, this policy needs not to be unique. In single-agent problems, the existence
of multiple optimal policies is of no concern, since the decision-maker can, at each
time instant, decide which optimal policy to follow. However, in multi-agent sce-
narios, the existence of multiple policies can lead to problems. To illustrate this,
suppose that in Example 6.2, the robots are in the joint position (1, 3) and the op-
timal action can be either a = (E,N) or b = (N,W). A centralized decision-maker
as featured in the example simply chooses a or b. However, if there are two distinct
decision-makers, two scenarios are possible:

• The agents are able to communicate. If that is the case, one of the agents
can simply communicate “Choose action a”. Both agents then comply to this
choice of actions by choosing, respectively, actions E and N , yielding the
desired combined action a.

• The agents are unable to communicate. If this is the case, it may happen that
one of the agents, say agent A, decides upon the optimal action a, and executes
the corresponding action E. Agent B, on the other hand, may decide upon
the optimal action b, executing the corresponding action W . The combined

6.2. Topological navigation with multiple robots 127

action is (E,W), which not only is not an optimal joint action but will grant
them a penalty with great probability.

In the problems addressed in this thesis we consider the different robots as in-
dependent decision-makers with no ability to explicitly communicate. In this multi-
agent setting, cooperation will occur under the form of coordination: the different
robots have to agree on a particular policy, overcoming the problem of multiple op-
timal policies described above. Since MDPs model single agent decision problems,
we will need to extend the MDP model to include multiple decision makers. That
is carried out next.

6.2.2 Markov games

In the MDP framework, sequential decision problems are modeled irrespectively of
the existence of multiple deciding agents. By solving an MDP, we are able to deter-
mine the optimal policy or policies for the particular problem under consideration.
However, if multiple deciding robots exist, we are left with the difficulty of enforcing
the different robots to follow one such particular optimal policy. Furthermore, there
may be situations in which the different robots have colliding objectives that should
be “encoded” using distinct reward functions.6 An example of one such situation
is a two-robot evade-pursuit game, where one of the robots must capture the other
robot that in turn must avoid being captured.

Although later on we focus on groups of robots with a common joint goal, we
now describe a framework that extends the MDP model to cope with multiple agents
with possibly different rewards.7

A Markov game (MG), also known as stochastic game, is represented as a tuple(
N,X , (Ak),P, (rk), γ), where N is the set of robots interacting in a given environ-
ment,8 X is the combined state-space of the N -robot system and A = ×Nk=1Ak is the
cartesian product of the individual action-spaces Ak. P is the transition probability
matrix, defining the transition probabilities

Pa(i, j) = P [Xt+1 = j | Xt = i, At = a] .

As in the MDP framework, Xt is the state of the system at time t; At = (A1
t , . . . , A

N
t)

is the combined action of the group of robots and i and j are generic elements of
X . The transition probability matrix P defines a controlled Markov chain (X ,A,P),
even though the choice of the action profile At at each time instant is distributed,
i.e., each robot k ∈ N independently chooses the corresponding individual compo-
nent Akt in At. The function r = (r1, . . . , rN) represents the combined reward, rk
being the individual reward for the kth robot.

6As remarked in Chapter 2, the reward function “encodes” the objective of the robot/agent.
7A group of robots having a common joint goal simply means that they all receive the same

reward and not that they must go to the same state. In Example 6.2 the robots had a joint goal,
which was to reach the configuration (9, 3).

8In the remainder of the thesis we use the same symbol – N – to represent both the set of all
decision-makers in a game and the total number of decision-makers. It is our belief that this slight
abuse of notation adds no confusion to the presentation.

128 6. Cooperative Navigation and Markov Games

Markov games were introduced in the 1950s by Lloyd S. Shapley [273]. This
framework actually appeared before the MDP framework, but can still be understood
as a generalization of Markov decision processes to multi-agent domains. From
a game-theoretic point-of-view, MGs are the multi-state counterparts of strategic
games.9 We henceforth adopt the customary game theoretic nomenclature and refer
to the decision-makers in a MG as the players of the game.

We emphasize once again two important aspects of the Markov game framework:

• The decision-making process is distributed, in that each player chooses its
individual action with no knowledge of the actions chosen by the other players;

• As defined, Markov games allow for each player to have a different reward
function, thus modeling situations where the players may have different inter-
ests.

In MGs the decision process is distributed and the different agents can have dif-
ferent/conflicting interests; therefore, there is no individual policy which is optimal
for one agent independently of the policies chosen by other agents. The concept of
optimal policy as the policy that maximizes the total discounted reward must be
adapted to the multi-agent framework. In MAS, the corresponding concept is that
of Nash equilibrium, to be developed in the following section.

6.3 Optimality and equilibria

Before introducing the main concepts in this section, it is important that the nota-
tion used henceforth be properly clarified. We adopt the standard game-theoretic
nomenclature and concepts, presented in Appendix C.

At each time instant t ∈ T each player k ∈ N chooses an individual action from
its individual action set Ak. The combined action of all players is called an action
profile or joint action and takes values in A. A joint action a ∈ A results from N
individual actions and takes the form a = (a1, . . . , aN). The tuple

a−k = (a1, . . . , ak−1, ak+1, . . . , aN)

is a reduced joint action, i.e., a joint action where the individual action of player k
was omitted. We abusively write

a = (a−k, ak)

to indicate that the individual action of player k in the joint action a is ak.
In a MG, the purpose of each player is to maximize its individual total discounted

reward, defined as in MDPs by

V k({At} , i) = E

[
∞∑
t=0

γtRk(Xt, At) | X0 = i

]
9See Appendix C for a brief review on game theory.

6.3. Optimality and equilibria 129

with i ∈ X and Rk(i, a) the random reward received by player k for taking action a
in state i.10

An individual strategy for player k is a (time-dependent) mapping σkt defining a
probability distribution over the set Ak for each state i ∈ X . We say that player
k follows strategy σkt when playing a game

(
N,X , (Ak),P, (rk), γ) if it chooses each

action ak ∈ Ak with probability σkt (i, ak) at state i ∈ X and time t ∈ T . If, for
each state i ∈ X , there is an action ak ∈ Ak such that σkt (i, ak) = 1, the strategy σkt
is said to be a pure strategy, and a mixed strategy otherwise. A time-independent
strategy is said to be a stationary strategy and denoted by omitting the time index,
i.e., σk.

The tuple σt = (σ1
t , . . . , σ

N
t) is a joint strategy or strategy profile. Joint strategies

are the multi-agent counterparts to single-agent policies in MDPs. If all individual
strategies in a strategy profile σt are pure, σt is a pure strategy profile and mixed
otherwise. Similarly, if all individual strategies in σt are stationary, we say that such
a strategy profile is stationary.

A reduced strategy profile or reduced joint strategy is a tuple

σ−kt = (σ1
t , . . . , σ

k−1
t , σk+1

t , . . . , σNt),

and, as with actions, we write
σt = (σ−kt , σkt)

to indicate that the individual strategy of player k in the joint strategy σt is σkt .
The support of a strategy σkt in state i ∈ X is the set of all actions ak ∈ Ak such
that σkt (i, ak) > 0, i.e., those actions that have positive probability of being played
by player k in state i.

Remark: We should emphasize the difference between a policy and a strategy.
The former refers to a behavior-rule for a single individual, while the latter
refers to a joint behavior-rule for a group. As defined, a strategy comprises
several individual behavior-rules, one for each individual in the group. We
could refer these individual behavior-rules as policies but will instead use the
designation of individual strategy to stress the fact that it is part of a joint
strategy. Therefore, we always use the designation of policy when referring to
single-agent behavior-rules in single-agent problems. In multi-agent problems
we always adopt the designation of strategy, classified as joint or individual
whenever is necessary to clarify if it refers to multiple individuals or to a single
individual. �

As in MDPs, we write (V σt)k(i) instead of V k({At} , i), whenever the control
sequence {At} is generated according to the strategy profile σt, and refer to (V σt)k

as being the value function for player k associated with the strategy profile σt.
Given a MG

(
N,X , (Ak),P, (rk), γ), suppose that all players except player k

follow a reduced, stationary and deterministic strategy σ−k. If this is the case,
10In the general situation where each robot k ∈ N has a different reward function rk, each robot

will maximize a different function V k and hence the use of the superscript k.

130 6. Cooperative Navigation and Markov Games

the world as perceived by player k can be represented as an MDP, and there must
be an optimal individual pure stationary strategy (σk)∗ that maximizes the total
discounted reward for this player. The corresponding value function V ∗ verifies

V ∗(i) =
∑
j∈X

Pa
[
rk(i, a, j) + γV ∗(j)

]
, (6.2)

where the action profile a is given by

a = (σ−k(i), (σk)∗(i))

where we denoted by σk(i) and σ−k(i) the unique individual and reduced actions in
the supports of σk and σ−k. The strategy (σk)∗ is the best response of player k to
the reduced strategy σ−k.

The following definition generalizes this concept of best response.

Best Response

Given a MG
(
N,X , (Ak),P, (rk), γ) and a reduced joint strategy σ−kt , a best

response strategy of player k to the reduced strategy σ−kt is an individual strategy
(σkt)∗ verifying (

V (σ−kt ,(σkt)∗)
)k

(i) ≥
(
V (σ−kt ,σkt)

)k
(i),

for all states i ∈ X and all individual strategies σkt .

In other words, (σkt)∗ is a best response strategy of player k to a reduced joint
strategy σ−kt if player k can not expect to improve its total discounted reward by
choosing any other individual strategy.

The concept of best response leads to the concept of Nash equilibrium, which in
a way represents the idea of optimality in MGs.

Nash Equilibrium

Given a MG
(
N,X , (Ak),P, (rk), γ), a Nash equilibrium is a joint strategy σ∗t

such that, for all k ∈ N , (σ∗t)
k is the best response of player k to the reduced

strategy (σ∗t)
−k, i.e.,

(
V σ∗t

)k
(i) ≥

(
V ((σ∗t)

−k,σkt)
)k

(i),

for all i ∈ X and all k ∈ N .

6.4. Coordination and equilibrium selection 131

A Nash equilibrium is therefore a strategy profile such that no player expects any
improvement in its total discounted reward by unilaterally changing its individual
strategy.

The notion of Nash equilibrium is due to John F. Nash, whom introduced this
concept in his works on game-theory in the 1950s [214, 215, 216]. A Nash equi-
librium always exists in every Markov game, but its usefulness greatly depends on
all players adopting such particular strategy. If a single player follows a different
strategy, that particular player will generally perform worse than if it adheres to
the Nash equilibrium. However, if several players follow non-equilibrium strategies,
their individual performance may actually improve when compared to the Nash
equilibrium. As such, Nash equilibria are only optimal in the best response sense.

We refer the reader to Appendix C, where concepts such as Nash equilibrium
and best response are illustrated with simple examples.

6.4 Coordination and equilibrium selection

In the previous section we introduced MGs as models for sequential interaction of
multiple decision-makers. We claimed that Nash equilibria can be understood as
the multi-agent “version” of optimal behavior.11

In MGs we model the movement of the group of robots as state transitions in
a Markov chain. The purpose of each robot is to maximize its individual total
discounted reward. This reward structure inherent to MGs not only defines the
task, but also provides a performance measure on the group of robots. With the
model of MGs we are therefore equipped to answer two of the three fundamental
questions referred in Section 6.1: “what is the task?” and “how is the performance
of the group inferred?”.

In this section we focus on the mechanism of cooperation. We start by noticing
that MGs actually provide a general model that can be used in many sequential
decision problems with multiple decision-makers. In particular, it encompasses sit-
uations where the different decision-makers may have different and even conflicting
goals. In this thesis, we are interested in cooperative navigation and therefore we
restrict our attention to a particular class of Markov games, known as team Markov
games, where the individual goals are replaced by a team goal.

6.4.1 Team games

There is a particular class of games in which all players have a common joint goal.
In such games, whatever joint strategy works for one player also works for the other
players.

The idea of “common goal” is translated in the Markov game model by the
statement that all players share the same reward function, i.e.,

r1 = r2 = . . . = rN = r.

11There are some works that question the use of equilibria as “optimal” strategies in multi-agent
decision problems [243, 276]. However, it will soon become apparent that equilibria are indeed the
best working option in the particular class of problems addressed in this thesis.

132 6. Cooperative Navigation and Markov Games

Such games are known as team games or fully cooperative games and have the prop-
erty that all such games have at least one stationary coordinated (Nash) equilibrium
[166].12

A coordinated equilibrium is a Nash equilibrium σ∗t such that, for each player k,
(V σ∗t)k is maximal: (

V σ∗t
)k

(i) = max
σt

(V σt)k (i),

for all states i ∈ X . Furthermore, if a game has a coordinated equilibrium, it
is always possible to find one pure, stationary, coordinated equilibrium (see Ap-
pendix C). This result is similar to the one produced in Chapter 2 regarding the
existence of a stationary deterministic optimal policy for any MDP. In fact, by look-
ing at team MGs (TMGs) as MDPs with distributed decision-making, the existence
of a pure strategy equilibrium for the former is a consequence of the existence of a
deterministic optimal policy for the latter.

However, the existence of at least one coordinated equilibrium strategy does not
imply its uniqueness and when multiple coordinated equilibria exist, we may face
coordination problems, as illustrated next.

Example 6.2. (cont.) Consider once again the navigation problem in Exam-
ple 6.2. We previously used an MDP to describe the problem, considering a
centralized decision-maker. If we now consider independent decision-makers,
we can model the exact same problem using a TMG

(
N,X , (Ak),P, r, γ),

where:

• N = {I, II} is the set of players;

• X , A and r are as defined in Example 6.1;

• The transition probabilities are defined by a kernel P given by

Pa(i, j) = P
(I)

aI (iI, jI)P(II)

aII (iII, jII)

and the kernel P(k) defines the single-robot transition probabilities (we
consider the same individual transition probabilities used in Example 2.1);

• We consider γ = 0.95.

As stated above, a TMG has at least one pure, stationary, coordinated
equilibrium but there may exist multiple such equilibria. In this particular
example, there are several equilibria, two of which are summarized in Table 6.1.
Each entry in this table corresponds to a joint action (aI, aII) and each of
the two 9 × 9 block corresponds to one coordinated equilibrium. Figure 6.3
illustrates some of the instances of Table 6.1 (corresponding to the colored
elements).

Consider, for example, the joint state (1, 7). In this situation, two actions
are possible: according to the equilibrium in the upper block of Table 6.1,
(E,N) is an optimal joint action; according to the lower block of Table 6.1,
(N,W) is also an optimal joint action. Both these actions are represented in
Figure 6.3: the former is represented in the solid lines departing from states 1

12A coordinated Nash equilibrium is a Pareto-optimal Nash equilibrium, i.e., a Nash equilibrium
that attains the maximum possible payoff for all players.

6.4. Coordination and equilibrium selection 133

T
ab

le
6.

1:
M
ul
ti
pl
e
co
or
di
na

te
d
eq
ui
lib

ri
um

st
ra
te
gi
es
.
E
ac
h

9
×

9
bl
oc
k
co
rr
es
po

nd
s
to

on
e
co
or
di
na

te
d
eq
ui
lib

ri
um

.
E
ac
h
en
tr
y
co
rr
es
po

nd
s
to

a
jo
in
t
ac
ti
on

(a
I ,
a
II

)
∈
A.

T
he

te
xt

in
bl
ue
/r
ed

co
rr
es
po

nd
s
to

th
e
st
ra
te
gi
es

de
pi
ct
ed

in
F
ig
ur
e
6.
3.

T
he

fr
am

ed
ce
lls

co
rr
es
pn

d
to

a
m
is
-c
oo

rd
in
at
ed

tr
aj
ec
to
ry

as
de
sc
ri
be

d
in

th
e
m
ai
n
te
xt

S
ta
te

1
2

3
4

5
6

7
8

9

1
(E
,N

)
(E
,N

)
(E
,N

)
(N
,N

)
(E
,W

)
(E
,W

)
(E
,N

)
(E
,W

)
(E
,W

)

2
(E
,N

)
(E
,N

)
(E
,N

)
(E
,W

)
(E
,N

)
(E
,W

)
(E
,W

)
(N
,W

)
(E
,W

)
3

(E
,N

)
(E
,W

)
(E
,N

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,N

)

4
(N
,N

)
(N
,N

)
(N
,N

)
(E
,N

)
(E
,N

)
(E
,W

)
(N
,N

)
(E
,W

)
(E
,W

)

5
(N
,N

)
(N
,N

)
(N
,N

)
(N
,W

)
(E
,N

)
(E
,W

)
(N
,W

)
(N
,W

)
(E
,W

)

6
(E
,N

)
(E
,N

)
(E
,N

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,W

)
7

(N
,N

)
(N
,N

)
(N
,N

)
(N
,W

)
(N
,N

)
(N
,W

)
(N
,W

)
(N
,W

)
(N
,W

)
8

(N
,N

)
(N
,N

)
(N
,N

)
(N
,W

)
(N
,N

)
(N
,W

)
(N
,W

)
(N
,W

)
(E
,W

)
9

(N
,N

)
(N
,N

)
(S
,S

)
(N
,N

)
(N
,N

)
(N
,W

)
(N
,W

)
(N
,W

)
(N
,W

)

1
(E
,N

)
(E
,N

)
(E
,W

)
(N
,N

)
(E
,W

)
(E
,W

)
(N
,W

)
(E
,W

)
(E
,W

)

2
(E
,N

)
(E
,N

)
(E
,W

)
(E
,W

)
(E
,N

)
(E
,W

)
(E
,W

)
(N
,W

)
(E
,W

)
3

(E
,N

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,E

)

4
(E
,N

)
(E
,N

)
(E
,N

)
(N
,W

)
(E
,W

)
(E
,W

)
(N
,N

)
(E
,W

)
(E
,W

)

5
(E
,N

)
(E
,N

)
(E
,N

)
(E
,W

)
(N
,W

)
(E
,W

)
(E
,W

)
(N
,W

)
(E
,W

)

6
(E
,N

)
(E
,N

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,W

)
7

(N
,N

)
(N
,N

)
(N
,W

)
(N
,W

)
(N
,N

)
(N
,W

)
(N
,W

)
(N
,W

)
(N
,W

)
8

(N
,N

)
(N
,N

)
(N
,W

)
(N
,W

)
(N
,W

)
(N
,W

)
(N
,W

)
(N
,W

)
(E
,W

)
9

(E
,N

)
(E
,N

)
(N
,S

)
(E
,N

)
(E
,N

)
(E
,W

)
(E
,W

)
(E
,W

)
(E
,W

)

134 6. Cooperative Navigation and Markov Games

1

2

3

4

5

6

7

8

9

Figure 6.3: Representation of two possible “joint trajectories” using the
strategies in Table 6.1. One trajectory is depicted using a solid line and the

other using a dotted line

and 7 and the latter in the dotted lines departing from the same two states.
The red lines correspond to Robot I and the blue lines correspond to Robot II.

Taking a closer look at the situation where the two robots start in Rooms 1
and 7, there are two optimal actions, as outlined in Table 6.1 and depicted in
Figure 6.3: either (E,N) or (N,W).

However, since both strategies are optimal, each robot is equally likely
to choose any of the two. In particular, it is possible that Robot I chooses
the strategy in the upper block of Table 6.1 and robot II the strategy in
the lower block, leading to the combined action (E,W). This action is not
only not optimal, but will provably lead both robots to Room 4, with the
subsequent penalty of −10. However, once in room 4, the problem persists:
there are two different optimal joint actions and the robots may once again
choose a different strategy, ending up in the combined action (N,N), which
in turn provably leads both robots to Room 5 and again to the same problem.
Finally, once in Room 6, there is a unique optimal strategy and the problem
is finally solved. In all this process, the robots where penalized in 3 × (−10)
and this could easily be avoided using coordination. �

This example illustrates two important points. First, TMGs like the one used
to describe the navigation problem above are suitable models to incorporate the
common goal of the group of robots, while explicitly accounting for the existence of
multiple decision-makers. Furthermore, they possess the pleasant property of having
a pure strategy coordinated equilibrium, which is an adequate solution concept for
this class of problems.

Secondly, and on the other hand, the use of TMGs does not yet ensure that
the group of robots is able to choose an optimal strategy if the process of decision-
making is distributed.13 The problem described in the previous example is known as
an equilibrium selection problem in the game theory literature or as a coordination
problem in the MAS literature.

We consider the problem of coordination next.

13Optimal strategy in a TMG should henceforth be understood as a coordinated equilibrium.

6.4. Coordination and equilibrium selection 135

6.4.2 Equilibrium selection

As illustrated in the previous subsection, the existence of multiple optimal strategies
in MAS usually requires some sort of coordination in action selection. In the context
of MAS that we adopt here, this problem is referred to as a coordination problem
[36].

The solution to the coordination problem provides the answer to the third fun-
damental question in MAS, regarding the mechanism of cooperation: cooperation
occurs in the form of coordination. If the robots are able to coordinate in an equi-
librium strategy they will achieve the optimal performance and will fail to do so
otherwise. This means that a coordinated action choice will result in an improved
performance for the team and thus the mechanism of cooperation coincides in our
setting with the mechanism of coordination.

Solving a coordination problem in TMGs requires that coordination is explicitly
addressed. To this purpose, one of the following usually holds:

• The players are able to communicate with each other and use communication
to “agree” upon the optimal joint strategy;

• The players adhere to a predefined coordination protocol (such as coordination
graphs [110]) or social/lexicographic conventions [84, 99]) to decide among
different optimal joint strategies;

• Each player infers from past observations or assumes from prior knowledge
which is the optimal joint strategy that its colleagues are most likely to follow
and hence determines the optimal individual strategy to choose [59, 323, 330].

In this thesis we focus on the third of the above set of coordination strategies. We
are interested in ensuring coordination as a result of interaction among the players;
as we cope with TMGs from a learning perspective, we require the players to learn
how to play by playing the game. Coordination should then emerge from interaction
among the several players as they play the game, instead of relying on a predefined
coordination protocol. This makes the third of the previously listed possibilities the
most adequate for the class of applications considered herein.

There are different works in the literature addressing the problem of emerging
coordination in multi-agent systems. Joint-action learners [59] use fictitious play to
estimate the strategies followed by the other players in team games. This estimate
on the other players’ strategies is then used to choose a best response strategy. In
games with the fictitious play property, fictitious play is known to converge in beliefs
to a Nash equilibrium, although not necessarily to a coordinated equilibrium (see
Appendix C for details).14 Other recent results have established the convergence of
a variation of fictitious play for independent learners [161].

Several variations of the fictitious play principle have been proposed to ensure
convergence to a coordinated equilibrium. Adaptive play [345] is a variation of
fictitious play that sub-samples the history of past-plays. This sampled-history is

14As a side note, Uther and Veloso [323] use the same fictitious play principle to address adver-
sarial environments, where not all players have common interests.

136 6. Cooperative Navigation and Markov Games

Table 6.2: Comparative results for a coordinated and an uncoordinated teams
of two robots after the learning period is complete. We present the average

total discounted reward and standard deviation obtained over 2, 000
independent Monte-Carlo trials. For the purpose of comparison, we also

present the results obtained with an optimal, centralized controller.

Method Total Disc. Reward

Without Coordination 26.951 ± 8.824
With Coordination 28.709 ± 7.621

Optimal 29.057 ± 7.561

then used to estimate the other players’ strategy in a fashion similar to fictitious
player. Biased adaptive play [330] further extends the idea behind adaptive play.
The advantage of biased adaptive play over simple adaptive play is that the former
actually converges to a coordinated equilibrium in any TMG, unlike the latter, whose
convergence guarantees limit to weakly acyclic repeated games.

Lauer and Riedmiller [156] propose another strategy to ensure coordination. In
this work, each player optimistically assumes that all players behave greedily. As
shown in [156], this approach converges to an optimal Nash equilibrium even if
the joint actions are not observable, as long as the transitions are deterministic.15

Posterior works [136, 157] address non-deterministic settings.
The following example illustrates the use of a coordination strategy in our famil-

iar navigation problem.

Example 6.2. (cont.) Consider once again the indoor environment repre-
sented in Figure 6.1. Suppose that we have the same exact navigation task
described in the previous example, modeled using a TMG

(
N,X , (Ak),P, r, γ)

as described therein. As seen in the previous example, there are several coor-
dinated equilibria and, in the presence of non-communicating decision makers,
a coordination problem arises.

We solved for the optimal Q-function and tested the behavior of the robots
in the environment. We ran 2, 000 independent Monte-Carlo trials, each trial
consisting of 10 time-steps. In each trial, a group of two robots moved about
in the environment, following a greedy strategy with respect to the determined
Q-function. We used a trial interval of only 10 time-steps to emphasize the
difference between the coordinated and uncoordinated teams; the longer the
trial interval is, the less noticeable the difference becomes.

Table 6.2 compares the total discounted reward obtained with a team with
no coordination with that obtained with a team using a simple coordination
mechanism, biased adaptive play (see Chapter 7 and Appendix C for further
details). For the purpose of comparison, we also present the results obtained
with an optimal centralized decision-maker.

15Even if the actions are not directly observable, the deterministic transitions and the greedy
play assumption actually provide all information regarding the actions played.

6.4. Coordination and equilibrium selection 137

As expected, the coordinated team clearly outperforms the uncoordinated
team (both in terms of discounted reward or total reward). Furthermore,
the performance of the coordinated team is similar to that of the optimal
centralized controller, also as expected. This means that, with coordination,
we are able to successfully ensure cooperation between the robots.

To further clarify the process by which cooperation is attained, we remark
that the team using the coordination mechanism was allowed to interact for
5, 000 time-steps prior to engaging in the test trials. During this 5, 000 training
period, the robots were allowed to randomly explore their action repertoire,
while estimating the strategy that the other robot may be following. This
5, 000 time-step training period allowed the robots to learn how to coordinate
in each of the 81 possible joint states. During the learning period, the robots
randomly explored the environment using a Boltzmann distributed exploration
probability.

Figure 6.4.a) displays the learning performance of the coordinated robots
during the training period of 5, 000 time-steps. Figure 6.4.b) displays the
average cumulative reward obtained by the coordinated and uncoordinated
robots. The solid blue line represents coordinated group and the dashed green
line represents the uncoordinated group. For the purpose of comparison, we
also plot in red the performance of a group of robots with a centralized, optimal
controller. Notice that the instant in time when coordination starts to emerge
is clearly visible in the plot of Figure 6.4.a). Also, as seen in Figure 6.4.b),
the robots start to coordinate just as their action choice becomes greedy. �

Example 6.3. We now consider the existence of three robots in the environ-
ment represented in Figure 6.5.

We consider the same navigation task described in the previous example,
with the due modifications arising from the existence of a third robots. As with
the 2-robot problem, we can model this problem using a TMG

(
N,X , (Ak),P, r, γ)

, where:

• N = {I, II, III} is the set of players;

•
• X = X I ×X II ×X III = {(1, 1, 1), . . . , (9, 9, 9)};
• A = AI ×AII ×AIII = {(N,N,N), . . . , (W,W,W)};
• The transition probabilities are defined by a kernel P given by

Pa(i, j) = P
(I)

aI (iI, jI)P(II)

aII (iII, jII)P(III)

aIII (iIII, jIII)

and the kernel P(k) defines the single-robot transition probabilities (we
consider the same individual transition probabilities used in Example 2.1);

• r(i, a, j) = 20 if j = (9, 3, 1), r(i, a, j) = −10 if jI = jII or jI = jIII or
jII = jIII or jI = jII = jIII and r(i, a, j) = 0, otherwise.

• We consider γ = 0.95.

138 6. Cooperative Navigation and Markov Games

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−5000

0

5000

10000

15000

20000
Learning performance

C
um

ul
at

iv
e

re
w

ar
d

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.2

0.4

0.6

0.8

1

Coordination probability

Time steps

P
ro

ba
bi

lit
y

Coordination

a) Cumulative reward and greedy choice probability during the 5,000 time-steps
learning period;

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

20

25

30

35

40
Average cumulative reward

Time steps

R
ew

ar
d

Without Coord.
With Coord.
Optimal

b) Average cumulative reward obtained during the 10 time-step trials.

Figure 6.4: Performance of the coordinated and uncoordinated teams of 2
robots.

As before, in the presence of non-communicating decision makers, a coor-
dination problem arises. We solved for the optimal Q-function and tested the
behavior of the robots in the environment. As in the previous example, we ran
2, 000 independent Monte-Carlo trials, each trial consisting of 10 time-steps.

Table 6.2 compares the total discounted reward obtained with a team with
no coordination with that obtained with a team using a simple coordination
mechanism, biased adaptive play (see Chapter 7 and Appendix C for further
details).

As in the two-robot situation, the coordinated team clearly outperforms
the uncoordinated team (both in terms of discounted reward or total reward)
and is able to attain optimal performance. In this larger scenario, with 729
states, the the team using coordination was allowed to interact for 5 × 104

6.5. Concluding remarks 139

Goal
Room II

Goal
Room I

Start
Room II

Start
Room I

Start
Room III

Goal
Room III

Figure 6.5: Indoor environment with 3 robots.

Table 6.3: Comparative results for a coordinated team and an uncoordinated team
of three robots after the learning period is complete. We present the average total

discounted reward and standard deviation obtained over 2, 000 independent
Monte-Carlo trials. For the purpose of comparison, we also present the results

obtained with an optimal, centralized controller.

Method Total Disc. Reward

Without Coordination 19.320 ± 8.942
With Coordination 22.662 ± 8.593

Optimal 23.361 ± 7.641

time-steps prior to engaging in the test trials. As before, this training period
allowed the robots to achieve coordination in each of the 729 possible joint
states. Notice furthermore that, due to the small environment and to the
presence of three robots, “accidents” and mis-coordinations are more prone to
occur than in the two-robot situation, which makes the use of a coordination
mechanism even more desirable.

To further illustrate the optimality of the learnt coordinated strategy, we
present in Figure 6.6 the average cumulative reward obtained by the coordi-
nated and uncoordinated teams of robots after learning. As in the 2-robot
scenario, the solid blue line represents coordinated group, the dashed green
line represents the uncoordinated group and the red line represents the per-
formance of a group of robots with a centralized, optimal controller. �

6.5 Concluding remarks

To conclude this chapter, we summarize the main ideas presented so far. We es-
tablish a close parallel between the development in this part of the thesis and that
worked in Part I. We then point out the main ideas still to be presented in the
remainder of the thesis.

140 6. Cooperative Navigation and Markov Games

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

20

25

30

35
Average cumulative reward

Time steps

R
ew

ar
d

Without Coord.
With Coord.
Optimal

Figure 6.6: Performance of the coordinated and uncoordinated teams of 3 robots.

6.5.1 Summary

The main purpose of this chapter was to extend the MDP framework to situations
where multiple decision-makers co-exist in a common environment. We introduced
the main concepts to be dealt with in the second part of the thesis; we established
the main differences in notation from the first part, where single-agent problems
were addressed. Finally, we motivated the use of MGs as a model to address nav-
igation problems where a set of robots moves in a common environment described
topologically.

With this purpose in mind, we briefly reviewed several bibliographical references
on MAS. We focused on cooperative MAS, where a group of agents interacts so as
to improve the overall performance of the group as a whole. We described some of
the problems inherent to this class of systems, as well as several issues that should
be addressed in this context. Three fundamental issues immediately arise: how to
define the task ; how to measure the performance of the group; and how to define
the mechanism of cooperation.

The framework of MGs provides an appealing solution to two of these issues:
its reward structure readily solves the problem of task definition and performance
evaluation. Furthermore, the profound relation between MGs and MDPs is an
appealing feature; an intuitive understanding of the main ideas involved in the
former can be gained from our previous study of the latter. In the context of
MGs we reviewed fundamental concepts such as those of best response and Nash
equilibrium.

We then focused on team games, where all decision-makers share a common
joint goal. We introduced the concept of coordinated equilibrium and assessed the
existence of such equilibria in all TMGs. We described the problem of equilibrium
selection and referred several methods from the literature to address this problem
(fictitious play, adaptive play and biased adaptive play).

We concluded by establishing that, with one such method, a team of robots is

6.5. Concluding remarks 141

able to coordinate, improving the overall performance of the team and conveying
the mechanism for cooperation in the class of problems discussed in this thesis.

6.5.2 Discussion

Markov games arise in a multitude of contexts essentially related with multi-agent
sequential decision making problems. Its appearance preceded that of MDPs and
extended the existing idea of strategic games to sequential problems. Clearly, its
great generality allows for far more applications than those portrayed here.

It is immediate that a MG
(
N,X , (Ak),P, (rk), γ) with N = 1 reduces to a

standard MDP. This fact renders this class of models amenable to reinforcement
learning methods. The rewards rk, usually referred as payoffs in the game theoretic
nomenclature, provide the reinforcement signal for the different decision-makers,
and Nash equilibria provide possible solutions.

Of course, Nash equilibria are only optimal in the best response sense, and its
usefulness greatly depends on all agents agreeing to such a strategy. Given this
fact, and as argued by Powers and Shoham [243], one may question the usefulness
of striving to determine and follow a given equilibrium strategy without knowing
whether the other players follow such equilibrium strategy. In [276], the authors
discuss several possible research alternatives on multi-agent decision problems, ad-
dressing the particular topic of “optimality”. In [243] they advance an algorithm
that addresses non-equilibrium optimality.

In the context of team games addressed in the thesis, coordinated equilibria arise
as the natural optimality concept. Nevertheless, even in this particular context it is
important that the decision-makers do not blindly comply to one such equilibrium.
Instead, it is desirable that each decision-maker be able to play a best response
strategy with respect to the others’ strategies, and hence the advantage of the coor-
dination method described in this chapter. In the presence of robots with limitations
or in the event that one of the robots is damaged (and has available only a reduced
action set), our method is still able to adapt and choose the best response to the
strategies of the others.

We would also like to comment on the absence of explicit communication between
the different robots, as considered herein. Although no explicit communication is
assumed, the fact that there is an all-knowing reward mechanism that depends
on the actions of all robots is, in a sense, an implicit communication mechanism.
The same can be argued about the ability of each robot to know the actions of all
other robots a posteriori. This assumption is assumed in all coordination strategies
described in this chapter (e.g., fictitious play, adaptive play) and will be further
commented on Chapter 8. We also postpone to Chapter 8 the discussion of partial
state observability.

142

Chapter 7

Reinforcement Learning in
Finite Markov Games

7.1 Learning in multi-agent systems . 144

7.2 Learning the game . 145

7.2.1 Model-based learning . 146

7.2.2 Model-free learning . 147

7.3 Learning to coordinate . 148

7.3.1 Coordination and learning . 148

7.3.2 Optimal adaptive learning . 151

7.3.3 Coordinated Q-learning . 153

7.3.4 Convergence and coordination 153

7.3.5 Convergence and rationality 157

7.4 An illustrative example . 159

7.5 Concluding remarks . 161

7.5.1 Summary . 161

7.5.2 Discussion . 162

In this chapter, we proceed the study of multi-agent decision making by ex-

tending the methods in Chapter 3 to multi-agent settings. We also introduce

several important tools that will play a central role in the developments of this

second part of the thesis.

The chapter starts by strengthening the relation between TMGs and MDPs.

This will allow us to immediately derive multi-agent variants of several RL methods

described in Chapter 3. This also sets the necessary background to tackle the

problem of simultaneous coordination and learning and will lead to the introduction

of two algorithms, OAL and CQL, the latter of which is the first novel contribution

in this second part of the thesis.

144 7. Reinforcement Learning in Finite Markov Games

7.1 Learning in multi-agent systems

In the last decades, we have witnessed an increasing interest from the RL commu-
nity in extending the powerful existing algorithms from single-agent to multi-agent
scenarios.

The impressive success of RL in different applications have confirmed the ap-
plicability of this class of methods and sustain the claim that RL is a privileged
framework to study and explore machine learning in sequential decision problems.1
This has boosted the research in the topic and led to a number of different ap-
proaches. There are several complementary surveys on the subject of learning in
MAS. We refer the surveys by Sen and Weiß [272], Stone and Veloso [287], Bowling
and Veloso [39] and Yang and Gu [343], just to name a few.

Reinforcement learning methods such as the ones in Chapters 3 and 4, where
an agent learns how to act by interacting with the environment, often require that
same environment to be stationary. Such requirement can be formalized in terms
of the ergodicity of the Markov chain, an assumption present in many convergence
results.2 A learning agent interacting with an environment where other learning
agents exist can ignore them and treat them as part of the environment. However,
in many situations, this violates the ergodicity assumption and algorithms such as
the ones in Chapters 3 and 4 may not converge. Even if convergence is attained, the
learnt policy can be unsatisfactory. The only solution to this problem is to explicitly
consider the existence of multiple players, extending the MDP solution methods to
multi-agent settings.

Littman [165] proposed the Minimax-Q algorithm as a possible application of
Q-learning to zero-sum MGs.3 Hu and Wellman [127, 128, 129] later proposed
Nash-Q, a modified version of Littman’s Minimax-Q algorithm that can be applied
to general-sum MGs. They established convergence of their method under quite
stringent conditions, as argued in [38, 166]. The restricted applicability of Nash-Q
led to the development of Friend-or-Foe Q-learning (FF-Q), proposed by Littman
[160, 167]. FF-Q requires less stringent assumptions than Nash-Q, while retaining
its convergence properties in several classes of MGs.

Claus and Boutilier [59] proposed joint-action learners (JAL) as a suitable learn-
ing algorithm for repeated team games and a similar principle was used by Uther
and Veloso [323], where opponent modeling was used to address adversarial scenar-
ios. These algorithms are supported on the concept of fictitious play, as referred in
the previous chapter.

Gradient-based learning strategies are analyzed with detail in Singh et al. [281]
and an interesting result is established regarding the convergence of the average
payoffs to those of a Nash equilibrium. Bowling and Veloso [40, 41, 42, 43] proposed
a policy-based learning method which applies a policy hill-climbing strategy with

1See the page maintained by Satinder Singh and Michael Littman on reinforcement learn-
ing in http://neuromancer.eecs.umich.edu/cgi-bin/twiki/view/Main/SuccessesOfRL and refer-
ences therein.

2For discrete-state MDPs, the assumption that the agent is able to visit every state-action pair
infinitely often arises as a consequence of ergodicity.

3Zero-sum Markov games are a special class of Markov games in which two competing agents
receive symmetric rewards for each action executed. See Appendix C for details.

http://neuromancer.eecs.umich.edu/cgi-bin/twiki/view/Main/SuccessesOfRL

7.2. Learning the game 145

varying learning step, using the principle of “win or learn fast” (WoLF-PHC).
Many other works on multi-agent learning can be found in [35, 36, 56, 154, 260,

334, 335, 336].
In the line of the approach presented in the first part of the thesis, we address

MAS from a learning perspective. As seen in Chapter 6, MDPs find in TMGs its
multi-agent counterparts and one would expect the methods described in Chapter 3
to be extendable to TMGs. In this chapter we see that this is often so. We emphasize
the fact that the main difference between TMGs and MDPs lies on the process
by which actions are chosen and the methods in Chapter 3 can thus be extended
to multi-agent settings in a straightforward way. We also address the problem of
simultaneous coordination and learning.

Our novel contribution in this chapter is related with this last problem of simul-
taneous coordination and learning. We propose a new algorithm, coordinated Q-
learning, and establish its convergence w.p.1. As will become apparent, coordinated
Q-learning extends the results from the literature by combining a model-free learn-
ing method (Q-learning) with biased adaptive play, a coordination mechanism. The
successful combination of both methods yields a new, powerful method to address
multi-agent learning and coordination in the absence of explicit communication.

7.2 Learning the game

In the remainder of the chapter we admit that all players are able to observe a
posteriori the joint action played by the team at each time instant. This means
that the only difference between TMGs and MDPs lies on the process by which the
(joint) actions are chosen. In particular, a Markov game in which the players adhere
to a strategy σ is equivalent to an MDP where a centralized decision-maker follows
σ (now understood as a policy).

In addressing learning in multi-agent scenarios, we consider two distinct prob-
lems: learning the game and learning to coordinate. While learning the game, we
focus on determining either the optimal Q-function or the optimal value function.
Once any of these functions is known, the agents are able to determine the op-
timal strategy/strategies and, if necessary, deal with the problem of coordination
(i.e., learn to coordinate).

In this section, we focus on the particular problem of learning the game. Similarly
to the development in Chapter 3, we start with model-based approach and then
proceed with a model-free approach. Notice that, while decision-making in Markov
games is a distributed process, learning the game adds no significant differences from
the single-agent situation. Therefore, the methods described in Chapter 3 extend
without change to multi-agent scenarios. Moreover, convergence of these extensions
is a straightforward corollary of the convergence for the original methods.

At this point it is important to remark that, given a fixed strategy in a TMG,
the evaluation of the corresponding value function is no different from the evaluation
of the value function regarding a fixed policy in an MDP. In fact, apart from the
fact that in TMGs any strategy σ is implemented in a distributed manner, no other
significant difference arises from the existence of multiple agents. Therefore, a TMG

146 7. Reinforcement Learning in Finite Markov Games

reduces to an ordinary MDP and the evaluation of a fixed joint strategy σ is nothing
but the evaluation of σ (now understood as a policy) for the MDP.

Furthermore, in strategy evaluation there is no such thing as a coordination
problems, since each decision-maker simply has to implement its individual strategy,
independently of the plays of the other decision-makers. Therefore, as already stated,
strategy evaluation in TMGs reduces to policy evaluation in MDPs and we do not
address strategy evaluation in this second part of the thesis. We refer to the first
part of the thesis for more details on this topic.

7.2.1 Model-based learning

In this subsection, we extend model-based learning to multi-agent scenarios. As
seen in Section 3.3, model-based algorithms build a model of the environment from
experience and then use this learnt model to determine the function Q∗.

Given a TMG
(
N,X , (Ak),P, r, γ), let σ be a stochastic joint strategy verifying

σk(i, a) > 0 for all (i, a) ∈ X × A. Let P̂kt denote player k’s estimate of P at time
instant t. The update rule for P̂kt is

P̂kt+1(i, a, j) = P̂kt (i, a, j) +
I(i,a)(it, at)

nt+1(i, a)

(
Ij(it+1)− P̂kt (i, a, j)

)
, (7.1)

where nt(i, a) denotes the number of visits to the state-action pair (i, a) in the history
up to time t, given by Ht = {i0, a0, i1, . . . , at−1, it}, and I is the indicator function.
Similarly, let r̂kt denote player k’s estimate of r at time instant t. The update rule
for r̂kt is

r̂kt+1(i, a, j) = r̂kt (i, a, j) +
I(i,a,j)(it, at, it+1)

nt+1(i, a, j)

(
rt − r̂kt (i, a, j)

)
, (7.2)

where now nt(i, a, j) denotes the number of occurrences of the transition triplet
(i, a, j) in the history Ht. We remark that we are considering a team Markov game,
where all agents share the reward function. The symbols P̂k and r̂k denote the
estimated transition matrix and estimated reward function maintained by player k.
However, since the processes {Xt} and {At} are fully observable to all players, all
estimates P̂kt and r̂kt will be coincident and we can, therefore, drop the superscript k.
We will show that, under suitable conditions, the sequences {P̂t} and {r̂t} converge
w.p.1 to P and r, respectively.

To compute Q∗, and as in Chapter 3, each agent applies the corresponding fixed-
point iteration using P̂t and r̂t instead of P and r:

Qt+1(it, at) =
∑
j∈X

P̂t(it, at, j)
(
r̂t(it, at, j) + γmax

b∈A
Qt(j, b)

)
, (7.3)

The sequence {Qt} will converge to the desired function Q∗ w.p.1, as stated in the
following result.

7.2. Learning the game 147

Theorem 7.2.1. Given a finite-state TMG
(
N,X , (Ak),P, r, γ), the sequence of

estimates {Qt} generated by (7.3) converge to Q∗ w.p.1 for any initial estimate Q0,
as long as every state-action pair (i, a) ∈ X ×A is visited infinitely often.

Proof See Appendix F.3. 2

It is important to emphasize once again that all players maintain coincident
estimates P̂ and r̂ of P and r and thus compute the same Q-function. This Q-
function will later be used for coordination and hence the importance that all players
have coincident estimates.

7.2.2 Model-free learning

We now consider the problem of estimating the function Q∗ from direct interaction
with the environment, without recurring to any model (learnt or not). The method
analyzed herein is a simple multi-agent extension of the Q-learning algorithm de-
scribed in Chapter 3.

Given a TMG
(
N,X , (Ak),P, r, γ), let σ be a stochastic joint strategy verifying

σk(i, a) > 0 for all (i, a) ∈ X × A and k ∈ N . Recall from Chapter 3 the update
rule for Q-learning:

Qt+1(it, at) = Qt(it, at) + αt(it, at)
(
rt + γmax

b∈A
Qt(it+1, b)−Qt(it, at)

)
. (7.4)

Once again, each player is able to observe the sequences {Xt} and {At} and therefore
maintains an estimate Qt of Q∗ that is updated using the rule in (7.4). Clearly, all
players perform the same update at every time instant and thus maintain coincident
estimates. Just like in the single-agent case, the sequence {Qt} will converge to Q∗
w.p.1, as long as every state-action pair (i, a) ∈ X × A is visited infinitely often.
This is stated in the following result.

Theorem 7.2.2. Given a finite-state TMG
(
N,X , (Ak),P, r, γ), the sequence of

estimates {Qt} generated using multi-agent Q-learning converge to Q∗ w.p.1 for any
initial estimate Q0, as long as∑

t∈T

αt(i, a) =∞;
∑
t∈T

α2
t (i, a) <∞,

and αt(i, a) = 0 if (i, a) 6= (it, at).

Proof See Appendix F.3. 2

To conclude this section, we remark that in both methods introduced we es-
tablished only convergence w.p.1 of the estimates {Qt} to the optimal Q-function.

148 7. Reinforcement Learning in Finite Markov Games

However, we did not address convergence in behavior. In particular, we are inter-
ested in extending the concept of GLIE strategy to multi-agent problems. Since
decision-making is now a distributed process, it is necessary to ensure that none of
the players “becomes greedy” before sufficient exploration has been conducted. It is
also essential that, once the greedy strategies are attained, the joint strategy arising
from the individual greedy strategies is itself greedy. In the next section we further
comment on the topic of GLIE strategies, as it is deeply related with the problem
of coordination.

7.3 Learning to coordinate

So far in this chapter, we focused on the problem of learning the game. We described
model-free and model-based algorithms that can be used to learn the optimal Q-
function and thus determine the optimal joint strategies. We established convergence
of these methods from the convergence theorems in Chapter 3.

However, we have not yet addressed the problem of coordination. This is par-
ticularly important in defining, for example, a GLIE strategy: even if all players
follow a greedy individual strategy, there is no guarantee that the combined joint
strategy will be greedy. As such, and so as to clarify the use of GLIE strategies in
multi-agent settings, it is necessary to ensure some coordination mechanism.

In a team of players endowed with a coordination mechanism, the simple idea of
optimal strategy is replaced by that of coordinated optimal joint strategy ; the idea of
greedy strategy is replaced by that of greedily-coordinated joint strategy. And a GLIE
strategy is a strategy that is greedily-coordinated in the limit while still ensuring
infinite exploration.

The two algorithms presented in this section make extensive use of GLIE strate-
gies to ensure sufficient exploration. And, in the limit, both algorithms become
greedily-coordinated, i.e., all players converge in behavior to an optimal joint strat-
egy. These two algorithms arise from combining the methods in Section 7.2 with
biased adaptive play (BAP), a coordination mechanism introduced in [330] that en-
sures coordination w.p.1. The first algorithm thus obtained, dubbed optimal adap-
tive learning (OAL), was introduced by Wang and Sandholm [330] and combines
model-based learning with BAP. The second algorithm is dubbed coordinated Q-
learning (CQL) and constitutes the main novelty in this chapter. CQL combines a
model-free learning algorithm with the same BAP coordination mechanism. Notice
that the only difference between OAL and CQL lies on the learning method: OAL
is a model-based method while CQL is a model-free method. The qualities of each
method lead back to the model-free vs. model-based discussion in Chapter 3. We
conclude the section by establishing two important properties of both algorithms,
namely rationality and convergence.

7.3.1 Coordination and learning

Let
(
N,X , (Ak),P, r, γ) be a TMG and let Q∗ be the corresponding optimal Q-

function. The function Q∗ defines, at each state i ∈ X , a team strategic game

7.3. Learning to coordinate 149

Γ∗i =
(
N, (Ak), Q∗(i, ·)).4 We refer to the team strategic games Γ∗i by state-game.

A coordinated equilibrium in this state-game Γ∗i corresponds to an optimal joint
strategy in the overall Markov game, for the particular state i in consideration [36].

Since BAP plays a central role in the present and the following chapters, we now
briefly describe this coordination mechanism in greater detail.

Biased adaptive play

Biased adaptive play is a coordination mechanism introduced by Wang and Sand-
holm [330] that is, in its essence, similar to adaptive play [345]. There are, however,
two main differences between BAP and adaptive play. First of all, by introducing
a biasing mechanism, BAP is guaranteed to converge in a broader class of games.
Secondly, by constructing an auxiliary game, BAP converges only to optimal equi-
libria.

Consider a team strategic game Γ =
(
N, (Ak), r) and suppose that the players

repeatedly engage in this game, adapting their plays based on the history of the
most recent plays.

In order to ensure convergence to optimal equilibria, BAP constructs an aux-
iliary game whose only equilibria are the optimal equilibria in the original game.
This virtual game thus eliminates all suboptimal Nash equilibria and simplifies the
coordination process by considering only those equilibria that are optimal. This
virtual game is a team strategic game V G =

(
N, (Ak), rV G

)
constructed from Γ by

considering the modified payoff function rV G given by

rV G(a) =

1 if a ∈ arg max
b∈A

r(b);

0 otherwise.

Notice that, in fact, every Nash equilibrium in this new game corresponds to an
optimal equilibrium in the original game. Therefore, if the players are able to
coordinate in a Nash equilibrium in the game V G, they will have coordinated in
a coordinated equilibrium in the original game Γ, as desired. We denote the set of
Nash equilibria in V G by D = {a ∈ A | rV G(a) = 1}.

Let Ht = {a1, . . . , at} denote the history of all past plays of Γ up to the tth play.
Denote by Ht the m most recent plays in Ht, i.e.,

Ht = {at−m+1, . . . , at−1, at} .

For any 0 < K ≤ m, a K-sample from Ht is a set of K plays randomly drawn
without replacement from Ht. We denote a K-sample from Ht as K(Ht).

When choosing its action at time instant t ≥ m, each player k draws a K-sample
Kk(Ht) independently of all other players and checks if

1. There is a joint action a∗ ∈ D such that all actions a ∈ Kk(Ht) verify
a−k = (a∗)−k;

2. There is at least one action a∗ ∈ D such that a∗ ∈ Kk(Ht).
4A team strategic game is a team Markov game with a single state. See Appendix C for details.

150 7. Reinforcement Learning in Finite Markov Games

Condition 1 simply states that, according to the K-sample of player k, all players
have coordinated in the reduced action (a∗)−k. Condition 2 states that, in the recent
past, at least one optimal equilibrium a∗ has been played and, furthermore, that the
reduced action (a∗)−k in Condition 1 is part of this equilibrium.

If both these conditions hold, then player k is lead to believe that all players have
coordinated except, eventually, player k itself and, therefore, plays the corresponding
action (a∗)k in the most recent optimal equilibrium in the K-sample.

Otherwise, player k uses the K-sample to estimate the expected payoff of each
individual action ak ∈ Ak as

EP k
t (ak) =

∑
a−k∈A−k

rV G
(
(a−k, ak)

)nK(a−k)

K
,

where nK(a−k) denotes the number of times that the reduced action a−k appears in
the K-sample Kk(Ht). Notice that EP k

t simply estimates from the K-sample the
average strategy of the other players. Then, player k chooses its action randomly
from the best response set

BRk
t =

{
ak | ak = arg max

bk∈Ak
EPt(b

k)

}
.

Coordinating while learning the game

It is possible to apply BAP as defined above to each state-game Γ∗i as long as
the payoff function Q∗ is known. However, in our current approach, the players
do not know beforehand the optimal Q-function and BAP must be adapted so as
to cope with the simultaneous learning of the game. We describe such adaptation
next. Before describing how BAP can be modified to accommodate the simultaneous
learning of Q∗, we introduce the following definition.

Given a function Q : X × A −→ R and any ε > 0, a joint action a∗ ∈ A is
ε-optimal w.r.t. Q at some state i ∈ X if

Q(i, a) ≥ max
a∈A

Q(i, a)− ε.

We denote the set of all ε-optimal actions w.r.t. Q at state i by optεQ(i) or, if Q
is clear from the context, optε(i).

Let
(
N,X , (Ak),P, r, γ) be a TMG. Suppose that Q∗ is not known but, instead,

an estimate Qt of Q∗ is available to each player. Define the estimate state-game
at state i as Γi =

(
N, (Ak), Qt(i, ·)

)
. We now apply BAP to each estimate state-

game Γi, considering a virtual game V Gt instead of V G and proceeding as described
above. The game V Gt is a team strategic game obtained from Γi by considering the

7.3. Learning to coordinate 151

reward function

rt(a) =

{
1 if a ∈ optεt(i);
0 otherwise.

The convergence of V Gt to V G is immediate, since the sequence {Qt} converges
to Q∗, as seen in Section 7.2. By using a suitable decreasing sequence {εt}, we can
ensure that V Gt also converges to V G and BAP still coordinates in an optimal Nash
equilibrium. This statement is formally established in [330] and, in a more general
setting, in Subsection 7.3.4.

We are now in position to combine BAP with the learning algorithms from
Section 7.2. Combining BAP with model-based learning will lead to the optimal
adaptive learning (OAL) algorithm, by Wang and Sandholm [330] that we describe
next. Afterwards, we combine BAP with multi-agent Q-learning, this leading to
the coordinated Q-learning (CQL) algorithm, the main novelty in this chapter. We
describe CQL in Subsection 7.3.3.

We remark that the main difference between OAL and CQL lies on the method
used to learn the game. While OAL relies on ARTQI and is, therefore, a model-
based approach, CQL relies on Q-learning, being a model-free approach. Therefore,
we expect both methods to be essentially equivalent. The discussion on the qualities
of each method lead back to the model-free vs. model-based discussion in Chapter 3
and, therefore, we do not pursue such discussion here.

7.3.2 Optimal adaptive learning

Optimal adaptive play was proposed and analyzed by Wang and Sandholm [330],
combining model-based learning and BAP. The use of the model-based learning
algorithm from Section 7.2 ensures that the estimates Qt converge to the optimal
Q-function, as long as there is sufficient exploration. BAP, in turn, guarantees that
all players converge to an optimal Nash equilibrium in the limit.

Figure 7.1 summarizes the pseudo-code of optimal adaptive learning for one
player. We divided the algorithm in 3 main blocks: initialization, learning the game
and learning coordination.

In the initialization, OAL uniformly initializes the transition matrix estimate P̂k

and sets the reward estimates r̂ to zero.
In learning the game, OAL implements the updates described in Section 7.2. Ba-

sically, it uses the information from the observed transition (Xt, At, Xt+1) to update
the model parameters P̂t and r̂t and uses the updated parameters to perform one VI
iteration, improving the estimate Qt. It also updates the εt parameter to ensure that
V Gt converges to V G at an adequate speed, by means of the real function B(Nt) in
line 11. For the time being, we take B(n) as any user-defined real function going to
zero as n→∞. Further ahead we will provide more details on this function.

Finally, in learning coordination (lines 4 through 6), OAL simply implements
BAP as described above: it builds the virtual game V Gt from Qt (line 5a), deter-
mines a K-sample by means of the function K-sample(K,Ht(i)) (line 5c) and then
determines the best response action if no coordination has been attained (i.e., if the
two BAP conditions in Subsection 7.3.1 are not met). The symbol nh(a−k) denotes

152 7. Reinforcement Learning in Finite Markov Games

Initialization:

1: Set t = 0 and εt = ε0;

2: For all (i, a) set nt(i, a) = 1, P̂t(i, a, j) = 1
|X | , r̂t(i, a, j) = 0 and

Qt(i, a) = 0;

3: Set optεt(i) = A and D = A;
Learning coordination: Given current state Xt

4: If t ≤ m, randomly select an action

5: else with GLIE exploitation probability (1− pt) do

a. Update V Gt as

V Gt(Xt, a) =

{
1 if a ∈ optεt(Xt);
0 otherwise;

b. Set D = {a | V Gt(Xt, a) = 1};
c. Set h = K-sample(K,Ht(Xt));
d. For all ak ∈ Ak, set

EPt(ak) =
∑

a−k∈A−k
V Gt

(
Xt, (a−k, ak)

)nh(a−k)
K

;

e. Set BRt(Xt) =
{
ak | ak = arg max

bk∈Ak
EPt(bk)

}
;

f. If conditions 1 and 2 of Subsection 7.3.1 are met, choose the
most recent joint action in h ∩D;

g. else randomly choose an action in BRt(Xt);

6: And with exploration probability pt randomly select an action;

Learning the game: Given current transition triplet (Xt, At, Xt+1)

7: Set nt(Xt, At) = nt(Xt, At) + 1;

8: Update P̂t and r̂t according to (7.1) and (7.2);

9: Update Qt according to (7.3);

10: Set t = t+ 1 and Nt = mini,a nt(i, a);

11: If εt ≥ ε0B(Nt),

a. Set εt = ε0B(Nt);
b. For all i, set optεt(i) = {a | Qt(i, a) ≥ maxbQt(i, b)− εt}

Figure 7.1: The OAL algorithm for one player.

7.3. Learning to coordinate 153

the number of times that the reduced action a−k appears in the K-sample h.
Notice also that OAL implements GLIE exploration by means of the exploration

probabilities pt. This ensures sufficient exploration, essential to the convergence of
Qt to the optimal Q-function. We also remark that the algorithm in Figure 7.1
is presented in the adequate order to perform the computation, different from the
order in the analysis above.

7.3.3 Coordinated Q-learning

In this subsection, we introduce the coordinated Q-learning algorithm (CQL). As
OAL, CQL also tackles the problem of simultaneous learning and coordination and
is the main contribution of this chapter. With CQL, we extend the ideas in OAL
to model-free learning. The interest of this new algorithm will become evident in
the next chapter, as its extension to TMGs with infinite Markov games is immedi-
ate. Under suitable exploration, multi-agent Q-learning ensures the estimates Qt to
converge to the optimal Q-function and BAP guarantees convergence of the players’
strategies to an optimal Nash equilibrium. We once again emphasize that the only
difference between CQL and OAL resides on the process of learning the game.

Figure 7.2 summarizes the pseudo-code of coordinated Q-learning (CQL) for one
player. Once again, notice that the main difference between CQL and OAL lies in
the block that learns the game (lines 7 through 10): CQL learns the game using the
model-free approach in Subsection 7.2.2, while OAL uses the model-based approach
in Subsection 7.2.1. The remainder of the algorithm is similar to OAL and we refer
to the corresponding analysis for an overview.

Two important observations are in order. First of all, notice that both OAL
and CQL consider a GLIE learning strategy. This can be confirmed by checking
lines 5 and 6 in both algorithms. As will soon become apparent, this is an essential
assumption to ensure simultaneous learning and coordination in both algorithms.
The GLIE strategy is implemented by considering a sequence {pt} converging to
zero that indicates the exploration probability at each time instant t ∈ T . Thus,
when exploring, each player randomly chooses its individual action; when exploiting,
each player chooses its individual actions using biased adaptive play. As long as
pt → 0 at an adequate rate, sufficient exploration is guaranteed, and the strategy
has the GLIE property.

A second observation is related to the function B(Nt), appearing in both algo-
rithms. This function is user-defined and determines the rate at which εt goes to
zero (or, equivalently, the rate at which suboptimal actions are eliminated from the
virtual game V Gt). As already stated in Subsection 7.3.1, it is important that this
function ensures the convergence of the sequence {εt} to zero to be slower than that
of V Gt to V G (or, which is equivalent, of Qt to Q∗). This requirement is properly
formalized next.

7.3.4 Convergence and coordination

This subsection complements the convergence results on Section 7.2 by establishing
convergence in behavior for the OAL and CQL algorithms in Figures 7.1 and 7.2
(convergence of Qt was established in Theorems 7.2.1 and 7.2.2).

154 7. Reinforcement Learning in Finite Markov Games

Initialization:

1: Set t = 0 and εt = ε0;

2: For all (i, a) set nt(i, a) = 1 and Qt(i, a) = 0;

3: Set optεt(i) = A and D = A;
Learning coordination: Given current state Xt

4: If t ≤ m, randomly select an action

5: else with GLIE exploitation probability (1− pt) do

a. Update V Gt as

V Gt(Xt, a) =

{
1 if a ∈ optεt(Xt);
0 otherwise;

b. Set D = {a | V Gt(Xt, a) = 1};
c. Set h = K-sample(K,Ht(Xt));
d. For all ak ∈ Ak, set

EPt(ak) =
∑

a−k∈A−k
V Gt

(
Xt, (a−k, ak)

)nh(a−k)
K

;

e. Set BRt(Xt) =
{
ak | ak = arg max

bk∈Ak
EPt(ak)

}
;

f. If conditions 1 and 2 of Subsection 7.3.1 are met, choose the
most recent joint action in h ∩D;

g. else randomly choose an action in BRt(Xt);

6: And with exploration probability pkt randomly select an action;

Learning the game: Given current transition triplet (Xt, At, Xt+1)

7: Set nt(Xt, At) = nt(Xt, At) + 1;

8: Update Qkt according to (7.4), with αt(i, a) = 1
nt(i,a)

;

9: Set t = t+ 1 and Nt = mini,a nt(i, a);

10: If εt ≥ ε0B(Nt),

a. Set εt = ε0B(Nt);
b. For all i, set optεt(i) =

{
a | Qt(i, a) ≥ maxbQkt (i, b)− εt

}

Figure 7.2: The CQL algorithm for one player.

7.3. Learning to coordinate 155

Consider a sequence {Qt} generated by one of the algorithms in Figures 7.1
or 7.2. Since in both algorithms the players learn the game independently of the
coordination mechanism, the convergence results in Section 7.2 hold for both OAL
and CQL. Therefore, the sequence {Qt} converges to Q∗ w.p.1. Suppose now that
there is a function rate : N −→ R such that, w.p.1,

‖Qt −Q∗‖ ≤ K0 rate(Nt), (7.5)

where K0 is some positive constant. The following result is a generalization of
Lemma 6 in [330]. The function B : N −→ R defines the rate of convergence of the
sequence {εt} to zero in the both OAL and CQL.

Lemma 7.3.1. Consider a TMG
(
N,X , (Ak),P, r, γ). Let ΛT be the event that,

for t > T , V Gt = V G for an agent following a learning algorithm for which (7.5)
holds, where V Gt and V G are the virtual games obtained from Qt and Q∗ as detailed
above. If B(Nt) decreases monotonically to zero and

lim
t→∞

rate(Nt)

B(Nt)
= 0,

then limt→∞ P [ΛT] = 1.

Proof See Appendix F. 2

The previous result states that each of the virtual games V Gt defined from the
state-games Γi converges to the virtual game V G obtained from Γ∗i . As established
in [36], the combination of the coordinated equilibria for each Γi corresponds to a
coordinated equilibrium for the original TMG. On the other hand, since in OAL and
CQL the players admittedly follow a GLIE strategy, every state is visited infinitely
often.5 Therefore, to establish convergence in behavior of both OAL and CQL to
an optimal Nash equilibrium, it suffices to show that they converge to one such
equilibrium in all state-games Γi, i ∈ X . The following two results establish this
fact.

Theorem 7.3.2. Let
(
N,X , (Ak),P, r, γ) be a TMG with N players. Suppose that

the following conditions hold:
1. The players follow a GLIE strategy as described in the algorithm of Figure 7.1;

2. The function B(Nt) decreases monotonically to zero and verifies

lim
t→∞

√
log log(Nt)

Nt

B(Nt)
= 0

5The very definition of GLIE strategy implies that all state-action pairs (in particular all states)
are visited infinitely often.

156 7. Reinforcement Learning in Finite Markov Games

3. The lengths m and K of the history Ht and the K-sample h verify m ≥ K(N+
2).

Then, the sequence of estimates
{
Qk
t

}
generated by OAL converges to Q∗ w.p.1.

Furthermore, all players in N converge in behavior to a common coordinated Nash
equilibrium w.p.1.

Proof See Appendix F. 2

Theorem 7.3.3. Let
(
N,X , (Ak),P, r, γ) be a TMG with N players. Suppose that

the following conditions hold:

1. The players follow a GLIE strategy as described in the algorithm of Figure 7.2;

2. The function B(Nt) decreases monotonically to zero and verifies

lim
t→∞

√
log log(Nt)

Nt

B(Nt)
= 0 (7.6)

3. The lengths m and K of the history Ht and the K-sample h, m and K, verify
m ≥ K(N + 2);

4. The sequence of step-sizes {αt} is given by

αt(i, a) =

{
1

nt(i,a)
if (i, a) = (it, at);

0 otherwise.

Then, the sequence of estimates {Qt} generated by CQL converges to Q∗ w.p.1.
Furthermore, all players in N converge in behavior to a common coordinated Nash
equilibrium w.p.1.

Proof See Appendix F. 2

One final and important remark is in order. In the previous section, we described
the Q-learning update mechanism (later used in CQL) to learn the function Q∗. One
could question if an on-policy update mechanism (such as SARSA) could be used to
learn the game, replacing the Q-learning update in CQL.

The answer to this question is negative. As seen in Chapter 3, SARSA converges
to the optimal Q-function only if a GLIE strategy is used for learning; if any other
policy is used, SARSA converges to the corresponding Q-values. In CQL, the bound
(7.6) on the function B(Nt) implies that coordination occurs only when the estimates
Qt are “sufficiently close” to the true function Q∗. Using a SARSA-like update, the

7.3. Learning to coordinate 157

estimates Qt approach Q∗ only as the learning strategy approximates the greedy
strategy (while still ensuring sufficient exploration). These are two incompatible
requirements and, therefore, it is not generally possible to use an on-policy update
mechanism such as SARSA with BAP.

To conclude this section, we assess two interesting properties of OAL and CQL.

7.3.5 Convergence and rationality

We have described two methods to estimate the optimal Q-functions for team
Markov games. The players of the game can then use these estimates to decide on the
“correct” line of action. Like the methods described in Part I, these algorithms can
be classified as value-function based methods. Several known reinforcement learning
methods for multi-agent scenarios also fall in this category, such as Minimax-Q, Nash-
Q, FF-Q and several others [166]. These algorithms have been shown to converge to
the a desired solution under suitable conditions [129, 167, 168].

However, as argued in Chapter 6, the existence of multiple equilibria poses dif-
ficult problems for learning algorithms, even if the optimal Q-function is accurately
learnt. As pointed out by Bowling and Veloso [39], if a game has multiple equilib-
ria, the optimal strategy for a given player depends on the strategies of the other
players and opponent-independent algorithms such as Minimax-Q, Nash-Q or FF-Q
convey no guarantees on the optimality of the chosen strategy. As argued in [166],
coordination mechanisms must include some sort of dependence on the strategies of
other players and some assumptions must be made about how these other agents
will behave.

Baring these ideas in mind, Bowling and Veloso [41] introduce two properties
that we would expect from any “intelligent” learner. Such properties are rationality
and convergence.

Rationality

In a MG
(
N,X , (Ak),P, (rk), γ), player k is said to be a rational learner if it

converges to a strategy which is a best response to the strategies of its opponents,
given that the other players converge to stationary strategies.

In other words, if all other players follow a stationary strategy (or converge to
one), a rational player converges to a best response strategy. For example, if the
other players follow some sub-optimal strategy, a rational player should be able to
take advantage of this fact.

Convergence

158 7. Reinforcement Learning in Finite Markov Games

In a MG
(
N,X , (Ak),P, (rk), γ), player k is said to be a convergent learner if it

converges to a stationary strategy. This convergence occurs even against players
using some class of learning algorithms.

In other words, a convergent learner is able to converge even if the other players in
the game also adapt their strategies. This does not happen, for example, in situations
where all players keep adapting their strategies to the other players without ever
converging.

As argued in Bowling and Veloso [41], many multi-agent RL algorithms possess
one of such properties, but not both. For example, Minimax-Q, Nash-Q and FF-
Q are convergent but not rational, since they will learn some sort of equilibrium
independently of the strategy of the opponents. On the other hand, fictitious play
algorithms such as Claus and Boutilier’s JAL [59] are rational but not convergent,
since the players are only able to play pure strategies.

We now proceed with the analysis of both OAL and CQL with respect to both of
these properties. We focus on CQL, although the conclusions hold for both methods.

Let Γ =
(
N,X , (Ak),P, r, γ) be a TMG with N = 2 and |X | = 1. We consider

this simplified scenario for the sake of clarity, remarking however that the conclusions
hold for any number of players and a state-space of any finite dimension.6

We start with rationality. Suppose that Player 2 follows a stationary strategy
σ2 and Player 1 follows the CQL algorithm. Player 1 will then learn the following
Q-values:

Q1(a1) = r(a1, a2
σ2) + γ max

b1∈A1
Q1(b1),

where a2
σ2 is Player 2’s action according to strategy σ2. When building the virtual

game and sampling from the past history of plays, Player 1 will find that the set of
optimal actions consists of Player 1’s best response strategies to σ2 and, therefore,
Player 1 will coordinate w.p.1 in a best response strategy to σ2.

This leads to the following result.

Proposition 7.3.4. Let
(
N,X , (Ak),P, r, γ) be a TMG and suppose that, upon a

reordering of the player set, all players 2, . . . , N converge to a stationary strategy
σ−1. Then, Player 1 following either OAL or CQL will converge to a best response
strategy σ1 to σ−1. In other words, OAL and CQL are both rational algorithms.

Consider now that Player 2 is a learning agent. In particular, suppose that
Player 2 also follows either the OAL or the CQL algorithm. Then, convergence
arises as an immediate corollary of Theorems 7.3.2 and 7.3.3, that we summarize in
the following proposition.

6Since we assume infinite exploration, we can simplify the analysis of the behavior of the algo-
rithms in the whole game to the analysis in a simple state-game. Furthermore, by considering all
players {2, . . . , N} as a single generalized player, we see that the case of N players easily reduces
to the case where N = 2.

7.4. An illustrative example 159

Room 9

Room 1 Room 4 Room 7

Room 2 Room 5 Room 8

Room 3 Room 6

Goal
Room II

Goal
Room I

Start
Room II

Start
Room I

Figure 7.3: Example of an indoor environment.

Proposition 7.3.5. Let
(
N,X , (Ak),P, r, γ) be a TMG and suppose that all players

follow either OAL or CQL. Then, w.p.1, all players converge to a coordinated equi-
librium. In other words, OAL and CQL are both convergent algorithms in self-play.

Remark: In the previous proposition we considered convergence in self-play.
However, convergence of OAL and CQL extends to a broader class of learning
algorithms. For example, algorithms such as Nash-Qor FF-Qwill converge
to stationarity w.p.1 when playing against OAL or CQL. Therefore, from
Proposition 7.3.4, so will OAL and CQL. �

7.4 An illustrative example

Consider once again the indoor environment from Example 6.2 and repeated in
Figure 7.3 for commodity. The corresponding multi-robot navigation problem can
be described by an TMG

(
N,X , (Ak),P, r, γ) where

• N = {I, II} is the set of players;

• X = X I ×X II, where X k = {1, . . . , 9} for k = I, II;

• Ak = {N,S,E,W} for k = I, II;

• The transition probabilities are defined by a kernel P given by

Pa(i, j) = P
(I)

aI (iI, jI)P
(II)

aII (iII, jII)

and the kernel P(k) defines the single-robot transition probabilities (we consider
the same individual transition probabilities used in Example 2.1);

160 7. Reinforcement Learning in Finite Markov Games

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

2

3

4

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

OAL
CQL

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

OAL
CQL

Figure 7.4: Cumulative reward and greedy choice probability during the 2× 105-time-units
learning period.

• The reward function r assigns a reward of +20 for every transition triplet
(i, a, j) such that j = (9, 3), −10 for every transition triplet (i, a, j) such that
jI = jII and 0 otherwise;

• We considered γ = 0.95.

We applied OAL and CQL to this TMG. The group of robots is allowed to ex-
plore/learn during 2×105 time units and the obtained strategy is then evaluated for
100 time units. During learning, each robot explores with a Boltzmann distributed
exploration probability given by

pt =
eEPt(a

k)∑
bk∈A e

EPt(bk)
,

where ak is the action prescribed by BAP and pt and EPt are as defined in Sec-
tion 7.3.

Figure 7.4 represents the total undiscounted reward obtained by the groups of
robots during learning, as well as the evolution of the probability of choosing the
greedy action. The solid blue line corresponds to the group using OAL and the
dashed red line corresponds to the group using CQL. Notice that both learning
algorithms present a similar learning behavior, evidenced by the similar slope of the
learning curve in the rightmost half of the plot. Also notice that, as expected, the
probability of choosing the greedy action goes to 1.

We also tested each of the learnt strategies in the environment. We ran both
learnt strategies for 100 time units and determined the total discounted reward
obtained in each case. Table 7.1 represents the results obtained. We have run 2, 000
independent Monte-Carlo trials and present the average and standard deviation

7.5. Concluding remarks 161

Table 7.1: Comparative results for OAL and CQL after the learning period is complete.
We present the average total discounted reward and standard deviation obtained over 2, 000

independent Monte-Carlo trials.

Method Total Disc. Reward

No coordination 79.739 ± 11.229
OAL 84.543 ± 9.537
CQL 84.034 ± 9.934

Optimal 85.039 ± 9.783

obtained using each of the methods. Notice that both OAL and CQL present a
similar performance, as expected, since both methods are expected to converge to
the optimal strategy.

For the purpose of comparison, we also present the results obtained with an
optimal, centralized controller and by a non-coordinated group of robots. Direct
comparison immediately leads to the conclusion that both groups running OAL
and CQL clearly outperform the non-coordinated group. Also, both these groups
were able to attain optimal performance, which implies that both algorithms yielded
convergence to the optimal strategy.

7.5 Concluding remarks

To conclude this chapter, we summarize the main ideas presented so far. We briefly
suggest how this framework can be extended to address problems with infinite state-
spaces, a topic to be developed in the next chapter.

7.5.1 Summary

In Chapter 6 we described the framework of MGs as a multi-agent counterpart to
MDPs. We successfully applied this framework to a simple multi-agent navigation
example and outlined several important issues that arise in the presence of multiple
decision-makers, such as the equilibrium selection problem.

In the present chapter, we started by extending some methods introduced in
Chapter 3 to multi-agent situations. By casting TMGs as generalized MDPs, we
presented multi-agent versions of ARTQI and Q-learning. These methods can be be
used to learn the optimal Q-functions for TMGs, as long as every state-action pair
is visited infinitely often.

We then addressed the problem of equilibrium selection and combined biased
adaptive play with the two aforementioned learning methods. The two algorithms
thus obtained, OAL and CQL, were shown to converge to the optimal Q-function
while ensuring the corresponding players to converge in behavior to a coordinated
equilibrium. Finally, we establishing both OAL and CQL to be rational and con-
vergent in the sense of [41].

162 7. Reinforcement Learning in Finite Markov Games

We concluded the chapter by illustrating the use of both methods in a familiar
topological navigation example.

7.5.2 Discussion

In this chapter, we presented several RL algorithms that can be used to determine
the optimal Q-values and ensure coordination in an optimal strategy. Under suit-
able conditions (identified in Theorems 7.3.2 and 7.3.3), the described algorithms
converge asymptotically to the desired Q-function, while ensuring convergence in
behavior to a coordinated optimal joint strategy, as long as the learning strategy
has the GLIE property.

We now revisit two issues that arose along our presentation and whose detailed
discussion was postponed to these concluding remarks. In particular, we elaborate
on the topics of strategy evaluation (briefly addressed in Section 7.2) and on-policy
methods and coordination (briefly addressed in Section 7.3).

Strategy evaluation in multi-agent systems

In MAS, strategy evaluation can be discussed from the point of view of one agent
(individual strategy evaluation) or from the point of view of the group of agents.

We start by analyzing individual strategy evaluation from one agent’s point-of-
view. Consider a general Markov game

(
N,X , (Ak),P, (rk), γ) and suppose that a

given agent k ∈ N adheres to some fixed individual strategy σk. As argued in Chap-
ter 6 it is generally not possible to evaluate the individual strategy σk independently
of the reduced strategy σ−k followed by the remaining players. Nevertheless, it is
possible to evaluate the worst case performance of policy σk, and assign it a value
V σk , defined for each state i ∈ X as

V σk

min(i) = min
σ−k

V (σ−k,σk)(i).

This measure of performance is useful, for example, in games where the other players
have goals that potentially collide with those of player k. By choosing an individual
strategy (σk)∗ that maximizes the worst case performance over all possible individual
strategies σk, player k is able to ensure a total cumulative reward that is no less
than V (σk)∗ .

The Minimax-Q algorithm [165] uses this concept of worst-case performance to
apply Q-learning to zero-sum Markov games. In a more general setting, FF-Q also
applies a similar idea to distinguish between friendly players and opposing players.
FF-Q applies a Q-learning update using the idea of worst case performance of the
friendly players with respect to the opponent players. More details on these methods
can be found in [160, 166, 167].

To analyze strategy evaluation from the point-of-view of the team of agents, con-
sider a MG

(
N,X , (Ak),P, (rk), γ) and suppose that the N decision makers adhere

to a fixed strategy σ, stochastic or not. The process {Xt} will evolve according to

7.5. Concluding remarks 163

the transition probabilities

P [Xt+1 = j | Xt = i] =
∑
a∈A

σ(i, a)Pa(i, j) = Pσ(i, j),

independently of the fact that the action-choice probabilities in σ are “generated”
in a distributed fashion. Therefore, there is no conceptual difference between the
chain (X ,Pσ) and the chains (X ,Pδ) analyzed in Chapter 3 in the context of policy
evaluation. Therefore, the policy evaluation methods described in Chapter 3 (such
as ARTVI or TD(0)) can be applied exactly as described therein. Each player k ∈ N
independently estimates the corresponding value-function (V σ)k and the exact same
convergence results apply.

It should now be clear that policy evaluation and joint strategy evaluation can
be reduced to a unique problem. Therefore, as remarked in Section 7.2, we have
presented no strategy evaluation methods in this chapter, as any such methods
would reduce to those in Chapter 3.

On-strategy methods and coordination

We now discuss in further detail the possibility of using on-strategy updates while
ensuring coordination.

As seen in Chapter 3, on-policy methods learn the value/Q-function associated
with the policy used to interact with the environment. Examples of such methods
include ARTVI, TD(0) and SARSA. As seen in Chapter 3 and 4, we can straightfor-
wardly apply these methods to perform policy evaluation. However, if an on-policy
method is to be used to determine the optimal Q-function, the learning policy must
eventually become greedy. This is easily seen from the definition of optimal Q-
function: it corresponds to a policy that is greedy with respect to its associated
Q-function.

In MAS, however, decision-making is a distributed process. Even if each player in
a TMG adopts a greedy strategy, there is no guarantee that the resulting joint strat-
egy is greedy. Therefore, coordination must be ensured before greedily-coordinated
action-choice can be implemented.

If coordination can be guaranteed even without complete knowledge of the game
(for example, using pre-defined conventions), then on-strategy learning methods can
be used to determine the optimal Q-function. As in the single-agent case, a GLIE
strategy must be used, but coordination does not depend on the learning of the
game and can be implemented independently.

If coordination is meant to emerge as the players learn the game itself, there is
the problem described in Section 7.3: while the game is being learnt, there are no
guarantees that the players will coordinate in an optimal strategy; on the other hand,
while the players do not coordinate in an optimal strategy, the learning process will
not converge to the optimal Q-values.

To illustrate this fact, we repeat in Figure 7.5 the results obtained in the example
of Section 7.4, where we have included the performance of CQL using a SARSA up-
date instead of the Q-learning update described in Figure 7.2. Table 7.2 summarizes
the corresponding numerical results.

164 7. Reinforcement Learning in Finite Markov Games

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

2

3

4

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

OAL
CQL−QL
CQL−SARSA

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

OAL
CQL−QL
CQL−SARSA

Figure 7.5: Cumulative reward obtained during the 2× 105-time-units learning period.

Table 7.2: Comparative results for OAL, CQL with Q-learning update, CQL with SARSA
update and uncoordinated Q-learning, after the learning period is complete. We present the
average total discounted reward and standard deviation obtained over 2, 000 independent

Monte-Carlo trials.

Method Total Disc. Reward

No coordination 79.739 ± 11.229
OAL 84.543 ± 9.537

CQL (Q-learning update) 84.034 ± 9.934
CQL (SARSA update) 35.856 ± 27.772

We refer to the original CQL algorithm as described in Figure 7.2 as CQL-QL
(coordinated Q-learning with a Q-learning update) and to the on-policy version as
CQL-SARSA (coordinated Q-learning with a SARSA update).

It is more than evident that the resulting strategy is sub-optimal as are the
estimated Q-values: the performance of the team trained using the SARSA update
is far inferior to that of the remaining algorithms. Also, the obtained performance
is far worse than that obtained without any coordination mechanism. These results
allow us to draw two fundamental conclusions:

• The poor performance cannot be justified only by mis-coordinations. If that
were the case, we would expect the performance obtained to be closer to that
of the uncoordinated algorithm, which is not the case;

• This, in turn, leads to the conclusion that the team converges to some subop-
timal strategy and learns the corresponding Q-values.

7.5. Concluding remarks 165

We can summarize this as follows: CQL with a SARSA update converges to
a function Qσ corresponding to some strategy σ and the agents coordinate in the
corresponding policy σ. This policy, however, is generally sub-optimal, as seen in
the results from Table 7.2.

* * *

In the next chapter we introduce the final theoretical contributions of the the-
sis. We follow a similar methodology to the one in this chapter to extend the RL
methods from Chapter 4 to MGs with infinite state-spaces. This will require some
modification of the BAP coordination mechanism, since we can no longer rely on
previous visits to a state to ensure coordination in that state (since there are in-
finitely many). Therefore, we introduce a similarity function that will allow the
players to coordinate by relying on previous visits to similar states. This will con-
vey yet another idea on how to build a suitable set of basis functions to use in the
function approximation architecture.

166

Chapter 8

Reinforcement Learning in
Infinite Markov Games

8.1 Introduction . 168

8.2 Infinite state-space Markov games . 169

8.2.1 Markov games with infinite state-spaces 170

8.2.2 Equilibria . 170

8.3 Learning the game . 171

8.3.1 Approximate Q-learning updates in infinite Markov games . . 172

8.3.2 On convergence . 173

8.4 Learning to coordinate . 174

8.4.1 Biased adaptive play in infinite Markov games 174

8.4.2 Approximate coordination . 175

8.4.3 Convergence in behavior . 177

8.5 An illustrative example . 181

8.6 Partial observability . 184

8.6.1 Partial observability in Markov games 185

8.6.2 Centralized observations and state estimation 186

8.6.3 Cognitive autonomy . 189

8.6.4 Related work . 193

8.7 An illustrative example . 194

8.8 Concluding remarks . 196

8.8.1 Summary . 197

8.8.2 Discussion . 197

In this chapter, we bring out the final theoretical contributions of the thesis,

by extending the work in the previous chapter to TMGs with infinite state-spaces.

The developments in this chapter build up to two new algorithms and a final result

that wraps all contributions in the thesis in a nice, unified result.

168 8. Reinforcement Learning in Infinite Markov Games

We start by briefly going through the main modifications in the TMG frame-

work arising from the fact that the state-space is now considered infinite. We

present a straightforward generalization of the convergence theorems in Chapter 4

to multi-agent settings. We address the problem of coordination in this class of

games, this leading to the approximate BAP coordination mechanism. We fi-

nally produce the most general method in the thesis, coordinated approximate

Q-learning, the main contribution of the chapter.

We conclude the chapter with some discussion on the applicability of this

framework to problems with partial observability.

8.1 Introduction

In the second part of the thesis we have addressed MAS from a game-theoretic
perspective. We adopted TMGs as a model to study the interaction between mul-
tiple learning agents and described a coordination mechanism (BAP) that ensures
coordination on an optimal strategy. In all this, we admitted several simplificative
assumptions:

• The TMG has a finite state-space;

• Each player is able to perceive the current state of the game unambiguously;

• Each player is also able to observe (a posteriori) the actions played by all other
players.

Once again, the use of topological maps provides an argument in favor of the first
assumption. However, the same cannot be said of the two remaining assumptions,
as few real decision problems actually verify both assumptions, if any.

In this chapter we discuss how each of these assumptions can be alleviated.
The chapter is organized as follows: In Section 8.2 we survey pertinent references
and discuss the modifications to fundamental concepts such as Nash equilibria and
coordination arising from the fact that we are now considering TMGs with infinite
state-spaces (that we henceforth refer as infinite TMGs).

We then consider separately the problems of learning the game and learning to co-
ordinate in infinite games, in a development similar to that in Chapter 7. The prob-
lem of learning the game is addressed in Section 8.3, where we extend approximate
Q-learning to multi-agent settings. In Section 8.4 we address the problem of learning
to coordinate. We modify BAP to cope with the infinite state-spaces, this leading
to the approximate BAP coordination mechanism. We then combine ABAP with
approximate Q-learning to obtain the coordinated approximate Q-learning (CAQL)
algorithm. In Section 8.5 we apply CAQL to a simple navigation problem with
multiple robots and infinite state-space.

We then discuss the problem of partial observability in Section 8.6. We start
by considering a simplified setting, where the observations are shared by all agents

8.2. Infinite state-space Markov games 169

(centralized observations). With this simplification, we are able to replicate the
arguments in Chapter 4 and convert partially observable problems in equivalent
fully observable problems with infinite state-spaces, to which CAQL can be applied.
We conclude Section 8.6 by discussing two models from the literature (Dec-POMDPs
and I-POMDPs) that address general partially observable problems.

We conclude this chapter in Section 8.7 by applying CAQL to a simple navigation
problem with multiple robots and partial observability.

8.2 Infinite state-space Markov games

As discussed in the previous chapters, single-agent RL algorithms have been widely
applied (with adequate adaptations) to multi-agent decision problems. It is pos-
sible to find numerous multi-agent variations of Q-learning [104, 307], DYNA-Q
[334], ARTQI [330] and others [41, 61, 281]. Some approaches consider simplifying
assumptions such as deterministic transitions [156], common payoffs [59, 330] or
constant-sum payoffs [165].

However, most multi-agent RL research focuses on MGs with small/finite state-
spaces. A curious fact that is worth mentioning is that Samuel’s pioneer works in
machine learning, back in the 1950-60’s, already described a multi-agent application
with a huge state-space [268, 269]. Also, the impressive results in generalization
obtained by Tesauro’s backgammon player also feature learning in a game with a
huge state-space [307, 308]. Both authors addressed learning in large, competitive
decision problems and resort to approximation mechanisms to attain some level of
generalization. However, both authors consider learning as an individual process.
Few additional contributions to the topic of generalization in multi-agent systems
can be found ever since.1

Bowling and Veloso [40] apply a combination of the WoLF (win-or-learn-fast)
learning strategy with a function approximation mechanism to MGs with large or
infinite state-spaces. They experimentally validate this combined method by apply-
ing it to the Goofspiel game, which has about 1011 states when using an ordinary
card deck. Kok et al. [143] describe the application of coordination graphs to mul-
tiagent scenarios with continuous domain. Singh et al. also refer the interest of
applying the gradient ascent techniques described in [281] to games with infinite
state-spaces.

In this chapter, we contribute another step in the research of solution methods for
infinite MG, by applying the approximate Q-learning algorithm from Section 4.5 to
this class of problems. We also extend the BAP coordination mechanism to infinite
TMGs. The combination of both methods will lead to the coordinated approximate
Q-learning algorithm. As will soon become apparent, some of the valuable aspects
of this new method are its sound convergence properties and broad applicability.

1We remark that in path-planning applications, several multi-robot planning algorithms are
available. In such applications, the robots act in a usually infinite configuration space [158, 328].

170 8. Reinforcement Learning in Infinite Markov Games

8.2.1 Markov games with infinite state-spaces

Recall from Chapter 4 that an infinite MDP is a tuple (X,A,P, r, γ) where X is a
compact subset of Rp, A is a finite set of actions, P is a kernel defining the transition
probabilities

P [Xt+1 ∈ U | Xt = x,At = a] = Pa(x, U)

and r : X × A × X is the reward function assigning the decision-maker a reward
r(x, a, y) every time a transition from x to y occurred under action a. We defined
the optimal value function V ∗ as verifying the modified Bellman optimality equation

V ∗(x) = max
a∈A

∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy).

and the optimal Q-values Q∗(x, a) as

Q∗(x, a) =

∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy).

We now consider a set of N independent decision-makers (players), each player
k with a repertoire Ak of individual actions and define A = ×Nk=1Ak. The tuple
(X,A,P, r, γ) is equivalent to the one considered above except for the fact that A
is now a cartesian product of the individual action-spaces Ak. As in Chapter 7, the
tuple

(
N,X , (Ak),P, r, γ) thus obtained is an infinite team Markov game. The main

differences from TMGs considered in the previous chapters lie on the fact that X is
now a compact subset of X , not necessarily finite, and P is a transition probability
kernel instead of a transition probability matrix.

As in Chapter 7, the close relation between TMGs and MDPs will allow us to
adapt approximate Q-learning to multi-agent scenarios.

8.2.2 Equilibria

The existence of stationary Nash equilibria in general-sum MGs with infinite (un-
countable) state-spaces is a topic of ongoing research in the game theory community,
as argued in [223], and remains an open question for all but a few particular classes
of games.

In the class of games considered here, the problem of establishing the existence
of equilibria is greatly simplified: the fact that the action set is finite, the rewards
are bounded and the game is fully cooperative (i.e., all players share the same joint
goal) greatly facilitates the task of establishing the existence of a stationary Nash
equilibrium.

Before proceeding any further, we should remark that concepts such as individual
action/strategy, joint action/strategy, reduced action/strategy, pure strategy, mixed
strategy or stationary strategy carry from those in Chapter 6 without any change.
The concepts of best-response and Nash equilibrium also carry without any change
from those in Chapter 6. We can now introduce the following result.

8.3. Learning the game 171

Theorem 8.2.1. Every team Markov game Γ =
(
N,X , (Ak),P, r, γ), with finite

action-space A and compact state-space X ⊂ Rp, has a pure stationary Nash equi-
librium.

Proof See Appendix F. 2

One final remark to emphasize that not only does at least one equilibrium always
exist in the conditions of Theorem 8.2.1, but also at least one such equilibria is a
coordinated equilibrium. This is immediate from the proof of Theorem 8.2.1 that
can be found in Appendix F.

Coordination and equilibrium selection

As in finite TMGs, the existence of at least one coordinated equilibrium does not
imply its uniqueness. In fact, many such games possess multiple equilibria and when
that is the case we are, once again, faced with a coordination problem.

As in the finite case, it is necessary to consider some coordination mechanism to
ensure coordination. Even if all players know the game, one must still devise some
specific mechanism to ensure that, in the presence of multiple equilibria, all players
commit to the same equilibrium. As in Chapter 6, we are interested in an adaptive
mechanism that ensures coordination to emerge as the players repeatedly play the
game one and yet another time. We address the problem of learning to coordinate
in Section 8.4.

8.3 Learning the game

In this section, we address the problem of learning/approximating the optimal Q-
function in TMGs with infinite state-spaces. As in Chapter 7, we look at TMGs as
MDPs with a distributed decision-making process. This means that we can apply
the approximate learning algorithms from Chapter 4 to TMGs with infinite state-
spaces, as long as the conditions listed therein are verified.

Before proceeding any further, three important remarks are in order. First of all,
as in finite Markov games, strategy evaluation is conceptually equivalent to policy
evaluation in MDPs. Therefore, we do not address strategy evaluation and refer
to the methods in Chapter 4, which can readily be adapted to handle multi-agent
scenarios.

Secondly, unlike all previous chapters, we focus on model-free learning algo-
rithms and establish the applicability of the approximate Q-learning algorithm to
multi-agent problems. Later, as we extend BAP to infinite settings, it will become
apparent the natural connection between the two methods and a combined method
will naturally arise. The combination of this extended version of BAP with model-
based learning methods such as kernel-based RL is less immediate and would require
additional work that we do not pursue here. It is, however, an interesting topic to
address in future research.

172 8. Reinforcement Learning in Infinite Markov Games

Finally, the approximate SARSA algorithm, being an on-strategy algorithm, ex-
hibits the disadvantages discussed in the previous chapter when coordination is
concerned. Since our ultimate goal is to address coordination problems, we refrain
from discussing its applicability to multi-agent settings, referring to the discussion
in Chapter 7 on on-strategy methods.

8.3.1 Approximate Q-learning updates in infinite Markov games

Let Γ =
(
N,X , (Ak),P, r, γ) be a TMG with infinite state-space X , admittedly a

compact subset of Rp. We want to determine the optimal Q-function for this game,
verifying the following recursive relation

Q∗(x, a) =

∫
X

[
r(x, a, y) + γmax

b∈A
Q∗(y, b)

]
Pa(x, dy). (8.1)

The recursive relation in (8.1) is nothing but a multi-agent version of the one in
(4.11) (see Chapter 4, page 69), where the only difference lies on the structure of
the underlying action-space. This means that we can apply the approximate Q-
learning method to approximate Q∗ by looking at Γ as an MDP with a distributed
decision-maker.

We briefly review the approximateQ-learning algorithm. Consider a linear family
of functions Q = {Qθ} parameterized by a finite-dimensional vector θ ∈ RM . Since
Q is the linear span of a set of M linearly independent functions ξi : X ×A −→ R,
each Qθ ∈ Q can be written as

Qθ(x, a) =
M∑
i=1

ξi(x, a)θ(i) = ξ>(x, a)θ.

Let {xt}, {at} and {rt} be sample trajectories obtained from the TMG Γ by
following some joint strategy σ. Then, given any initial parameter θ0, we define the
sequence {θt} recursively as

θt+1 = θt + αtξ(xt, at)∆t,

where ∆t is the temporal difference

∆t = rt + γmax
b∈A

Qθt(xt+1, b)−Qθt(xt, at).

The only difference between applying approximate Q-learning to MDPs or to
TMGs lies on the fact that, in TMGs, the action sequence {At} is generated in a
distributed fashion by the N players in the game. This does not affect in any way
the convergence of the algorithm and the sequence θt will converge w.p.1 to a limit
θ∗ such that the corresponding function Q(θ∗) verifies

Q(θ∗) = PQHQ(θ∗),

where PQ is the orthogonal projection into Q and H is defined in (4.3).

8.3. Learning the game 173

8.3.2 On convergence

We start by suitably reformulating Theorem 4.5.2, encompassing the framework of
MGs.

Let σ be a stationary joint strategy and (X ,Pσ) the corresponding Markov chain
with invariant probability measure µX . Denote by Eµσ [·] the expectation w.r.t. the
probability measure µσ defined for every set Z × U ⊂ X ×A as

µσ(Z × U) =

∫
Z

∑
a∈U

σ(x, a)µX(x).

Theorem 8.3.1. Let
(
N,X , (Ak),P, r, γ) be a team Markov game with compact

state-space X ⊂ Rp. Assume the Markov chain (X ,Pσ) to be geometrically ergodic
with invariant probability measure µX , where Pσ is the transition kernel for the chain
obtained when all players follow a stochastic strategy σ verifying σ(x, a) > 0 for all
a ∈ A and µX-almost all x ∈ X .

Let Ξ = {ξi, i = 1, . . . ,M} be a set of M bounded, linearly independent functions
defined on X×A and taking values in R. In particular, admit that

∑N
i=1 |ξi(x, a)| ≤ 1

for all (x, a) ∈ X ×A.
Then, the following hold.

1. Convergence

For any initial condition θ0 ∈ RM , the algorithm

θt+1 = θt + αtξ(xt, at)
(
rt + γmax

b∈A
Qθt(xt+1, b)−Qθt(xt, at)

)
(8.2)

converges w.p.1 as long as the step-size sequence {αt} verifies∑
t

αt =∞
∑
t

α2
t <∞.

2. Limit of convergence

Under these conditions, the limit θ∗ of (8.2) verifies

Qθ∗(x, a) = (PQHQθ∗)(x, a),

where PQ denotes the orthogonal projection operator on Q defined by

(PQQ)(x, a) = ξ>(x, a)Σ−1Eµσ [ξ(z, u)Q(z, u)] .

and the matrix Σ is given by

Σ = Eµσ

[
ξ(x, a)ξ>(x, a)

]
.

174 8. Reinforcement Learning in Infinite Markov Games

Proof See Appendix F.4. 2

For our purposes, we will also need a multi-agent version of Corollary 4.5.4, that
we provide next.

Corollary 8.3.2. Let
(
N,X , (Ak),P, r, γ) be a TMG with compact state-space

X ⊂ Rp and let σθ be a θ-dependent joint strategy such that, for all pairs (x, a),
σθ(x, a) > 0 and

|σθ(x, a)− σθ′(x, a)| ≤ C ‖θ − θ′‖ (8.3)

for some constant C > 0 independent of x and a. Assume that the Markov chain
obtained by following the strategy σθ, denoted as (X ,Pθ), is geometrically ergodic for
each θ, with invariant probability measure µθX .

Then, all assertions of Theorem 8.3.1 hold as long as the conditions on Ξ and
on the sequence {αt} are verified.

The two previous results establish the convergence of approximate Q-learning in
TMGs. This constitutes the first step in building an extension of the methods in
Chapter 7 to TMGs with infinite state-spaces. We next proceed with the problem
of coordination.

8.4 Learning to coordinate

As approximate Q-learning handles the problem of learning the game, we now ad-
dress the problem of learning to coordinate. We discuss convergence in behavior, as
we extend BAP to cope with TMGs with infinite state-spaces.

8.4.1 Biased adaptive play in infinite Markov games

Recall the BAP mechanism described in Chapter 7. This coordination mechanism
uses incomplete samples from the history of past plays to estimate the average
strategies of the players in the game. These estimates can then be used to choose a
best response strategy, as long as the game is known.

In standard BAP, coordination at some given state requires that such state be
visited a sufficient number of times to ensure that (i) adequate action sampling can
take place and (ii) there is sufficient time to attain coordination. The successive visits
to each state provide each player with a sample of the other players’ strategies in
that particular state and hence the requirement that every state be visited infinitely
often.

Formally, the condition of infinite visits amounts to requiring the underlying
Markov chain to be irreducible (every state is “visitable”) and recurrent (each “vis-
itable” state is visited infinitely often). In the infinite state-space case, we require the
underlying Markov chain to be ψ-irreducible (all but a negligible part of the state-

8.4. Learning to coordinate 175

space is “visitable”) and Harris recurrent (every “visitable” region of the state-space
is visited infinitely often), but we discuss this further ahead.2

Consider a TMG with a compact state-space X ⊂ Rp. Due to the infinite nature
of the state-space, it is generally impossible to ensure that any particular state in
the state-space is visited infinitely often. Therefore, we cannot apply standard BAP
as described in Chapter 7 to infinite state-space setting. The reason behind this
impossibility is easy to grasp: BAP relies on past plays of the game at each state,
and there is the possibility that a particular state has never been visited before, no
matter for how long the game has already been played.

In adapting BAP to cope with infinite state-spaces, coordination at each state
should rely not only in past visits to that particular state but should also use the
information provided by plays in several nearby states. The intuition behind this
idea can be easily clarified. A player k can no longer use the past history at a
particular state x to infer the other players’ strategy in that state, since there is the
possibility that it was never visited before. Instead, player k will assume that the
strategy of the other players in the states close to x does not change significatively. If
this assumption holds, player k can use the past history at nearby states to estimate
the strategy of the other players at state x.

To implement this idea, we make use of a similarity function φ, indicating
whether two states x and y in X are “similar”. As will soon become apparent,
the use of such approximation mechanism suitably adapts BAP to TMGs with in-
finite state-spaces while ensuring coordination in all but a negligible part of the
state-space.

8.4.2 Approximate coordination

We now describe approximate biased adaptive play (ABAP) and establish its con-
vergence w.p.1. To this purpose, we focus on the coordination process by looking
at a TMG from a particular point of view that allows us to disregard several tech-
nicalities concerning the underlying Markov chain and facilitates the proof of our
convergence result.

Let Γ =
(
N,X , (Ak),P, r, γ) be a team Markov game with compact state-space

X ⊂ Rp and finite joint action-space A. Let Q∗ be the optimal Q-function for Γ
and define, for each x ∈ X , the team matrix game Γ∗x =

(
N, (Ak), Q∗(x, ·)). To

introduce and analyze ABAP, we resort to an auxiliary process {Yt} evolving in
X . We assume this process {Yt} to be a ψ-irreducible and Harris recurrent Markov
chain.3

At each time instant t, N players engage in the repeated game Γ∗Yt where Yt is
the state of the auxiliary process {Yt} at time t. The sole purpose of the agents is to
coordinate in an optimal policy in each state-game Γ∗x; the agents have no knowledge
otherwise on the Markov game Γ or on the auxiliary process {Yt}, and consider the

2For a formal definition of ψ-irreducibility and Harris recurrence we refer to Appendix B.
3As mentioned above and further detailed in Appendix B, a chain is ψ-irreducible if all but a

negligible part of the state-space is “visitable”. It is Harris recurrent if every “visitable” region of
the state-space is visited infinitely often.

176 8. Reinforcement Learning in Infinite Markov Games

payoffs Q∗(x, ·) at different state-games Γ∗x to be independent.
This technical artifice allows us to discard the effect of the joint actions of the

agents on the state evolution of the Markov game. The agents merely visit the states
in X along the trajectories of {Yt} and coordinate in each visited stage-game Γ∗x.
The effects of the agents’ actions on the state evolution of the game is addressed
later on.

Consider now some p-norm to be defined in X . We define a similarity function
as any continuous function φ : X × X −→ [0, 1] verifying:

a) φ(x, y) = 1 if and only if ‖x− y‖p = 0;

b) φ(x, y)→ 0 as ‖x− y‖p →∞;

c) φ(x, y) = φ(y, x) for all x, y ∈ X ;

d) If ‖x− y‖ < ‖x− z‖ then φ(x, y) > φ(x, z).

Because of c and d, similarity functions will generally be defined as inverse functions
of the distance between the two arguments. An example of one possible similarity
function is

φ(x, y) =
1

1 + ‖x− y‖ .

The similarity function provides a criterion that defines when two states x and y are
“similar”.

Consider the past history up to time t,

Ht = {(y0, a0), (y1, a1), . . . , (yt−1, at−1)} ,

where the sequence {yt} is a sample trajectory of the process {Yt} and each joint
action at corresponds to that chosen by the agents in game Γ∗yt . At each time instant
t ∈ T , each player determines the similarity φ(yi, Yt) between the current state Yt
and each state yi occurring in Ht. It then chooses m occurrences from this history so
as to maximize the corresponding similarity. The sample set thus obtained, denoted
as Sm(Yt,Ht), contains the m elements in Ht maximizing the total similarity with
Yt,

m∑
i=1

φ(Yt, yti).

We remark that a particular state x ∈ X may occur in Sm(Yt,Ht) more than once.
On the other hand, if two occurrences yti and ytj verify

φ(Yt, yti) = φ(Yt, ytj)

and only one such occurrence must be chosen, then the most recent one should be
picked (e.g., if tj > ti above, then ytj would be chosen). We also notice that, due
to the ψ-irreducibility and Harris recurrence of the Markov chain, given any state
x ∈ X and a corresponding neighborhood U with positive ψ-measure, there is a
time T0 such that, w.p.1, Sm(x,Ht) ⊂ U for t > T0.

8.4. Learning to coordinate 177

Once the set Sm(Yt,Ht) is determined, the corresponding m plays can now be
used to draw a K-sample and proceed as in standard BAP.

The following proposition establishes the convergence of ABAP.

Theorem 8.4.1. Let {Yt} be a Markov chain evolving on X as described above.
In particular, assume that the chain is ψ-irreducible and Harris recurrent. Let N
be a set of players engaging in the coordination game described above and following
ABAP. Suppose that the function Q∗ is continuous in x in all but a ψ-null set of
states. Then the players in N coordinate in an optimal Nash equilibrium w.p.1 in
ψ-almost every state in X , as long as the conditions for convergence of standard
BAP are met.

Proof See Appendix F. 2

Notice that Theorem 8.4.1 is somewhat more restrictive than its finite counter-
part, as it requires ψ-a.e. continuity of Q∗. However, this condition simply ensures
that the function Q∗ is relatively “well-behaved”, so that coordination at a given
point x can be achieved by observing the past plays in points “sufficiently close” to
x.

In the remainder of this section we combine the learning of the game described
in the previous section with approximate biased adaptive play. This is achieved in
a similar way to that pursued in Chapter 7: Theorem 8.4.1 arises as a consequence
of the convergence of BAP and Lemma F.3.3, used in the proof of Theorem 7.3.3,
also has a straightforward extension to Markov games with infinite state-spaces.

8.4.3 Convergence in behavior

In this subsection, we contribute the last new algorithm in the thesis, which we re-
fer as coordinated approximate Q-learning (CAQL). As anticipated in the previous
subsection, this algorithm combines approximate Q-learning and ABAP. With suf-
ficient exploration, CAQL guarantees that the estimates Qθt converge to a suitable
approximation Qθ∗ while guaranteing convergence of the players’ strategies to an
optimal Nash equilibrium w.r.t. Qθ∗ .

The basic procedure of CAQL is as follows. At each time instant t ∈ T , each
player k ∈ N determines the set Sm(Xt,Ht) using the similarity function φ and draws
a K-sample h from Sm(Xt,Ht). This K-sample is used to determine the expected
payoff of each action ak ∈ Ak w.r.t. the virtual game V Gt obtained from Qθt and the
corresponding best response action (ak)∗, unless if the two BAP conditions described
in Chapter 7 are met. For commodity, we repeat such conditions here:

1. There is a joint action a∗ ∈ D such that, for all actions a ∈ h, a−k = (a∗)−k;
and

2. there is at least one action a∗ ∈ D such that a∗ ∈ h.

178 8. Reinforcement Learning in Infinite Markov Games

In the conditions above, D is the set of all ε-optimal actions w.r.t. Qθt at state Xt.
Notice that, even if the virtual game V Gt obtained from Qθt can not be stored in
memory due to the fact that X is infinite, player k can easily determine it from
Qθt as needed. Once all individual actions Akt are chosen, yielding the joint action
At, the game moves to a new state Xt+1 according to the probabilities in P and all
players receive the corresponding reward r(Xt, At, Xt+1). All players now use the
observed transition (Xt, At, r(Xt, At, Xt+1), Xt+1) to update each parameter vector
θt according to (8.2).

Figure 8.1 summarizes the coordinated approximate Q-learning (CAQL) algo-
rithm for one player.

Before addressing the convergence of CAQL, we recall that in Chapter 7 we used
the condition

lim
t→∞

√
log log(Nt)

Nt

B(Nt)
= 0 (8.4)

to guarantee that εt does not decrease too fast towards zero, thus ensuring that
no optimal action is ruled out too soon. This condition arose from the known
rates of convergence of Q-learning and model-based learning that can be found in
[137, 298, 330].

In order to establish convergence of CAQL, we need to derive a similar condi-
tion for approximate Q-learning. To that purpose, we resort to a known result on
the rates of convergence of stochastic approximation algorithms, described in Ap-
pendix D (Theorem D.2.1 in page 292). This theorem, known as the law of iterated
logarithm for general stochastic approximation processes, states that

lim
t→∞

sup
‖θt − θ∗‖√

αt log
(∑t

τ=1 ατ
) ≤ K0, (8.5)

where {αt} is the sequence of step-sizes. The bound in (8.5) simply states that
the maximum error between the estimated parameter θt and the limit parameter θ∗
approximately decays with

√
αt log (

∑
ατ).

We can readily show that the conditions of Theorem D.2.1 hold for the sequence
{θt} obtained using the CAQL algorithm: the first condition arises as a consequence
of the global asymptotic stability of θ∗ as an equilibrium point of the ODE

θ̇t = h(θt);

The second condition arises from the considered step-sizes; the third condition is
trivially verified. Therefore, the rate of convergence of θt to θ∗ verifies the bound in
(8.5) and condition (8.4) should be adapted to yield

lim
t→∞

√
log(

∑t
τ=1

1
nτ

)
nt

B(nt)
= 0. (8.6)

8.4. Learning to coordinate 179

Initialization:

1: Set t = 0, εt = ε0 and θkt (i) = 0;

Learning coordination: Given current state Xt

2: If t ≤ m, randomly select an action

3: else with GLIE exploitation probability pt(a∗) do

a. Determine V Gt as

V Gt(Xt, a) =

{
1 if a ∈ optεt(Xt);
0 otherwise;

b. Set D = {a | V Gt(Xt, a) = 1};
c. Set Ht = Sm(Xt,Ht);
d. Set h = K-sample(K,Ht);
e. For all ak ∈ Ak, set

EPt(ak) =
∑

a−k∈A−k
V Gt

(
Xt, (a−k, ak)

)nh(a−k)
K

;

f. Set BRt(Xt) =
{
ak | ak = arg max

bk∈Ak
EPt(bk)

}
;

g. If conditions 1 and 2 above are met, choose the most recent
joint action in h ∩D;

h. else randomly choose an action in BRt(Xt);

4: And with exploration probability pt(a) select action a;

Learning the game: Given current transition triplet (Xt, At, Xt+1)

5: Update θt according to (8.2), with αt = 1
t+1 ;

6: Set t = t+ 1;

7: If εt ≥ ε0B(t), set εt = ε0B(t);

Figure 8.1: The CAQL algorithm for one player.

180 8. Reinforcement Learning in Infinite Markov Games

Notice that the expression above is obtained by considering in (8.4) the actual
convergence rate for approximate Q-learning obtained from (8.5). However, noticing
that

n∑
i=1

1

i
≈ log(n),

we can conclude that

lim
t→∞

√
log(log(nt))

nt

B(nt)
= 0

implies (8.6).4 With this stated, the following theorem immediately follows.

Theorem 8.4.2. Let
(
N,X , (Ak),P, r, γ) be a TMG with compact state-space

X ⊂ Rp and finite action-space A. Let (σθ)t be a θ-dependent learning strategy ob-
tained from CAQL with the GLIE property w.r.t. the estimate Qθ(x, a) = ξ>(x, a)θ
and such that (σθ)t(x, a) > 0 for all (x, a). Further assume that such strategy veri-
fies, for all pairs (x, a),

|σθ(x, a)− σθ′(x, a)| ≤ C ‖θ − θ′‖ (8.7)

for some constant C > 0 independent of x and a. Assume that the Markov chain
obtained by following the strategy (σθ)t, denoted as (X ,Pθ), is geometrically ergodic
for each θ, with invariant probability measure µθX . Further assume that

1. For each θ, the reward function r is continuous µθX-a.e.;

2. The function B(t) decreases monotonically to zero and verifies

lim
t→∞

√
log log(t+1)

t

B(t+ 1)
= 0. (8.8)

3. The cardinality m of the sets Sm(x,Ht) and the length K of the K-sample
verify m ≥ K(N + 2).

4The sum of the first n terms of the harmonic series is given analytically by the nth harmonic
number,

n∑
i=1

1
i

= c+ Ψ0(n+ 1),

where c is the Euler-Mascheroni constant and Ψ0 is the digamma function. On the other hand,

lim
x→∞

Ψ0(x)
log(x)

= 1

implies that

lim
n→∞

∑n
i=1

1
i

log(n)
= 1.

8.5. An illustrative example 181

Goal
I

Goal
II

Figure 8.2: Example of a continuous indoor environment.

Then, the sequence {θt} generated by CAQL converges w.p.1 to the parameter vector
θ∗ described in Theorem 8.3.1. Furthermore, all players in N converge in behavior
w.p.1 to a common coordinated Nash equilibrium w.r.t. Qθ∗.

Proof See Appendix F. 2

One final remark to emphasize that condition (8.7) restricts the way the GLIE
strategy is implemented. In particular, notice that in Algorithm 8.1 we have allowed
the exploration/exploitation probabilities pt to depend on the action to be played.
For example in line 3, pt(a∗) represents the probability associated with an optimal
joint action. This dependence is made explicit to emphasize the fact that this
probability cannot change abruptly, as required by (8.7)

8.5 An illustrative example

We now analyze a continuous version of Example 6.2 explored in the previous chap-
ters. Consider the indoor environment depicted in Figure 8.2. Two mobile robots
(I and II) are intended to navigate to the corresponding goal regions, signaled with
the bold, colored lines. Each robots starts in the corner diagonally opposite to its
goal. The environment is a 1 × 1 square, and the state of each robot at each time
instant is a pair (x,y) of coordinates.5 The coordinates of the corners in the goal
regions are (1, 1) and (0, 1), respectively, and the corresponding goal regions are
0.1× 0.1 squares, as depicted in Figure 8.2. We denote the goal region for robot k
by Gk and by G the cartesian product of GI and GII, i.e., G = GI × GII. In their
trajectories, the robots must avoid crashing into each other, by not being in the
same 0.1× 0.1-area simultaneously (see Figure 8.3 for an illustration).

We denote the state of robot k at time t by Xk
t . The state of the robot group is

a pair Xt = (XA
t , X

B
t) and can take any value in ([0; 1]× [0; 1])× ([0; 1]× [0; 1]).

5Once again, we use boldface symbols x and y to denote the physical coordinates of one robot
to distinguish from the symbols x and y used to denote generic elements of the state-space X .

182 8. Reinforcement Learning in Infinite Markov Games

0.1

Environment space

Robot I

Robot II

Crash area 0.1

Figure 8.3: Situation of possible crash.

Each robot has 4 actions available, namely N , S, E and W . Each individual
action moves the robot in the corresponding direction of a uniform random amount
between 0 and 0.3. We consider the movements of the robots to be independent of
each other.

This navigation problem can easily be modeled using a TMG
(
N,X , (Ak),P, r, γ)

where

• N = {I, II} is the set of players;

• X = ([0; 1]× [0; 1])× ([0; 1]× [0; 1]);

• Ak = {N,S,E,W} for k = I, II;

• The transition probabilities are defined by a kernel P given by

Pa(x, U) = P
(I)

aI (xI, U I)P
(II)

aII (xII, U II)

and the kernels P(k) define the single-robot transition probabilities according
to the description above;

• The reward function r is defined as

r(x, a, y) =


20 if y ∈ G;
−10 if

∥∥yI − yII
∥∥
∞ < 0.1;

0 otherwise;

• We consider γ = 0.95.

We applied CAQL to this Markov game. The agents were allowed to explore and
learn during 4× 105 time steps, and the obtained policy was then evaluated for 100
time units. During learning, each robot uses a Boltzmann distributed exploration
strategy over the joint state-space, given by

pt(a) =
eQt(Xt,a)/τ∑

b∈A

eQt(Xt,b)/τ
,

8.5. An illustrative example 183

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−5

0

5

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

0 0.5 1 1.5 2 2.5 3 3.5 4
−6

−4

−2

0

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

a) Grid-based; b) Kernel-based.

Figure 8.4: Cumulative reward and greedy choice probability during the 4× 105-time-units
learning period.

where τ is the temperature parameter. The robot will play the corresponding in-
dividual action. Exploitation occurs if the chosen joint action corresponds to a
coordinated equilibrium.

We ran two experiments, each using a different set of basis functions, to be found
in page 370. In Figure 8.4 we depict the total reward obtained during learning in each
of the experiments. In Table 8.1 we present the total discounted reward obtained
during the 100 time-steps test period.

Figure 8.4 depicts the learning curves for both experiments (corresponding to
different sets of basis functions), corresponding to the total reward obtained during
learning, and the probability of choosing the “greedy” action (notice that this greedy
action is the one prescribed by ABAP). As exploration probability decreases, the
robots will expectedly converge to the optimal strategy w.r.t. the learnt Q-function.
Notice then that, as the exploration goes to zero, the performance of the robots does
improve, as easily seen from the plots in Figure 8.4 by observing the slope of the
learning curve.

On the other hand, the slope of the learning curve provides a rough indicator
of the performance of the robots as a team and we can conclude from the plots in
Figure 8.4 that the performance of CAQL in both methods is quite different: the
slope in the grid-based approximation is approximately twice as large as the one in
the kernel-based approach. This is due to the representational power of the chosen
sets of basis functions. As argued in Chapter 4, the guarantees of convergence
for approximate Q-learning imply nothing on the quality of the approximation.
Therefore, a set of basis functions that allows a more accurate representation of the
optimal Q-function will in general exhibit better final performance. In this case, the
grid based approximation must allow a more accurate representation of the optimal
Q-function than the kernel-based approximation.

To further understand this difference between the two used approximations, we
tested each of the learnt strategies in the environment. We ran the learnt strategies
for each approximation during 100 time units and determined the total discounted
reward obtained in each case. Table 8.1 represents the results obtained. We ran

184 8. Reinforcement Learning in Infinite Markov Games

Table 8.1: Comparative results for CAQL and approximate Q-learning with no
coordination using two different sets of basis functions. The reported results were obtained
after the learning period was complete. We present the average total discounted reward and

standard deviation obtained over 2, 000 independent Monte-Carlo trials.

Approximation Method Total Disc. Reward

Grid-based No coordination 14.981 ± 3.246
CAQL 20.163 ± 4.012

Kernel-based No coordination 4.538 ± 8.474
CAQL 5.657 ± 6.142

2, 000 independent Monte-Carlo trials and present the average and standard devi-
ation obtained using each of the methods. For the purpose of comparison, we also
present the results obtained with no coordination mechanism, for each approxima-
tion.

The first thing to remark is that, in both cases, CAQL clearly outperforms
the uncoordinated team. This indicates that the ABAP coordination mechanism
effectively addresses the problem of simultaneous learning and coordination.

The second remark is concerned with the performance of the method for each set
of basis functions. Even though using both sets of functions the method converges,
the total discounted reward received using a grid-based approach is much larger than
that obtained when considering a kernel-based approach. The observed difference
confirms our previous analysis on the learning performance of the algorithm.

Another important aspect is the fact that the variance observed when using a
kernel-based approximation is much larger than that observed when using a grid-
based approximation. A significant variance in the received total reward means that
the performance of the method using a kernel-based approximation is more sensitive
to the particular trajectory followed. This further supports the conclusion that the
observed difference in performance is due to an inferior representational power of
the kernel-based approximation.

We emphasize, however, that in both cases the team is still able to coordinate
(as expected), since in both situations the performance of the team using the coor-
dination mechanism clearly surpasses that of the team with no coordination.

8.6 Partial observability

In this section, we aim at developing a RL algorithm for TMGs with partial observ-
ability. With that purpose in mind, we follow a similar course of action to that used
in Section 4.7 and describe a partially observable TMG as a fully observable TMG
with infinite state-space. However, as will soon become apparent, the existence
of multiple agents significantly hardens the task. We consider several simplifying
assumptions, its implications and possible approaches for more general problems.

8.6. Partial observability 185

8.6.1 Partial observability in Markov games

The purpose of this chapter is to discuss possible extensions of the results from the
previous chapters. Namely, we discuss how can the reinforcement learning frame-
work be adapted so as to cope with each of the following situations:

• The Markov game model has an infinite state-space X ;
• There is some uncertainty regarding the current state of the game (e.g., due

to sensor errors);

• Each player is unaware of the plays made by other agents.

So far we have discussed the first of the situations above. We considered infinite
state-space TMGs and proposed a suitable learning algorithm and coordination
mechanism. We now consider the second and third situations. In particular, we
admit that the state of the TMGs cannot be perceived unambiguously and can only
be inferred through the use of sensor measurements (with the inherent measurement
errors). In this analysis, we once again admit the state-space X to be finite.

* * *

As in Chapter 7, we once again consider TMGs with a finite state-space X .
However, unlike the games in Chapter 7, we now admit that each player k ∈ N
can no longer observe the state of the game at each time instant t ∈ T . Instead,
the players have access to noisy measurements from which they can estimate the
underlying state of the game.

Consider a TMG
(
N,X , (Ak),P, r, γ) and suppose that, at each time instant

t ∈ T , an observation Zt = (z1
t , . . . , z

n
t) taking values in a set Z = ×Nk=1Zk is issued.

This observation depends on the state of the chain and on the action at the previous
time instant according to the probabilities

P [Zt = z | Xt = i, At−1 = a] = Oa(i, z),

where z is the tuple z = (z1, . . . , zN). The actual state of the game is unknown to
all players; each player k ∈ N only has access to the individual observation zk. We
refer to an element in Zk as an individual observation and an element in Z as a
joint observation or observation profile.

In the following subsections we discuss the two following situations:

• We say that the team has centralized observations if Z1 = . . . = ZN and for
each z ∈ Z, z1 = . . . = zN . This means that the team has centralized sensing
capabilities and hence all players make the same observations ;6

• We say that the players have cognitive autonomy if they lack centralized ob-
servations and are also unable to unambiguously observe the other players’
actions.

6This occurs, for example, in the RoboCup small-size league, where a global vision system can
be used. As another example, consider a team of surveillance robots that has access to the video
feeds from the surveillance cameras in the area.

186 8. Reinforcement Learning in Infinite Markov Games

Each of these situations fits in the framework of stochastic games with incomplete
information: each player acts upon its own beliefs on the private information avail-
able to itself and other players. The second case also exhibits imperfect information:
each player has no (direct) access to the plays by the other players.

In the continuation, we address learning in a team of players with centralized
observations. We draw a close parallel between this situation and that described in
Section 4.7, and derive a similar approach to the problem of partial observability.

Situations with cognitive autonomy are discussed in Subsection 8.6.3. We de-
scribe the framework of decentralized POMDPs, or Dec-POMDPs, and interactive
POMDPs, or I-POMDPs as well as several results on the existence of equilibria,
computational complexity and approximate solution methods. Finally, we conclude
this section by summarizing several bibliographical references.

8.6.2 Centralized observations and state estimation

Let
(
N,X , (Ak),P, r, γ) be a TMG with finite state and action-spaces. Suppose

that, at time instant t ∈ T , the game is at some state Xt ∈ Xt and each player
k ∈ N chooses an individual action Akt ∈ Ak. The game then moves to state
Xt+1 determined according to the transition probabilities defined by the joint action
At = (A1

t , . . . , A
k
t),

P [Xt+1 = j | Xt = i, At = a] = Pa(i, j).

When the game reaches state Xt+1, all players receive a numerical reward given
by r(Xt, At, Xt+1). Each player also obtains an indirect measurement of the new
state of the game, as described in the previous subsection. We denote by Zk

t+1 the
r.v. corresponding to the individual observation of player k. It depends on Xt+1 and
At according to the observation probability function O, i.e.,

P
[
Zk
t+1 = zk | Xt+1 = j, At = a

]
= Ok

a(z
k, j),

where Ok denotes the kth component of O.
The tuple (N,X , (Ak), (Zk),P, (Ok), r, γ) is known as a partially observable team

Markov game (POTMG), where X is the state-space, A = ×Nk=1Ak is the cartesian
product of the individual action-spaces, Z = ×Nk=1Zk is the cartesian product of
the individual observation spaces. P is the transition probability function and O =
×Nk=1O

k is the (combined) observation probability function. As usual, r and γ are
the reward function and discount factor, respectively.

If the team has centralized observations, then Z1
t = . . . = ZN

t for each t. There-
fore, we can simplify the notation and refer to the observation Zt and the observation
probability function O, in both cases omitting the k superscript. In this case, we use
the symbol Zt to denote both the joint observation and the individual observation,
remarking that it should be clear from the context which one we refer to.7

The assumption of centralized observations allows us to make use of belief-vectors
as in Chapter 4. Recall that a belief-vector is a probability vector πt conveying the

7Notice that, even in the presence of centralized observations, the decision process is distributed.
This means that we cannot reduce a POTMG to a single-agent POMDP.

8.6. Partial observability 187

probability distribution of the state Xt (over the set X) at time instant t. The ith
component of πt is

πt(i) = P [Xt = i | Ft] ,
where Ft is the history of the process up to time t. Suppose that the joint action
a is played at time instant t and a transition occurs. Then, all players will make
some observation Zt+1 = z (all players make the same observation) and, as seen in
Chapter 4,

P [Xt+1 = j | Zt+1 = z, At = a,Xt ∼ πt] = Πa(π, z) =

=

∑
i∈X πt(i)Pa(i, j)Oa(j, z)∑
i,k∈X πt(i)Pa(i, k)Oa(k, z)

.
(8.9)

Recall that the belief vectors are Markovian and require only the knowledge of P
and O to be updated.

In a general POTMG, the players can have independent observations, and each
player k ∈ N will maintain an individual belief-vector with respect to the current
state of the game. And, at any time instant, the individual belief-vectors maintained
by each player will generally differ from player to player. This fact motivates the
following definition. Let πkt denote the individual belief-vector maintained by player
k.

Consistent Beliefs

The players in a POTMG Γ = (N,X , (Ak), (Zk),P, (Ok), r, γ) have consistent
beliefs at time t if π1

t = . . . = πNt . If the players have consistent beliefs at t = 0,
we say that the game has consistent initial beliefs.

In the case of centralized observations, all players make the same observation at
each time instant. Therefore, if they have consistent beliefs at some time instant T ,
they will have consistent beliefs for all t > T . In particular, if the game has initial
consistent initial beliefs, the players will have consistent beliefs for all t and we can
simply consider one sequence of belief-vectors {πt}: the belief-vector maintained by
any player k at time t will be πt.

This means that in a POTMG (N,X , (Ak), (Zk),P, (Ok), r, γ) with consistent
initial beliefs the belief sequence {πt} is a controlled Markov chain taking values in
the n − 1-dimensional probability simplex Sn (n = |X |). But this means that we
can define an infinite TMG

(
N,Sn, (Ak), P̄, r̄, γ), where the kernel P̄ is given, for

any π ∈ Sn, a ∈ A and U ∈ B(Sn), by

P̄a(π, U) =
∑
z∈Z

∑
i,j∈X

π(i)Pa(i, j)Oa(j, z)IU(Πa(π, z)),

Πa(π, z) is the updated probability vector obtained from π given the observation z
and the joint action a and IU(π) is the indicator function for the set U .

188 8. Reinforcement Learning in Infinite Markov Games

Notice that, because of the consistent beliefs, all players have access to the
sequence {πt} and the TMG

(
N, Sn, (Ak), P̄, r̄, γ) is fully observable! Therefore,

we have derived a fully observable TMG from a POTMG and the solution of the
latter can be computed by computing the solution of the former. In particular,
we can apply the CAQL algorithm from Section 8.4 to the fully observable TMG(
N,Sn, (Ak), P̄, r̄, γ).

This new equivalent game has a compact state-space and, because of the assumed
centralized observations, also verifies the conditions of Theorem 4.7.4 in Section 4.7.
In other words, we can combine Theorems 4.7.4 and 8.4.2 and assess the convergence
of CAQL when applied to POTMGs with centralized observations and consistent
initial beliefs, as long as there is one distinguishable state. This result is summarized
in the following theorem, the final convergence result provided in the thesis that
subsumes all main contributions in the thesis. We use a similar notation to that
used in Theorem 8.4.2.

Theorem 8.6.1. Let (N,X , (Ak),Z,P,O, r, γ) be a POTMG with centralized ob-
servations, consistent initial beliefs and finite state, action and observation spaces
X , A and Z. Let (σθ)t be a θ-dependent learning strategy obtained from CAQL
and with the GLIE property w.r.t. the estimate Qθ(π, a) = ξ>(π, a)θ and such that
(σθ)t(π, a) > 0 for all (π, a). Further assume that such strategy verifies, for all pairs
(π, a)

|σθ(π, a)− σθ′(π, a)| ≤ C ‖θ − θ′‖
for some constant C > 0 independent of π and a. Assume that the Markov chain
(X ,Pθ) obtained by following the strategy (σθ)t is irreducible and aperiodic for each
fixed θ and that there is an observation z ∈ Z and a state i∗ ∈ X such that, for all
i ∈ X ,

O(i, z) =

{
1 if i = i∗;

0 otherwise.

Further assume that

1. CAQL uses a set Ξ = {ξi, i = 1, . . . ,M} of M bounded, linearly independent
functions defined on Sn×A such that

∑M
i=1 |ξi(x, a)| ≤ 1 for all (π, a) ∈ Sn×A.

2. The function B(t) decreases monotonically to zero and verifies

lim
t→∞

√
log log(t)

t

B(t)
= 0.

3. The cardinality m of the sets Sm(π,Ht) and the length K of the K-sample
verify m ≥ K(N + 2).

Then, the sequence {θt} generated by CAQL converges w.p.1 to the parameter vector
θ∗ satisfying the following recursive relation

Q(θ∗) = PQHQ(θ
∗).

8.6. Partial observability 189

Furthermore, all players in N converge in behavior w.p.1 to a common coordinated
Nash equilibrium w.r.t. Qθ∗.

We conclude by noting that the state of the new game at time instant t, given by
the belief-vector πt, can be interpreted as an internal state for each player, tracking
the actual state Xt of the original game.

8.6.3 Cognitive autonomy

We now consider a more general situation, where the players no longer have central-
ized observations and are unable to explicitly know the actions of the other players.

Let Γ = (N,X , (Ak), (Zk),P, (Ok), r, γ) be a POTMG and let πkt be a probability
vector in Rn, each component πkt (i) indicating player k’s belief that the current state
of the game is Xt = i. The update equation for πkt is similar to that described in
the previous subsection: if the team plays the joint action a and player k observes
zk and is aware of the played joint action a, the new belief for player k is

πkt+1(j) =

∑
i∈X π

k
t (i)Pa(i, j)O

k
a(j, z)∑

i,k∈X π
k
t (i)Pa(i, k)Ok

a(k, z)
.

As in the previous subsection we say that the players have consistent beliefs at time
t if π1

t = . . . = πNt .
However, since we no longer have centralized observations, the relation Z1

t =
. . . = ZN

t no longer holds. Even if the players have consistent beliefs at some time
instant t, nothing can be said about the consistency of the beliefs at time t + 1
even if the players are able to observe the played joint action. Therefore, it is no
longer possible to use the beliefs πkt to define a Markov chain over Sn. Even if
all observation probability functions Ok are equivalent, i.e., they assign the same
probabilities to the same events, the individual observations made by each player,
being independent, will generally lead to inconsistent beliefs.

To deal with this difficulty, several models and methods have been proposed in
the literature. We now review two such models, underlying the main advantages
and differences between them. We then conclude with a brief overview of related
bibliography.

Decentralized POMDPs

A decentralized POMDP (Dec-POMDP), as introduced by Bernstein et al. [23, 24],
is a tuple (N,X , (Ak), (Zk),P, (Ok), r, γ), where N is a set of agents, X is a set of
states, A = ×Nk=1Ak is the cartesian product of the individual action-spaces for the
agents and Zk are the individual observation spaces. P is the action-dependent tran-
sition probability function and Ok is the action-dependent observation probability
function for agent k. As usual, r is the common reward function and γ is a discount
factor. Dec-POMDPs are, therefore, POTMGs with no centralized observations and
in which other agents actions are not observable.

190 8. Reinforcement Learning in Infinite Markov Games

As usual, the purpose of the agents in a Dec-POMDP is to choose the sequence
of joint actions {At} that maximizes the functional

V ({At} , i) = E

[
∞∑
t=0

γtR(Xt, At) | X0 = i

]

for each initial state i ∈ X .
Bernstein et al. [24] showed that finding an optimal strategy in a Dec-POMDP is

NEXP-hard even if only a finite-horizon is considered, leaving room for little hope on
finding efficient computational methods for solving this class of problems. However,
in spite of the computational complexity of this class of problems, several researchers
have proposed different approximate methods yielding encouraging results in real
problems (see Subsection 8.6.4 for further bibliographical references).

In general Dec-POMDPs the agents have cognitive autonomy and will generally
have inconsistent beliefs about the state of the game. As argued above, it is not
possible to use such beliefs to define some associated Markovian process, as in the
case of centralized observations in Subection 8.6.2. Therefore, the agents must resort
to their knowledge of the problem and past history of observations to decide upon
the action to take.

If each agent k ∈ N considers the history of observations up to time t as a
signal function and a suitable payoff function is defined, the decision process at
each time instant reduces to a state Bayesian game, and the optimal policy for the
Dec-POMDP can be approximated by determining the optimal policies for each
state Bayesian game.

This approach is successfully pursued in [79], where the BaGA algorithm is pro-
posed to efficiently build the state Bayesian games. As argued in [79, 80], building
the exact payoff functions for each state Bayesian game would require a similar effort
as that required to solve the original Dec-POMDP. As such, the authors propose
the use of a heuristically estimated payoff function that considers the uncertainty
to vanish after one step (the so-called QMDP values).

In order to improve the efficiency of the overall method, in [80] and [81] the
authors propose the use of low probability pruning and clustering in the space of
all possible types of the Bayesian game. The method is then applied to several
problems, including real robot navigation problems.

Interactive POMDPs

Interactive-POMDPs (I-POMDPs) were introduced by Gmytrasiewicz and Doshi
[98] as models extending the POMDP framework to multi-agent scenarios. An
I-POMDP describes a single-agent decision process but considers the existence of
other decision-makers in the environment. As such, it includes in its definition not
only a dynamic description of the agent and its task but also a model of other
decision-makers that may exist in the environment.

To formalize these ideas we start by introducing the concepts of frame and type
of an agent. The frame of an agent is, in its essence, a POMDP model describing the
agent and its task. It includes information on the transition dynamics of the agent,

8.6. Partial observability 191

on the observation process of the agent, on the rewards and on the functional to be
maximized. For example, all agents considered in this thesis considered the total
discounted reward, represented as a function V , as the functional to be maximized.
The type of an agent includes the frame of that agent but also includes information
on the current state of the agent (for example, a belief).

We formalize these concepts in the following definition.

Type and Frame

A type of an agent k is a tuple τ k = (πk,Ak,Zk,P,Ok, rk, V k), where

• πk is a belief-state for agent k (more details ahead);

• Ak is agent k’s individual action set;

• Zk is agent k’s individual observation set;

• P is the transition probability function;

• Ok is agent k’s observation probability function;

• rk is agent k’s individual reward function;

• V k is agent k’s optimality criterion, represented as a value function V .

A type can be simply written as τ k = (πk, φk), where φk is a frame for agent k
and is given by φk = (Ak,Zk,P,Ok, rk, V k). The set of all possible frames for
agent k is denoted Φk.

As stated before, if we disregard the existence of other agents in the environment,
the type of an agent k is similar to a POMDP and can be solved for an optimal
action for each belief state πk. In other words, if the type of a agent is known at
some time instant t, the action of that agent can be predicted. Therefore, the type
of an agent can be seen as a behavioral model for this agent.

I-POMDPs consider multi-agent partially observable interactions from a single
agent’s perspective. The I-POMDP for an agent k is a tuple (ISk,A,Zk,P,Ok, rk),
where

• ISk is the set of all interactive states for agent k;

• A = ×Nk=1Ak is the cartesian product of all agents’ individual action sets;

• P defines the transition probabilities between states of the world. Therefore,
if X denotes the set of possible states of the world, P is a mapping P : X ×
A×X −→ [0; 1];

• Zk,Ok and rk are as in the definition above.

192 8. Reinforcement Learning in Infinite Markov Games

The set of interactive states (I-states) is described in [69] as the set

ISk = X × Φ1 × . . .× Φk−1 × Φk+1 × . . .× ΦN

but this definition is generalized in other works [70, 98] to

ISk = X ×M1 × . . .×Mk−1 ×Mk+1 × . . .×MN ,

whereMk is a set of models of agent k. In [98] a model mk ∈Mk is defined as a pair
mk = (hk, σk), where hk is a possible history of observations and σk is a strategy
mapping each history to an individual action in Ak. If a model is determined from
an agent’s type, it is said to be an intentional model.

Doshi and Gmytrasiewicz [70] further assume the I-POMDP model to be non-
manipulative and non-observable. The first assumption simply states that an agent
cannot affect other agents’ models directly; the second assumption states that an
agent cannot observe other agents’ beliefs directly. These two assumptions guarantee
the agents to be autonomous, as argued in [98].

In an I-POMDP, each agent maintains a belief over the set of possible I-states
and decides upon such beliefs. This raises to two important questions:

• How to propagate the beliefs over time;

• How to compute the policy mapping beliefs into actions.

The solution for the first problem (belief propagation) is achieved by replicating the
belief update in (8.9). However, since agent k is unable to observe the action of
the other agents, it takes into account its prior belief on the other agents’ models,
as each model prescribes an action for the corresponding agent. The expression for
belief propagation is thus a natural extension of that in (8.9) and can be found in
any of the cited works. In [72] a particle-filter-based method is proposed to perform
belief propagation more efficiently.

There are several advantages and limitations in using beliefs in the I-POMDP
framework.

First of all, considering models of the other agents that include information about
their beliefs leads to a problem known as infinitely nested beliefs. This means that
each agent maintains a belief on the other agents beliefs on its own beliefs and so on.
To solve this problem, one may consider only simplified agent models that guarantee
finite nesting of the agents’ beliefs.

On the other hand, it is possible to show [70, 71] that if the initial beliefs for all
agents verify a truth compatibility condition, then the beliefs of all agents converge
w.p.1 as the history length t goes to infinity. Furthermore, it is shown that, as
t → ∞, the beliefs approach the belief obtained if all agents could share their
observations (i.e., the agents had centralized observations). In this case, if each
agent adheres to its own optimal strategy w.r.t. its individual belief, the team will
converge w.p.1 to a subjective equilibrium.8

8A subjective equilibrium is a strategy from which no individual agent profitably deviates, given
its information. Clearly, all Nash equilibria are subjective equilibria; the converse, however, does
not generally hold.

8.6. Partial observability 193

However interesting this result may be, it is hard to ensure the initial beliefs
to verify such compatibility condition [71] and approximations must be used with
much less reassuring convergence properties.

8.6.4 Related work

Markov games with partial observability are commonly referred to as partially ob-
servable stochastic games (POSG). If complexity results on POMDPs leave room for
little hope on its tractability, results on the complexity of POSG are even less en-
couraging [23, 24]. Nevertheless, several works in the literature propose interesting
approaches to address this complex class of games.

Nair et al. [211] propose the use of policy search methods to address POSGs.
They introduce JESP,9 a class of policy search algorithms that converges to a locally
optimal Nash equilibrium. They also propose a dynamic programming approach to
JESP, considering a generalized belief space and reducing the overall multi-agent
problem to a set of single-agent problems. In this approach, Nair et al. establish
piecewise-linearity and convexity of the obtained value-function.

Guo and Lesser [114] analyze the general complexity of finding Nash equilib-
ria in POSGs. They also propose an algorithm to perform iterated elimination of
dominated strategies. In this line of work, Hansen [118] combines the dynamic
programming approach to POMDPs with iterated elimination of dominated strate-
gies to yield an exact dynamic programming algorithm for POSGs considering a
finite horizon. Bernstein et al. [25] introduce a multi-agent version of bounded policy
iteration.10

Szer et al. [303] introduce a multi-agent version of A∗, MAA∗. As described in
[303], MAA∗ is an optimal heuristic search algorithm for POSGs considering a finite
horizon.

As described in Subsection 8.6.3, Emery-Montemerlo [79] provides an extensive
discussion on the applicability of the POSG model to multi-robot tasks. It describes
in detail the POSG framework and the main difficulties arising from considering
such a model of robot interaction. It then proceeds with the description of the
BaGA algorithm, that considers a POSG as a sequence of smaller Bayesian games.
The consideration of these simpler game models allows for approximate solutions
that can be used in real-time robotic tasks. The thesis [79] and companion papers
[80, 81] also describe a mechanism to consistently build the private information to
be used in each Bayesian game for the resulting joint strategy to be coordinated.

Finally, Doshi [69] describes the I-POMDP model. This framework, first intro-
duced in [98], extends the POMDP framework to multi-agent settings. In [70, 71]
the authors analyze the existence of equilibria in this class of problems and derive
important properties of such equilibria. In [72] a particle-filter-based method is
proposed to perform belief propagation more efficiently and in [251] an exact so-
lution method for I-POMDPs is proposed. This method groups player beliefs into

9JESP stands for joint equilibrium-based search for policies.
10Bounded policy iteration is a finite-state controller search algorithm that combines gradient

ascent and policy iteration. It was introduced by Poupart and Boutilier [241] to address single
agent, partially observable decision problems.

194 8. Reinforcement Learning in Infinite Markov Games

Room 9

Room 1 Room 4 Room 7

Room 2 Room 5 Room 8

Room 3 Room 6

Goal
Room II

Goal
Room I

Start
Room II

Start
Room I

Figure 8.5: Example of an indoor environment.

equivalence classes and discretizes the infinite interactive state-space.
In this thesis, we adopted a simplified model, where the agents have central-

ized observations and are able to know a posteriori each other’s actions. With this
simplified approach, we were able to address POTMGs using reinforcement learn-
ing methods with guaranteed convergence. The methods proposed in this thesis
also allow us to successfully address the problem of simultaneous learning and co-
ordination. The extension of the methods studied in the thesis to more elaborate
multi-agent models such as Dec-POMDPs or I-POMDPs may constitute an inter-
esting direction for future research. Even if the conditions required by the methods
studied here hardly apply to any of the mentioned models, the methods in the the-
sis may provide useful insights to develop approximate solutions for such complex
models.

8.7 An illustrative example

We once again consider the indoor environment from Example 6.2 and repeated in
Figure 8.5 for commodity. The corresponding multi-robot navigation problem can
be described by an TMG

(
N,X , (Ak),P, r, γ) where

• N = {I, II} is the set of players;

• X = X I ×X II, where X k = {1, . . . , 9} for k = I, II;

• Ak = {N,S,E,W} for k = I, II;

• The transition probabilities are defined as in Example 6.2;

• The reward function r assigns a reward of +20 for every transition triplet
(i, a, j) such that j = (9, 3), −10 for every transition triplet (i, a, j) such that
jI = jII and 0 otherwise;

• We considered γ = 0.95.

However, unlike Example 6.2, we now admit that the robots are not able to
perceive their position in the environment. Only when both robots reach their goal

8.7. An illustrative example 195

rooms, they both receive a signal indicating that information. Also, whenever the
robots collide (with each other), they have sensors that provide them with that
information. They have no other sensors available.

This new problem can be modeled using a partially observable team Markov
game with centralized observations (N,X , (Ak),Z,P,O, r, γ), where

• N , X , A, P, r and γ are as defined above;

• Z = {∅, Goal, Crash};
• O represents the observation probability function. For i = (9, 3), O(i, Goal) =

1. For i such that iI = iII, O(i, Crash) = 1. Otherwise, O(i, ∅) = 1.

Whenever both robots reach their goal states, their position is randomly reset to
any of the other 80 states, independently of the robots’ actions.

Notice that, since the robots are only able to observe the joint goal location and
the crash situations, the set of possible observations has only three elements: ∅,
corresponding to the null observation, Crash, corresponding to a crash situation,
and Goal, the observation corresponding to the goal state.

We applied CAQL to the associated team Markov game obtained from the orig-
inal POTMG (N,X , (Ak),Z,P,O, r, γ). We used the natural set of functions ob-
tained from the belief state πt,

Ξ =
{
ξ1,(N,N), . . . , ξ81,(N,N), ξ1,(N,S), . . . , ξ81,(W,W)

}
each ξi,a given by

ξi,a(π, b) = π(i)Ia(b).

This corresponds to a total of 81×16 scalar parameters θ(i, a), and, as in Chapter 4,
the overall dimension of the parameter vector θ is similar to the one in the fully
observable case. The robots were allowed to explore/learn during 3×105 time units,
and the obtained strategy was then evaluated for 100 time units. During learning
we used Boltzmann exploration in all experiments.

Figure 8.6 represents the total reward obtained by the robots during learning.
The point where coordination is attained is clearly noticeable by observing the slope
of the learning curve.

We also tested the learnt strategy in the environment. We ran the learnt strategy
for 100 time units and determined the total discounted reward obtained by the team.
Table 8.2 represents the results obtained. We have run 2, 000 independent Monte-
Carlo trials and present the average and standard deviation obtained using the policy
learnt with CAQL. We also present the results obtained with a team of robots with
no coordination mechanism as well as those of a team with full observability.

We conclude this section with two final comments.
First of all, notice that the difference in the performance between the two meth-

ods is not very significant. This can be easily explained. In this scenario, few
observations are available and, most of the time, the agent must decide upon beliefs
traducing great uncertainty on the underlying state of the game. It is not surprising
that, in this situation, “almost any” joint action (coordinated or not) is equally good.

196 8. Reinforcement Learning in Infinite Markov Games

0 0.5 1 1.5 2 2.5 3
−1

0

1

2

3

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

Figure 8.6: Cumulative reward obtained during the 3× 105-time-units learning period.

Table 8.2: Comparative results of CAQL and uncoordinated approximate Q-learning
against those of an optimal (fully-observable) team. The reported results were obtained after

the learning period was complete. We present the average total discounted reward and
standard deviation obtained over 2, 000 independent Monte-Carlo trials.

Method Total Disc. Reward

No coordination 64.579 ± 9.832
CAQL 67.528 ± 8.924

Optimal 90.236 ± 9.761

On the other hand, this uncertainty is lifted essentially in states where coordination
is not essential (after a crash or when the goal is reached).

On the other hand, the goal and “crash” states clearly verify the conditions of
Theorem 8.6.1, and we expect CAQL to converge, as established in Theorem 8.6.1
and confirmed by in Figure 8.6 and Table 8.2.

8.8 Concluding remarks

To conclude this chapter, we summarize the main ideas presented so far. We discuss
the applicability of the RL framework introduced in this chapter to multi-robot
navigation problems. We conclude with an overview of the theoretical approach
described throughout the thesis.

8.8. Concluding remarks 197

8.8.1 Summary

In the previous chapters, we described TMGs as suitable models to address multi-
agent topological navigation problems. We described and introduced methods that
ensure that a team of robots is able to learn and coordinate in the implementation of
the optimal decision rule in a given environment. However, in the approach pursued
in the previous chapters, two essential assumptions were made:

• The TMGs had finite state-space;

• At each time instant, each player (robot) is able to perceive the state of the
game with no uncertainty, as well as the actions taken by the other players
(robots).

In this chapter we discussed how the previous assumptions can be alleviated.
With respect to the first assumption, we introduced a generalization of the CQL

method, specifically designed to address TMGs with infinite state-spaces. We com-
bined approximate Q-learning with an extended version of BAP (approximate BAP)
and showed that the combination of these two methods, named coordinated ap-
proximate Q-learning (CAQL), converges w.p.1 to a suitable approximation of the
optimal Q-function for the game, while ensuring coordination in an optimal Nash
equilibrium (with respect to the learnt Q-function).

With respect to the second assumption, we started by discussing a simplified
problem where the team has centralized observations, i.e., all players share the same
observations. We provided a method to reformulate this class of games as fully
observable team stochastic games with infinite state-spaces, thus suitable for the
application of CAQL. We then discussed more general models where the players
have cognitive autonomy. In this situation it is no longer possible to define an easily
solvable equivalent game and more elaborate solution techniques are required. We
briefly described two frameworks to address this class of problems, Dec-POMDPs
and I-POMDPs, and reviewed the main properties of each framework and corre-
sponding solution methods.

We concluded the chapter by illustrating the use of CAQL in a familiar multi-
robot navigation example.

8.8.2 Discussion

Along the thesis, we described/introduced several RL algorithms for various pur-
poses. In this chapter we brought that study to a conclusion by describing a RL
algorithm for TMGs with infinite state-spaces, CAQL. Under suitable conditions, the
algorithm converges asymptotically to an approximation of the optimal Q-function
and the players converge to an optimal Nash equilibrium w.r.t. this approximation.

We then proposed the application of this algorithm to POTMGs under the sim-
plifying assumption of centralized observations. We now further comment on the
applicability of CAQL in partially observable scenarios. We also comment on the
implications of Theorem 8.4.2, where convergence of CAQL is established, as well
as several issues that can be addressed in future research.

198 8. Reinforcement Learning in Infinite Markov Games

CAQL and partially observable scenarios: applicability and limitations

Coordinated approximate Q-learning, described in Figure 8.1, is a multi-agent RL
algorithm that uses linear function approximation and ABAP to ensure coordina-
tion.

The fundamental elements contributing for the convergence of CAQL are

• An adequate learning strategy;

• An adequate set of basis functions to use in the approximation;

• An underlying “well-behaved” Markov chain.

The adequate learning strategy prevents that the players get “stuck” too soon in
a suboptimal greedy strategy, which would prevent them from eventually converging
to an optimal joint strategy. The adequate set of basis functions prevents divergence
problems in the algorithm.11 Finally, the underlying Markov chain models the time
evolution of the game. It allows the analysis of the algorithm to be performed in
terms of an equivalent, stationary process and permits a more intuitive understand-
ing of the conditions required for convergence.

When we consider TMGs as models for mobile robot navigation, we implicitly
consider the movement of the group of robots to verify the Markov property. This
means that the movement of the whole team of robots can be described as a single
Markov chain.

An alternative to this approach would be to consider separate Markov chains
to model the movement of each robot, for example by disregarding the existence of
other decision-makers in the environment. But then, one of the following necessarily
holds:

• Each robot has a specific mission, independent of the other robots, and there-
fore no interaction/coordination is required from the robots to complete their
individual missions. In this case, each robot can be modeled individually, and
we get a set of N single-agent systems that can be solved independently;

• There is the need for interaction/coordination between the robots (this occurs,
for example, if the robots must share some resource in the environment).

In the latter situation, the other robots can be modeled as part of the envi-
ronment. However, and unless if they follow some stationary action course, the
“environment” is not stationary and the Markov chain model will not even be er-
godic (much less geometrically ergodic).

When addressing POTMGs, we assumed the simplifying assumption that the
players had centralized observations. This assumption guarantees that, even if the
players keep individual belief on the state of the game, these beliefs are coincident.
We can thus look at these beliefs as defining a Markov chain to which all players
have access, and reduce the POTMG to a fully observable TMG.

11Divergence/non-convergence has been reported in several works in the literature [11, 44, 102,
321].

8.8. Concluding remarks 199

Of course that, implicitly, we also assume that the agents are able to know a
posteriori the actions chosen by each member of the team. If no communication at
all is available, the assumption of action observability is somewhat unrealistic, and
we would like to alleviate it. To achieve this, we could consider an extension of our
learning algorithm that can handle infinite action-spaces. It is our belief that, with
due modifications, approximate Q-learning and ABAP can be adapted so as to cope
with infinite action-spaces.12 Then, by still considering centralized observations, it
should be possible to maintain consistent beliefs both on the state of the game and
on the joint actions played.

If the assumption of centralized observations is dropped, it is no longer possible
to define a fully observable Markov chain to which all players have access. This
requires a whole different approach to the problem of partial observability, such as
Dec-POMDPs or I-POMDPs. In particular, I-POMDPs make use of beliefs (over the
I-states) and should be amenable to the use of single-agent approximate Q-learning,
as described in Chapter 4.

A unified reinforcement learning framework

To conclude this chapter, we would like to further comment on Theorem 8.4.2.
First of all, Theorem 8.4.2 is a multi-agent counterpart to Theorem 4.5.2 pro-

vided in Chapter 4. Both these theorems convey a rather reassuring result on the
convergence of Q-learning when linear function approximation is used. This result
has long been an open question in the RL community and, even if the restrictions
on the basis functions may seem too restrictive, they nevertheless include as special
cases several results on the convergence of Q-learning with linear function approxi-
mation.

On the other hand, the generalization of BAP also provides a sound coordination
method for multi-agent systems, even if function approximation is used. In fact,
Theorem 8.4.1 guarantees that, given the approximation obtained with the learning
algorithm, the team of robots will perform no worse than a centralized decision-
maker would (except on a negligible set of points).

The interesting aspect that we would like to emphasize is that the finite versions
of these algorithms (in particular, tabular Q-learning and BAP) can easily be seen
as a particular case of the infinite ones. Therefore, convergence of Q-learning and
BAP results as an immediate corollary of Theorem 8.4.2. This means that CAQL
and Theorem 8.4.2 provide a pleasant unified approach to RL problems, both with
finite/infinite state-spaces and with single/multiple agents. And, under suitable
conditions, this same framework can even be used to address problems with partial
observability.

On the other hand, it is important to remark that, unlike the approach in [321],
the algorithms described herein make no use of eligibility traces. It is our belief that,
with no significant trouble, the algorithms described in the thesis can be adapted so
as to accommodate eligibility traces. This may improve the overall performance of

12As a reference, Borkar [32] proposes a functional version of Q-learning that considers infinite
state and action-spaces.

200 8. Reinforcement Learning in Infinite Markov Games

the algorithms, as the use of eligibility traces generally leads to tighter error bounds
and faster convergence.

We also find that further work is required to perceive the conditions under which
non-linear function approximation can be used with Q-learning and other RL al-
gorithms. It is our belief that, in spite of the counter-examples in the literature
[27, 321], positive convergence results are possible if an adequate family {Qθ} of
functions is considered (probably lying in a manifold of some sort). This would
further generalize the applicability of RL methods as well as providing a whole new
branch of approximation architectures to be used with RL algorithms.

* * *

With the methods presented in this chapter, we conclude the theoretical develop-
ment of the thesis. In the next chapter we apply the methodology developed in this
chapter to several different problems of increasing complexity. These experimental
results will bring the thesis to a conclusion, and in Chapter 10 we summarize the
main contributions and discuss some issues to be addressed in future research.

Chapter 9

Results in Multi-Robot
Navigation

9.1 Introductory remarks . 202

9.2 The experimental setup . 203

9.2.1 The scenarios . 203

9.2.2 The robots . 205

9.2.3 The experiments . 209

9.3 Experimental results . 211

9.3.1 Discussion . 211

9.4 Concluding remarks . 217

9.4.1 Summary . 217

9.4.2 Discussion . 217

In this chapter we bring this second part of the thesis to a satisfying conclusion

by applying the CAQL algorithm developed in the previous chapter to several multi-

robot navigation problems.

We describe the model for each robot in the team and the POTMG framework

arising from this model. We then describe several navigation tasks, making use of

the large scenarios already used in the experiments in Chapter 5, and apply the

CAQL algorithm to each of these problems. We ensure the applicability of the

method by verifying that the convergence conditions stated in Theorem 8.6.1 are

verified in the problems under consideration. We conclude by discussing the perfor-

mance of the method in the proposed problems as well as its general applicability

in robotic navigation problems.

202 9. Results in Multi-Robot Navigation

9.1 Introductory remarks

This chapter brings to a conclusion the work in this thesis by experimentally as-
sessing the validity of the methods developed along the last chapters to the class of
problems we initially proposed to address.

Recall that, in Section 1.2, we proposed to address situations in which

• A robot or group of robots must complete some navigation task in an environ-
ment described by a topological map;

• This navigation task is initially unknown to the robots;

• The robots receive evaluative feedback, indicating how well they are performing;

• The robots control their movements by choosing among a set of possible actions
with uncertain outcome;

• The robots have access to noisy measurements from which they infer their
current location/configuration;

• The robots do not know beforehand the actions taken by the other robots,
i.e., they do not explicitly communicate. Coordination must emerge as a con-
sequence of the interaction between the robots.

By considering such tasks as being modeled by a finite POTMGs with centralized
observations, it is immediate that

• The players in the game represent the group of robots;

• The states in the game and the transition probability model account for the
topological representation of the environment: each state in the game corre-
sponds to a configuration of the robots in the environment and the transition
probabilities model the uncertainty in the outcome of the control primitives of
the robots;

• The common reward function “encodes” the joint task of the team and is
initially unknown to the robots; it works as evaluative feedback from which
the team can learn how to optimally execute the desired task;

• Partial observability and centralized observations work as the noisy measure-
ments from which the team infers the underlying state of the game, this cor-
responding to the configuration of the team;

• Finally, the absence of explicit communication in the aforementioned sense is
naturally considered in the POTMG framework.1

1Notice, though, that we have a posteriori action observability.

9.2. The experimental setup 203

In the previous chapter we described the CAQL algorithm, assessed its conver-
gence properties and applied it to a toy multi-robot navigation problem. Although
encompassing all the features above described, its main purpose was to allow a
simple understanding of the applicability of CAQL as well as of its properties.

We now apply CAQL to a more extensive set of problems, aiming at analyzing its
performance in more realistic problems. These application problems are, essentially,
multi-agent variations of the single-agent examples considered in Chapter 5. With
these problems, we illustrate the use of POTMG models with centralized observa-
tions in robotic navigation problems. We also assess experimentally the usefulness
of CAQL in relatively large-sized problems. For example, the CMU environment
described in Chapter 5 with only two robots corresponds to a POTMG with around
3× 105 states!

In each of the problems addressed in this chapter, we consider a teams of au-
tonomous mobile robots moving in an environment described as a topological map.
The robots are allowed to explore the environments for a learning period using CAQL
and each robot then uses the learnt strategy to control its movement. The main
goal of this chapter is to illustrate the successful application of CAQL in multi-robot
navigation problems with partial observability.

As in Chapter 5, we have no access to the optimal solution of the problems
studied and are therefore unable to establish a comparison between our results and
those obtained with the optimal strategy. Therefore, we present the results obtained
with an omniscient team of robots—capable of observing the actual state of the game
at all times. These results provide an upper bound to the performance of CAQL.

The chapter is organized as follows. We start by describing the set of problems
considered: we describe the environments and the robots, from which we derive the
structure of the POTMG model used. We then describe the conducted experiments
and present the obtained results. We conclude the chapter by discussing these
results.

9.2 The experimental setup

In this section we describe the scenarios, the mobile robots and the obtained POSTG
model for the different experiments.

9.2.1 The scenarios

To better understand the applicability of CAQL to navigation tasks, we conducted
several tests that illustrate the different properties of the CAQL algorithm.

The first set of tests assesses the coordination ability of CAQL. To that purpose
we consider scenarios in which coordination is essential for the mission to be suc-
cessfully accomplished. In the examples considered in the previous chapters, coordi-
nation was already important for the robots to avoid negative rewards (penalties).
In our first set of tests we move one step further and analyze situations in which
coordination is essential to achieve the goal: in these scenarios, it is impossible to
reach the final configuration if the robots mis-coordinate.

204 9. Results in Multi-Robot Navigation

Room 9

Room 1 Room 4 Room 7

Room 2 Room 5 Room 8

Room 3 Room 6

Goal
Room II

Goal
Room I

Start
Room II

Start
Room I

Figure 9.1: Indoor environment from Example 6.2.

Room 9

Room 1 Room 4 Room 7

Room 2 Room 5 Room 8

Room 3 Room 6

Goal
Room II

Goal
Room I

Start
Room II

Start
Room I

Figure 9.2: Alternative indoor environment to assess coordination.

W-Grid

Figure 9.3: Compact representation of the w-grid test scenario with 9 nodes.

Consider once again the scenario from Example 6.2, used extensively in this
second part of the thesis and reproduced in Figure 9.1.

For each robot to avoid an accident in this scenario, it suffices to avoid ap-
proaching the other robot, as seen in the different strategies depicted in Figure 6.3
of Chapter 6. We now consider a variation of this problem that requires one of the
robots to wait for the other for the mission to be successful. This alternative sce-
nario is represented in Figure 9.2. Notice that, if both robots try to simultaneously
move to the central room in the bottom row, they will crash and remain in the same
state. In order for the robots to leave the initial configuration, one of the robots
must wait, allowing the other robot to move through the only free passage.

A more compact representation of this environment is depicted in Figure 9.3.
We henceforth refer to this scenario as w-grid, standing for grid-world with walls.

9.2. The experimental setup 205

bridge

Figure 9.4: bridge environment with 11 nodes.

Table 9.1: Number of states in the POTMGs for each of the test scenarios.

Environment # States

w-grid (2 robots) 1 296
bridge (2 robots) 1 936

isr (2 robots) 29 584
mit (2 robots) 38 416

pentagon (2 robots) 43 264
cit (2 robots) 78 400

suny (2 robots) 87 616
cmu (2 robots) 283 024

The second test scenario, bridge, is depicted in Figure 9.4. It represents a
“bridge” in which one of the robots must also wait for the other for the mission
to be successful. Unlike the examples considered in the previous chapter, when
both robots move into one same “cell” in the map, they both receive a penalty.
In this situation, unlike the previous chapters, the movement does not succeed. In
other words, when the robots “crash” they receive a penalty and remain in the same
position they were before “moving”.

In the second set of tests, we consider the same scenarios used in Chapter 5. In
particular, we apply CAQL to a team of robots moving in the isr, mit, pentagon,
cit, suny and cmu scenarios. We repeat the representation of these environments
in Figures 9.5 through 9.10 to help specify the initial and final states for the robots
in each experiment.

In Figures 9.3 through 9.10, each pair of color-matching cells represents a start-
ing/goal pair of cells for a particular robot in the team. As in Chapter 5, we consider
that in each cell the robots can be in one of four possible orientations, according to
the four compass directions: N , S, E and W . We summarize in Table 9.1 the total
number of states in the POTMG corresponding to each of the test scenarios.

9.2.2 The robots

In our experiments we consider teams of two robots moving in the environments de-
picted in Figures 9.5 through 9.10. As in Chapter 5, each robot has three available

206 9. Results in Multi-Robot Navigation

I.S.R.

N

Figure 9.5: Topological representation of the isr environment with 43 nodes.

M.I.T. N

Figure 9.6: Topological representation of the mit environment with 49 nodes.

Pentagon

N

Figure 9.7: Topological representation of the pentagon environment with 52 nodes.

9.2. The experimental setup 207

C.I.T.
N

Figure 9.8: Topological representation of the cit environment with 70 nodes.

S.U.N.Y.

N

Figure 9.9: Topological representation of the suny environment with 74 nodes.

C.M.U.

N

Figure 9.10: Topological representation of the cmu environment with 133 nodes.

208 9. Results in Multi-Robot Navigation

Surveillance
Camera

Raw
observations

Processed
observations

CENTRAL
PROCESSOR

Surveillance
Camera

Figure 9.11: Environment layout and sensor architecture.

actions at each time: move forward, turn left and turn right. Each of these actions
has an uncertain outcome described by the probabilities in Table 5.2. The probabil-
ities for the POTMG can be obtained by considering the movement of the different
robots to be independent except in the crash situations. If P

(k)

ak
(ik, jk) denotes a

particular transition probability for robot k obtained from Table 5.2, the transition
probabilities for the POTMG are obtained as

Pa(i, j) =
N∏
k=1

P
(k)

ak
(ik, jk).

For the experiments in this chapter, we consider N = 2.
We consider in all scenarios that surveillance cameras keep the environment

monitored. The images from the cameras are processed in a central processor and
the processed data is then sent to all the robots. This processed data contains the
state of each robot as perceived by the cameras. Figure 9.11 presents a general
overview of the architecture.

We consider that each robot has a distinctive feature that allows the cameras to

9.2. The experimental setup 209

Robot

Move
Forward

Turn
Left

Turn
Right

Identifier

Receiver

Figure 9.12: The robot, its sensors and actions.

distinguish the different robots while perceiving the state (position and orientation)
of each robot. We represented such identifier as a colored mark indicating the
orientation of the robot, as depicted in Figure 9.12. The color is used to identify
the robots and the orientation of the mark provides the orientation of the robot.

Similarly to the transitions between states, the observations are also prone to
errors, and there is a non-zero probability of error in the observed configuration.
To illustrate the observation probabilities, suppose that robot A is in position i and
robot B in position j, disregarding for the moment their orientation. Then, the
surveillance system will observe configuration (iA, jB) with probability 0.7 and con-
figuration (jA, iB) with probability 0.3. In other words, the camera system misiden-
tifies two robots with a 30% probability. For each robot, the camera system provides
the right orientation with probability 0.60 and the two adjacent orientations each
with a 0.20 probability. For example, suppose a robot is in state i oriented towards
the North. Then, the camera system will identify the robot as being oriented towards
the North with a 0.6 probability and, with a 0.4 probability the orientation of the
robot is mis-identified either as being East or West. These orientation observation
probabilities are summarized in Table 9.2.

The described uncertainty in the observation process occurs in all states except
when the robots reach the goal configuration. In the state corresponding to that
configuration, all robots are able to unambiguously perceive their location and that
of all other robots.

Finally, the robots receive a reward of +20 whenever they reach their joint goal
(the final configuration), of −10 whenever they crash and of 0 every other time step.

9.2.3 The experiments

We used a simulator to generate state transitions, observations and immediate re-
wards in the various environments described above. For each environment, the
colored cells in Figures 9.3 through 9.10 denote a pair of starting/goal states; each
different color concerns a different robot. For example, considering the environment
in Figure 9.3, a robot (I) starts in the leftmost “blue state” and must reach the
rightmost blue state; a second robot (II) starts in the rightmost “red state” and
must reach the leftmost red state. In Table 9.3 we summarize the starting states in

210 9. Results in Multi-Robot Navigation

Table 9.2: Orientation observation probabilities for a single robot.

True orientation Observed orientation

North East WestNorth
0.60 0.20 0.20

South East WestSouth
0.60 0.20 0.20

East North SouthEast
0.60 0.20 0.20

West North SouthWest
0.60 0.20 0.20

Table 9.3: Starting states for the robots in the several experiments.

Experiment Starting states Figure

w-grid Leftmost blue; rightmost red 9.3
bridge Leftmost blue; rightmost red 9.4

isr Leftmost blue; rightmost red 9.5
mit Rightmost blue; leftmost red 9.6

pentagon Rightmost blue; leftmost red 9.7
cit Rightmost blue; leftmost red 9.8

suny Leftmost blue; rightmost red 9.9
cmu Leftmost blue; rightmost red 9.10

each environment.
The initial belief state for all robots in the team corresponds to a uniform distri-

bution over all non-goal states. Every time the team reaches the goal configuration,
it is reset to the initial configuration.2 As in the examples in the previous chapters,
the team reaches its joint goal at time t if the state Xt of the process corresponds
to a configuration in which all robots are in the corresponding goal states.

For the smaller test scenarios (w-grid and bridge), we allowed CAQL to ex-
plore the environment for 5 × 105 time steps. For the remaining environments, we
allowed CAQL to explore the environment for 1× 106 time steps.

We then conducted a series of trials on each learnt policy to evaluate its per-
formance. In all experiments, a single trial consisted of a truncated trajectory of

2Recall that, in the experiments in Chapter 5, the position of the robot was randomly reset
upon arrival at the goal. However, to prevent situations in which the robots may end-up “stuck”
in a crash situation, we always reset the position of the robot to the initial configuration.

9.3. Experimental results 211

250 simulated steps starting from the initial state. The immediate rewards were
appropriately discounted and then added to yield a sample of the total discounted
reward. This was repeated for 2, 000 independent Monte-Carlo trials and the re-
ported results are the averages over all trials. The discount factor was 0.95 for all
experiments.

Also, as in Chapter 5, we recorded for each trial whether the team was able to
successfully reach the goal configuration within the 250 time steps. We determined
the percentage of successful trials and used this percentage as a second performance
measure.

We applied CAQL to each TMG
(
N,Sn, (Ak), P̄, r̄, γ) obtained from the original

POTMG with centralized observations (N,X , (Ak), (Zk),P, (Ok), r, γ). As in Chap-
ter 5, we used the natural basis functions arising from the beliefs πt. In particular,
we used the set of basis functions

Ξ = {ξi,a, i = 1, . . . , |X | , a = 1, . . . , |A|} ,

with each ξi,a given by
ξi,a(π, u) = π(i)Ia(u),

for all u ∈ A and π ∈ Sn, where Ia is the indicator function for the set {a}. Using
this approximation, the learnt parameter vector θ has the same dimension as the
Q-functions for the underlying TMG and we used the QMDP values to initialize the
parameter vector in all tests, so as to speed the learning process. We used Boltzmann
exploration to ensure a suitable exploration/exploitation tradeoff.

9.3 Experimental results

We present in Figures 9.13 and 9.14 the cumulative reward obtained during the
learning period. Notice the difference in the time scale between the environments
w-grid and bridge and the remaining environments, resulting from the shorter
learning period. The total discounted reward obtained using the learnt policy and
the percentage of successful missions are summarized in Table 9.4. For the sake of
comparison, we provide in Table 9.5 the performance of a team of robots that uses
no coordination mechanism and in Table 9.6 the results of a team with full-state
observability.

9.3.1 Discussion

We now discuss the results of the experiments summarized in Figures 9.13 and 9.14
and in Tables 9.4 through 9.6.

As in Chapter 5, exact methods are of little use in environments with the di-
mensions of those considered herein. That is the reason why we reported the results
of the optimal policy in the underlying fully observable team Markov game in Ta-
ble 9.6. As expected, the optimal fully-observable policy is always able to reach the
goal configuration: since the state is fully observable there is no ambiguity on the
configuration of the team in the environment, and the robots can easily coordinate
in the optimal strategy.

212 9. Results in Multi-Robot Navigation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

a) w-grid (2 robots); b) bridge (2 robots);

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

c) isr (2 robots); d) mit (2 robots);

Figure 9.13: Cumulative reward and greedy choice probability during the learning period
for the w-grid, bridge, isr and mit environments.

9.3. Experimental results 213

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

e) pentagon (2 robots); f) cit (2 robots);

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

C
um

ul
at

iv
e

re
w

ar
d

Learning performance

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

g) suny (2 robots); h) cmu (2 robots).

Figure 9.14: Cumulative reward and greedy choice probability during the learning period
for the pentagon, cit, suny and cmu environments.

214 9. Results in Multi-Robot Navigation

Table 9.4: Total discounted reward and percentage of successful missions in the nine
experiments using CAQL after the learning period is complete. We present the average total
discounted reward and standard deviation obtained over 2, 000 independent Monte-Carlo

trials.

Experiment Total Disc. Reward Success %

w-grid (2 robots) 18.304 ± 7.964 100.00 %
bridge (2 robots) 10.916 ± 6.661 100.00 %

isr (2 robots) 9.916 ± 2.250 100.00 %
mit (2 robots) 6.963 ± 1.355 100.00 %

pentagon (2 robots) 9.275 ± 1.840 100.00 %
cit (2 robots) 5.900 ± 1.258 100.00 %

suny (2 robots) 1.800 ± 0.961 100.00 %
cmu (2 robots) 1.628 ± 0.373 100.00 %

Table 9.5: Total discounted reward and percentage of successful missions in the 9
experiments using approximate Q-learning without coordination. We present the average

total discounted reward and standard deviation obtained over 2, 000 independent
Monte-Carlo trials.

Experiment Total Disc. Reward Success %

w-grid (2 robots) 7.701 ± 9.504 100.00 %
bridge (2 robots) 1.791 ± 8.620 100.00 %

isr (2 robots) 5.976 ± 4.058 100.00 %
mit (2 robots) 3.992 ± 2.283 100.00 %

pentagon (2 robots) 5.036 ± 2.730 100.00 %
cit (2 robots) 3.666 ± 2.073 99.90 %

suny (2 robots) 0.090 ± 0.664 94.85 %
cmu (2 robots) 0.438 ± 0.475 99.10 %

Table 9.6: Total discounted reward and percentage of successful missions in the nine
experiments using the optimal, fully observable strategy. We present the average total

discounted reward and standard deviation obtained over 2, 000 independent Monte-Carlo
trials.

Experiment Total Disc. Reward Success %

w-grid (2 robots) 25.692 ± 4.350 100.00 %
bridge (2 robots) 15.531 ± 3.669 100.00 %

isr (2 robots) 12.622 ± 1.815 100.00 %
mit (2 robots) 8.883 ± 0.741 100.00 %

pentagon (2 robots) 12.550 ± 0.945 100.00 %
cit (2 robots) 8.028 ± 0.679 100.00 %

suny (2 robots) 2.435 ± 0.624 100.00 %
cmu (2 robots) 2.122 ± 0.221 100.00 %

9.3. Experimental results 215

1 2 3 4

Observations
π0

π1

π2

Robot I Robot II

Figure 9.15: Uncertainty elimination.

Remarkably enough, the same thing happens in the experiments with partial
observability. In these experiments, described in Table 9.4, the robots can only infer
its position from the data provided by the surveillance feed and the past history.
However, unlike the examples in Chapter 5, the perceptual aliasing is not too severe:
each observation corresponds (at most) to 18 possible states. This means that, even
if there is significant uncertainty in the initial belief, the dynamics of the robots
(translated in the transition probabilities) and the observation process effectively
eliminate most such uncertainty after few steps.

The following very simple example clarifies the process by which uncertainty is
eliminated.

Example 9.1. Consider the situation represented in Figure 9.15. We suppose
that the state of each robot consists only on its position in the environment
(1, 2, 3 or 4). We also suppose that there is only one action (Move forward).
This action causes robot I to move to the right (unless if the robot is in the
rightmost state) and robot II to stand still. We emphasize that the effects of
the only action are part of the specification of the problem: they correspond
to the information in the transition matrix P. We will only track the leftmost
robot (Robot I).

Initially, we have no idea of where robot I is, so the belief consists on a
uniform probability vector that we denoted by π0. Both robots choose the
action “move forward” and hence, at t = 1, robot I moves to Room 2, as
described by the arrow in Figure 9.15, and Robot II remains in Room 4. Both
robots get the observation “Robots in Rooms 2 and 4”. Given this observation,
Robot I must be in state 2 or 4 and the belief is updated as depicted in
Figure 9.15 under π1.

Now if both robots choose the action “move forward” again, at time t = 3
robot I will move to Room 3 and robot II will remain in Room 4. Clearly, both
robots will receive the observation “Robots in Rooms 3 and 4”. But, because
of the transition model described above, this means that the robot in Room 2
at t = 2 moved to Room 3 at time t = 3 and the robot in Room 4 remained

216 9. Results in Multi-Robot Navigation

Table 9.7: Average number of mis-coordinations, corresponding to the average number of
negative rewards received by the team. We present the average obtained over 2, 000

independent Monte-Carlo trials.

Experiment Optimal CAQL

w-grid (2 robots) 3.200 4.092
bridge (2 robots) 1.885 2.700

isr (2 robots) 1.135 1.523
mit (2 robots) 0.000 0.000

pentagon (2 robots) 0.000 0.021
cit (2 robots) 0.000 0.000

suny (2 robots) 0.213 0.479
cmu (2 robots) 0.000 0.001

still. Since the robot that can actually move is robot I, it is easy to conclude
that robot I was the one moving and is now in state 3 with 100% probability.

�

Back to our results, if we take into consideration the fact that the dynamic
model and observation model gradually eliminate the uncertainty in the belief, it is
not surprising that the CAQL team is able to attain the impressive performance in
Table 9.4, much superior than that observed in the single-robot case (see Chapter 5).

On the other hand, the success rate was measured upon 250-time-step runs, and
all test scenarios have more than 1, 000 states. Therefore, the success rate obtained
cannot arise from simple exhaustive exploration.3 By comparing the performance
of CAQL with that of the fully observable team in terms of reward (Table 9.6),
we conclude that even in the presence of partial observability the team is able to
coordinate. This becomes clearer if we observe in Table 9.7 the average number of
mis-coordinations (crashes) in each of the test environments. For example, in the
the w-grid scenario the average number of mis-coordinations for CAQL is 4.092.
This means that, during the 250-time-units test period, the robots crash about 4
times in average. We remark that, as expected, the number of mis-coordinations is
larger in the smaller environments, since the team has less “room” to move about.

When comparing the results of the “uncoordinated” team (Table 9.5) with those
of the coordinated team (Table 9.4), it is evident that the use of the coordination
mechanism greatly improves the performance of the team. Notice that both teams
learn the same Q-values, as they both use the same algorithm to learn the game.
This makes even more striking the difference in performance observed in the two
tests.

Notice that, even if the smaller environments exhibit a larger number of mis-
coordinations, mostly arising from the uncertainty in the transitions, the effect of
these mis-coordinations in terms of the success rate of the team is much more relevant

3Exhaustive exploration would not guarantee that the goal state is ever visited within the 250
time-frame, and would lead to severe penalization arising from mis-coordinations.

9.4. Concluding remarks 217

in the larger environments. This fact can easily be interpreted. Notice, first of all,
that the success rate measures the number of trials that the team was able to reach
the final configuration. In the smaller environments, the final configuration can
be reached very rapidly, as long as the robots are able to minimally coordinate.
Therefore, mis-coordinations do affect the total discounted reward received, but will
hardly prevent the team from reaching the goal. In the larger scenarios, because of
the size of the environments, reaching the goal takes a significant amount of time
and even one mis-coordination may translate in a delay that the team cannot afford.
This indicates that coordination mechanisms may have a decisive influence in the
team’s ability to complete complex missions.

Finally, it is worth mentioning that all navigation problems have been formulated
so as to meet the conditions of Theorem 8.6.1. Therefore, Theorem 8.4.2 guarantees
that CAQL converges w.p.1 and coordinates in all but a null-measured set of states.
On the other hand, Theorems 8.3.1 and 4.7.4 also guarantee that approximate Q-
learning converges to the same approximate Q-function (even without coordination).

9.4 Concluding remarks

To conclude this chapter, we summarize the main ideas presented so far. We de-
scribe the general reinforcement learning framework introduced in the two previous
chapters and discuss its applicability in multi-robot navigation problems. We also
hint on how this framework can be extended to multi-agent settings, a topic to be
developed in the second part of this thesis.

9.4.1 Summary

In this chapter we tested the CAQL algorithm in the large benchmark problems al-
ready considered in Chapter 5. In these large test scenarios, a team of mobile robots
with centralized sensing capabilities must navigate from an initial configuration to
a target configuration. The robots do not know beforehand how to coordinate in
this task and must learn it as they interact in the common environment.

We applied CAQL to this set of problems and verified that, in all situations, the
team is able to coordinate and reach the target configuration, exhibiting a nearly-
perfect performance.

9.4.2 Discussion

This chapter brings the thesis to a conclusion. Although we leave for Chapter 10
the fundamental conclusions, we herein stress some important issues that arise from
the results presented in this chapter. Together with those in Chapter 5, the results
we presented herein assess experimentally the applicability of reinforcement learning
in robotic navigation tasks. The classes of tasks considered fit into the description
provided in Section 1.2, and we bring to a satisfying conclusion the study developed
along the thesis.

In Chapters 6 through 8 we introduced and developed a general learning method-
ology to address multi-robot navigation tasks with sound theoretical properties. This

218 9. Results in Multi-Robot Navigation

parallelled the development in Part I and culminates in this Chapter with the experi-
mental validation of those methods. We must emphasize that the methods developed
in the thesis (both in Part I and II) have a broader applicability than robotic nav-
igation tasks, even if in the thesis these methods were approached envisioning this
specific application. In fact, CAQL can be used to address any general multi-agent
decision problem where coordination among the decision-makers is fundamental.

Finally, we notice that several of the concluding remarks in Chapter 5 are also
applicable here. In particular, those regarding the fact concerning the structure of
robot navigation tasks. Recall that, as argued in Chapter 5, robotic tasks exhibit
some locality in the transitions – a robot cannot “jump” between arbitrary states.
This locality helps to decrease uncertainty (as illustrated in Example 9.1) and makes
robotic tasks particularly amenable to a RL approach relying in belief-states. When
considering multiple robots, some of this locality is lost, precisely due to the existence
and interaction of multiple robots. On the other hand, a team of robots with
centralized observations will have access to more sensorial information than a single
robot; this makes sense if we think that several people observing the same scene will
be able to more accurately describe it as the observations of each one complement
those of the others. This attenuates the effect of partial observability which, in turn,
will often lead to better performance.

Chapter 10

General Conclusions

In this chapter we conclude the thesis, providing a general overview of all ma-

terial presented. We summarize the main contributions and discuss several issues

that have been briefly addressed along the thesis but whose discussion was post-

poned to this final chapter. We also point out several directions to be considered

in future research.

10.1 Overview of the thesis

In this thesis we addressed mobile robot navigation from a learning perspective. We
considered navigation tasks in which a robot/group of robots has to move from an
initial position/configuration to a target position/configuration. The robots have
access to a topological representation of the environment and should coordinate in
the execution of the joint navigation task. We assumed that the task is initially
unknown to the robots; they should be able to successfully explore the environment
and use the evaluative feedback collected during this exploration period to learn the
optimal way of completing the task at hand.

The thesis was divided in two parts. In Part I, we focused on single-robot
navigation problems, where a single robot must navigate from an initial position
to a final position in an environment described topologically. The use of topological
maps provides environment representations with high-level of abstraction and inher-
ent scalability properties. Topological environment representations are also closely
related with discrete-event models describing the robot [188, 189].

The relation between the topological model of the environment and the discrete-
event model of the robot led to the use of Markov decision processes (MDPs) as
suitable models to address this class of navigation problems. We described several
well-known methods (VI, ARTDP methods, Q-learning and SARSA) for computing
the optimal decision-rule (or policy), given a finite MDP. However, all these methods
require full state observability : the robot should be able to unambiguously determine
its location in the environment in terms of the topological map.

Since perfect state perception is an unrealistic assumption in most situations, we
adopted a more general model that encompasses partial observability. We showed

220 10. General Conclusions

that these partially observable Markov decision processes (POMDPs) have an equiva-
lent representation as fully observable MDPs with an infinite state-space. Therefore,
we developed two new methods that make use of linear function approximation and
tackle MDPs with infinite state-spaces. These methods, dubbed approximate Q-
learning and approximate SARSA, and corresponding analysis, constituted the main
contribution in the first part of the thesis. We concluded this part by validating the
use of these methods in several large benchmark navigation problems.

In Part II, we addressed multi-robot problems, where a group of robots must
jointly move from an initial configuration to a final configuration, while avoiding
accidents and other undesirable situations. In this multi-agent setting, each robot
moves autonomously and is, therefore, an independent decision-maker. However,
the robots work as a team, in that they have a joint common goal (reach the target
configuration). The robots should cooperate in attaining this joint goal without
resorting to any explicit communication mechanism. Also, as in the problems con-
sidered in Part I, the robots do not know their task beforehand.

We adopted team Markov games (TMGs) as suitable models to address multi-
robot navigation problems. We discussed three important issues arising in multi-
agent cooperative settings: task representation, team performance evaluation and
cooperation mechanism. The use of TMGs automatically settles the former two
issues by means of a reward function that not only defines the task to be completed
but also provides a natural way to evaluate the performance of the team. On the
other hand, in the particular class of problems considered, cooperation arises in the
form of coordination. We argue that coordination must be explicitly addressed and
propose the use of biased adaptive play (BAP) as a coordination mechanism.

We then proceeded by extending several methods from Part I to multi-agent set-
tings (namely ARTQI and Q-learning). These methods can be combined with BAP
and used to determine an optimal coordinated decision-rule for finite TMGs. How-
ever, all these methods require full state and action observability. As in single-robot
problems, full state observability means that each robot is able to unambiguously
perceive the state of the whole group. Full action observability means that each
robot is fully aware of the actions taken by all robots as soon as such actions are
taken.

To tackle partial state observability we adopted the more general model of par-
tially observable team Markov games (POTMGs) with centralized observations and
showed this model to have an equivalent representation as a fully observable TMG
with an infinite state-space. We developed a new coordination mechanism for infinite
TMGs, approximate biased adaptive play (ABAP), and analyzed its main properties.
We then combined ABAP with approximate Q-learning, leading to the coordinated
approximate Q-learning algorithm, the final contribution of the thesis. This al-
gorithm allows for a unified treatment of several different reinforcement learning
problems and, in particular, of all navigation problems considered in the thesis. Fi-
nally, we discussed several approaches from the literature that address situations in
which full action observability is not required and concluded the thesis by validating
the use of CAQL in several large benchmark navigation problems.

10.2. General discussion 221

10.1.1 Summary of contributions

We now present a very concise summary of all contributions of the thesis.

1. We proposed approximate Q-learning, an algorithm that combines Q-learning
with linear function approximation, and established its convergence w.p.1
when using a fixed learning policy (Theorem 4.5.2);

2. We proposed approximate SARSA, an algorithm that combines SARSA with
linear function approximation, and established its convergence w.p.1 when
using a GLIE learning policy (Theorem 4.5.3);

3. As a corollary, we established the convergence of approximate Q-learning when
using a GLIE learning policy (Corollary 4.5.4);

4. We established a partially observable Markov chain (X ,Z,P,O) to be equiva-
lent to a geometrically ergodic, fully observable Markov chain (Sn, P̄) as long
as the chain (X ,P) is irreducible, aperiodic and there is an observable state
(Theorem 4.7.4);

5. We proposed coordinated Q-learning (CQL), an algorithm that combines Q-
learning with biased adaptive play, and established its convergence w.p.1 to
an optimal Nash equilibrium (Theorem 7.3.3);

6. We proposed approximate biased adaptive play (ABAP), a coordination mech-
anism for infinite team Markov games, and established its convergence w.p.1
in all but a null-measured set of states (Theorem 8.4.1);

7. We then combined ABAP with approximate Q-learning, leading to the coordi-
nated approximate Q-learning (CAQL) algorithm. We established convergence
of CAQL w.p.1, unifying in a single, general result most previous results along
the thesis (Theorem 8.4.2).

Contribution 1 was previously published in [193]. Contribution 4 can be found
in [190, 192] along with the algorithm in Appendix E. Contribution 5 can be found
in [189, 193]. A journal paper is in preparation that includes Contributions 6 and 7.

10.2 General discussion

Before concluding our presentation, it is important to discuss several important
issues that arose along the thesis and whose discussion was postponed to these
concluding remarks.

10.2.1 Reinforcement learning related issues

We start by discussing several general issues related with the reinforcement learning
framework that do not restrict to the navigation problems considered in the thesis.

222 10. General Conclusions

General conditions for convergence

We now analyze the conditions stated in the several convergence theorems. We also
refer to the discussion in Chapters 4 and 8.

Most algorithms in the thesis are stochastic approximation algorithms, taking
the general form

θt+1 = θt + αtH(θt, Xt+1)

where H is a perturbed version of a function h whose zero is to be determined.
The sequence {Xt} is a Markov chain and the sequence {αt} is a step-size sequence,
defining the rate of convergence of the algorithm to the desired limit point.1

In most convergence theorems along the thesis (in particular, in Theorems 3.4.1,
3.4.2, 3.4.3, 4.5.2, 4.5.3, 7.3.3, 8.3.1, 8.4.2 and 8.6.1) we require the step size sequence
to have infinite sum, while converging to zero. More exactly, we require that

∑
t α

2
t <

∞. The infinite sum guarantees that the algorithm converges to the desired limit,
independently of how far the initial estimate is; the convergence to zero guarantees
that the algorithm actually converges, preventing it from infinitely oscillating around
the desired limit point. However, the convergence guarantee thus obtained is only
asymptotic.

If only a finite number of iterations is possible, then the sequence of step-sizes
should be non-vanishing. Convergence results for non-vanishing step-sizes are thor-
oughly available in the literature [21] and we refer to the detailed discussion in [51]
on the practical implementation of such stochastic approximation methods.

On a more practical notice, we refer that most methods introduced in the thesis
are on-line methods: the policy is learnt as the agent/agents interact with the
environment. This means that sufficient time must be provided for the agent/agents
to explore the environment and the possible inter-agent interactions. Even if the
computational complexity involved in performing the updates in the methods is
not significant, the actual implementation of these learning methods will always
require a learning period for the agents to acquire the optimal policy. As already
stated, this period permits sufficient exploration and its duration is usually adjusted
experimentally.

With respect to the remaining conditions of convergence, two observations are in
order. First of all, we have provided in Theorem 4.7.4 a set of conditions that guar-
antee that a POMDP can be transformed into an equivalent geometrically ergodic,
fully observable MDP. The conditions are related with the ergodicity of the underly-
ing MDP and with the existence of one distinguishable state. We have claimed that
the latter assumption is not unreasonable in that we expect that the robots are at
least able to distinctly recognize the goal of their task.

Secondly, simple ergodicity of the underlying unobserved MDP is, in general, not
sufficient to guarantee the geometric ergodicity of the corresponding belief process
[135]. For general partially observable models, geometric ergodicity of the belief
process has been established using several approaches in different works [159, 304].
As in Theorem 4.7.4, all such results require the underlying unobserved process to

1To clarify the relation between the step-size sequence {αt} and the rate of convergence of the
algorithm, see Appendix D.

10.2. General discussion 223

be ergodic. The advantage of our approach lies on the fact that the added condition
is extremely simple to verify and trivially holds in many actual problems.

The choice of basis functions

Our approximate methods from Chapters 4 and 8 (approximate Q-learning, approx-
imate SARSA and CAQL) make use of a finite-dimensional function space Q and
approximate the best representation of the optimal Q-function in this space. This
space is the linear span of a pre-defined set of basis functions Ξ = {ξ1, . . . , ξM}
and, as discussed in Chapter 4, the quality of the obtained approximation greatly
depends on the family of basis functions chosen.

Two important issues immediately arise:

• How to choose the basis functions. The choice of basis functions may require
some labor to provide a satisfying approximation. The importance of this
problem has made it a topic of intense current research.

Several authors have experimentally inferred the usefulness of different classes
of basis functions, such as Boyan and Moore [44], Sutton [290] or Kretchmar
and Anderson [146]. One particularly popular approximation relies on tile cod-
ing. In its original formulation, tile coding was known as CMAC (cerebellar
model articulatory controller).2 Tile coding produces a feature representation
of the state-space which is similar to a network of fixed radial basis functions
(RBF). One argued advantage of tile coding over standard RBF approxima-
tions lies on the computational efficiency with which tile coding can be imple-
mented [290]. RBFs and tile coding are further compared in [146]. Examples
of successful applications of tile coding within RL can be found in several
works [40, 286, 337].

In partially observable scenarios, the use of beliefs appears quite naturally
and, as seen in Chapters 5 and 9, with quite satisfactory results in robotic
applications. We also refer to Appendix E and references therein, where the
use of point-sample projections provide a natural set of basis functions that
yield an easily interpretable approximation.

Finally, some researchers have focused on the problem of determining repre-
sentative families of basis functions for which some theoretical performance
guarantees can be provided. We refer the works by Glaubius and Smart
[96], Menache et al. [197], Parr et al. [232] and Keller et al. [139].

• How to choose the number M of basis functions. Clearly, richer sets of basis
functions lead to greater representative power and allow for more accurate
representations of a broader class of functions. However, this affects the mem-
ory requirements and learning time of the algorithms. Therefore, there is an
evident tradeoff between representational power of the set of basis functions
and efficiency of the learning algorithm. In [6, 208, 301], the authors explore

2We refer to http://www.cs.ualberta.ca/%7Esutton/RL-FAQ.html#CMACs for the origin of
the “tile coding” designation.

http://www.cs.ualberta.ca/%7Esutton/RL-FAQ.html#CMACs

224 10. General Conclusions

this tradeoff, providing explicit performance bounds for approximated value
iteration.3

The use of GLIE policies/strategies and the problem of exploration

Along the thesis and in the practical implementation of all algorithms, we made
generous use of GLIE policies/strategies. The policies/strategies with this property,
first introduced by Singh et al. [280], have the evident advantage of converging to the
greedy (and hopefully optimal) policy/strategy while ensuring sufficient exploration.
However, this does not settle the exploration vs. exploitation tradeoff. It may so be
the case that a limited time is available for learning and the agent should learn as
much as possible in that time. In that case, a GLIE policy may not be adequate.
On the other hand, it may occur that some actions are particularly undesirable and,
so, exploration should be approached carefully. All these issues should be taken into
account when considering the practical implementation of the algorithm.

Even so, we should remark that in the multi-agent setting, emerging coordination
necessarily requires the several decision-makers to interact. GLIE strategies manage
to provide this required interaction while the decision-makers are in the process of
learning the game.

On-policy and off-policy algorithms

As established in Theorems 4.5.2 and 4.5.3, given a linear function space Q, approx-
imate Q-learning and approximate SARSA converge w.p.1 to the same limit point,
verifying the fixed-point recursion

Q(θ∗) = PQHQ(θ∗).

However, such convergence guarantee is asymptotic: convergence of the sequence
{Qt} of estimates occurs only as t → ∞. As seen in Chapter 4, the update rules
for approximate Q-learning and approximate SARSA are distinct in the temporal-
differences used—see (4.13) and (4.14).

The distinction between Q-learning and SARSA (and between approximate Q-
learning and approximate SARSA) can be more clearly understood by sketching
the trajectories of both algorithms. Such trajectories are pictorially represented in
Figure 10.1. Suppose that both methods depart from the same initial condition
Q0, follow a similar GLIE policy with initial learning policy δ0. The fact that
the used policy has the GLIE property means that it “changes” slower than the
sequence of estimates {Qt}. From the sampled trajectory, SARSA will approach
the Q-function corresponding to the policy δ0, while Q-learning will approach the
optimal Q-function. When the learning policy is “updated”, Q-learning will exhibit
a policy which is closer to optimal then SARSA’s. This means that, in general,
SARSA will be slightly slower due to its on-policy updates. This phenomenon was
often observed in the results in Chapters 3, 4 and 5. Therefore, in finite time, there

3Although value iteration methods are quite distinct from stochastic approximation methods
such as Q-learning, the referred bounds derived also hold for the latter class of algorithms.

10.2. General discussion 225

Q-learningSARSA

δ0

Qδ0

δ1

Qδ1

δ2

Qδ2

δ3

Qδ3

δ4

Qδ4

δ5

Q∗
Q∗

δ0

δ1

δ2

δ3

δ4

δ6
δ7

δ8
δ9δ10

δ11

Qδ5

Qδ6

Qδ7

Qδ8
Qδ9

Qδ10

Figure 10.1: Pictorial representation of the difference between Q-learning and SARSAwith
a GLIE learning policy.

will generally be a difference between the policies and functions learnt by Q-learning
and SARSA. As seen in Chapter 4, this difference is more significant in environments
which are very informative (i.e., rewards are available in a large portion of the state-
space).

Observability and communication

In all methods described and implemented in Part II, there was a fundamental as-
sumption of full-action observability. In fact, even if we discussed in Section 8.6
several approaches from the literature that do not assume action observability, the
methods considered in the thesis do rely on this assumption. Therefore, it is impor-
tant to fully realize the exact implications of this assumption.

In a POTMG, the observations received by each player may provide information
about the actions by the other players, i.e., the actions may be perceived from their
effects on the environment. When this is the case, each player will be able to infer
the action taken by the other players from the sensorial information received. The
player could thus maintain a belief on the actions taken by the other players and
use this belief to build its individual strategy. This approach is simplified version of
the I-POMDP approach described in Chapter 8.

Another possibility is to consider that the players communicate a posteriori the
actions taken at each time instant. Using communication to overcome the prob-
lem of action observability is a common methodology, implicitly adopted in several
works in the literature (see, for example, the discussion in [24, 212]). Notice, also,
that the approach followed in Chapters 8 and 9 necessarily relies on some form of
communication to ensure centralized observations. We could argue that, since some
form of communication must always exist, then we could take advantage of this
to ensure coordination. However, using communication to maintain “synchronized”
joint information is fundamentally different from using it to achieve coordinated

226 10. General Conclusions

decision-making: in the former case, the process of decision depends on the commu-
nication only indirectly. Failure in the communications will, in this case, delay the
learning process and the coordination process but no guarantees of convergence are
lost. On the other hand, if communication is used to ensure coordination, failure in
the communications may impair the ability of the robots to coordinate.

In any case, using communication to address multi-agent problems with cognitive
autonomy can significantly reduce the computational complexity of this class of prob-
lems [212]. Dec-POMDP models that explicitly consider communication, dubbed as
COMM-MTDP (for communicating multiagent team decision process), exhibit a
computational complexity similar to that of single agent POMDPs [246, 247]. And
even if communication is not free, it may be used advantageously to decrease the
overall complexity of the multi-agent decision problem [212].

To implement efficient communication Roth et al. [256, 257] propose the Dec-
Comm algorithm that determines in which situations communication may bring the
agents actual benefits, thus avoiding communication in situations where it brings no
significant advantage. This idea is further pursued in [258], where further communi-
cation constraints are analyzed. In the latter paper, the authors address the problem
of what to communicate, in the presence of communication costs or bandwidth limi-
tations. Finally, in [259], the authors take advantage of factored representations for
Dec-MDPs and are able to reduce communication to a peer-to-peer protocol.

This idea can be further explored, by considering separately situations in which
an agent in a group can act independently and situations in which cooperation is
mandatory. This line of work was already addressed in the aforementioned works
[256, 257], that rely on communication to decentralize the execution of a joint strat-
egy computed off-line. It would be interesting to develop a similar simplification but
requiring no joint strategy to be determined. In those situations where the agents
can act independently, the agents could simply follow a single-agent strategy, whose
determination is computationally much less expensive than multi-agent strategies.
In those situations where coordination is required, communication could be used to
simplify the complexity of multi-agent decision-making, as suggested in [212].

Finally, the recent advances in actor-critic methods [145, 239, 296], their con-
vergence guarantees and impressive robustness when combined with function ap-
proximation suggests that this class of algorithms may be successfully applied to
multi-agent settings, even considering completely independent learners. Further-
more, such approach could be combined with ideas from [40] and from the recent
developments in the theory of generalized fictitious play processes [161, 162].

10.2.2 Reinforcement learning in robot navigation

We now discuss several issues related with the application of the methods and frame-
work described in the thesis to robotic navigation problems. We also review several
works from the literature more or less related to the approach in the thesis.

RL approaches to robot control and navigation

The powerful methods and impressive results of RL [62, 307, 316] have rendered
this framework quite popular among the computer science and robotic communi-

10.2. General discussion 227

ties. Therefore, it is not surprising that several works address classical control and
navigation problems using the RL formalism and methods. For example, Bradtke
[47] and ten Hagen [306] apply reinforcement learning methods to perform linear
quadratic regulation. Forbes [86] combines an instance-based function approxima-
tion architecture with Q-learning to the control of autonomous vehicles.

Closer to the approach in this thesis, Nourbakhsh et al. [222] describes the gen-
eral architecture of the dervish robot, winner of the 1994 Robot Competition and
Exhibition held as part of the 13th National Conference on Artificial Intelligence
(AAAI’94). The paper describes the state-space representation and navigation al-
gorithms used by the robot to navigate in an office environment. Its navigation
algorithm relies on a topological map and maintains a belief-like representation of
the position of the robot. Although not using the exact same approach, its working
principle is very close to that used in this thesis.

In another work, Simmons and Koenig [142, 277] use a POMDP model to address
autonomous navigation in an office environment. In this work, the authors address
the particular problems of translating prior topological information and sensorial
data into this partially observable MDP model. Shatkay and Kaelbling [274] further
explore this approach by incorporating odometric information to replace the prior
topological information, using an extension of the Baum-Welch algorithm to deal
with relational and observation data.4 It also discusses several interesting advantages
of using topological maps in robot navigation. Finally, Cassandra et al. [53] follow on
the previous works, addressing the general problem of belief-based robot navigation
using a POMDP model. The authors also discuss several practical issues such as
how to build the actual POMDP transition and observation matrices.

Roy and Thrun [261] also use a POMDP model for robot navigation. In this
work, the authors uses a grid partition of the state-space (consisting of position-
orientation tuples) and increase this state-space with entropy information.5 The
authors implement localization using belief tracking and propose a new method
relying on state entropy to handle the poor POMDP scalability. The paper concludes
with the application of this methodology in coastal robot navigation, using the
MINERVA robot.

Thrun [311] addresses POMDPs with continuous state and action spaces com-
bining importance sampling with Monte-Carlo methods for belief propagation. This
method is then applied to a robotic locate-and-retrieve task.

In a different line of work, some researchers focused on continuous state-space
problems, while disregarding partial observability. For example, Smart and Kael-
bling [282] feature an application of Q-learning to mobile robot navigation in infinite
spaces. In their approach, the authors consider two distinct learning phases: in a first
phase, the robot follows a given pre-specified policy that samples the “interesting”
parts of the state-space (those providing non-zero rewards). In the second phase,
the robot combines Q-learning with a powerful function approximation architecture
and uses the experience gathered during the first phase to speed the learning. Yen

4Baum-Welch is an applied expectation-maximization algorithm [248] usually used to learn
HMMs.

5Belief entropy provides a useful measure of uncertainty and has been used in several approxi-
mate POMDP solution methods, such as [169, 191, 261].

228 10. General Conclusions

and Hickey [344] make use of a local, feature-based representation of the environ-
ment and implement an episodic variation of Q-learning with a tunable forgetting
factor. For a large value of the forgetting factor, the robot will re-explore in every
learning episode. For a small forgetting factor, the robot will essentially exploit, us-
ing the information from the previous episodes. The lack of information due to the
local representation is overcome by implementing a hierarchical architecture, where
a lower-level layer handles simpler tasks such as local navigation and the higher-level
layer handles global planning.

To conclude, we remark that both belief-based POMDP approaches and those
disregarding partial observability but considering infinite state-spaces fall into a
common category, in light of our results from Chapter 4. In this thesis we provide a
unified approach to both classes of problems and further extend them to multi-robot
settings.

Learning and policy implementation

In Chapter 2 we have motivated the use of a topological representation of the en-
vironment in addressing mobile robot navigation, due to its scalability and high
level of abstraction. Also, as argued in Chapter 6, such topological representation
brings added advantages in heterogeneous multi-robot situations, by providing a
high-level environment representation than can be internally be translated into a
suitable representation for each robot.

We also motivated the use of the reinforcement learning formalism and method-
ology to this class of problems: RL provides a class of powerful methods that allow
a user to program a robot/group of robots by means of evaluative feedback, and
constitutes an appealing alternative to exhaustive programming. As seen through-
out the thesis, the reward function plays in RL a fundamental role, by providing
the learner with the required feedback for the task at hand. From a formal point
of view, the reward function defines the task to be learnt. Therefore, it is of the
greatest importance that the reward function be defined in accordance with the
task intended.

In the particular case of mobile robot navigation, as considered in this thesis, the
reward functions used were often very simple: the robots were rewarded a positive
reinforcement upon reaching their goal and punished with a negative reinforcement
upon reaching undesirable situations. This, as intended, “pushes” the robots towards
the goal and away from the undesirable situations. More complex tasks will often
require more complex reward functions and the crafting of reward functions is an
important topic of research, closely related with utility theory. This research led to
several important works, regarding policy invariance under reward shaping [182, 221]
and inverse reinforcement learning [1, 64, 220, 249].

Specifically concerning the learning process, two observations are in order. First
of all, given a particular task for a robot to learn, and due to the exploration re-
quirements during learning, the initial performance of the robot will be very modest.
Furthermore, the more complex the task, the longer it will generally take to learn.
For this reason, it is customary to consider an extensive learning period, during
which the robot is able to explore at will. During this learning period, as argued

10.2. General discussion 229

above, a non-vanishing learning rate should be used, to:

• speed up the convergence of the learning algorithm;

• minimize the effects of the finite learning time.

Once the learning period is over, the learnt policy can be directly implemented in
the robot as a simple map from states to actions. Such simple policies are straight-
forward to implement and require little resources from the robot. Furthermore, they
provide the explicit “state-wise” programming of the actions of the robots. On the
other hand, if desired, it is also possible to simply eliminate all exploration but
allowing the learning process to proceed. This will allow the robot to track slow
changes in the environment and to eventually further improve its policy.

The second remark is concerned with the implementation of the learning period.
Allowing the learning period to be conducted with the actual robot is often time-
consuming and in some situations even lead to damage of the robot. Therefore, it is
customary to develop simplified simulation models to run the learning process. Such
simulation models often capture the fundamental situations where decision-making
is required from the robot and allow for a much faster and hazard-safe learning
period. However, simulation models can only provide approximate representations of
the actual situations and it is convenient that, once the learnt policy is implemented
in the real robot, the learning process is allowed to continue (with no exploration)
as the robot interacts with the actual environment.

The use of robot and sensor models

In Chapters 4 and 8 we made use of belief-states to overcome the problem of partial
observability. A belief-state is nothing but a probability distribution over the state-
space updated using a simple Bayes rule. Belief-tracking in navigation tasks is
equivalent to Markov localization, as seen in [87, 89]. Markov localization has been
successfully applied in real robot navigation tasks with the RHINO and MINERVA
robots [88].

We remark, however, that belief-tracking as described in Chapter 4 requires
knowledge of the probabilities in P and in O. Recall that the probabilities Pa(i, j)
define the dynamic model of the robot:

Pa(i, j) = P [Xt+1 = j | Xt = i, At = a]

and the probabilities Oa(i, z) define the model for the sensors:

Oa(i, z) = P [Zt+1 = z | Xt+1 = i, At = a] .

Knowledge of P and O is equivalent to the knowledge of the dynamic model of
the robot and the sensors. In robotic applications such as those envisioned in this
thesis, knowledge of the dynamics of the robot and the model of the sensors is a
fairly reasonable assumption.

On the other hand, it may often be the case that the dynamic/sensor model
available are inaccurate. Although we did not address this problem in the thesis, in

230 10. General Conclusions

Room 9

Room 1 Room 4 Room 7

Room 2 Room 5 Room 8

Room 3 Room 6

Goal
Room

Room 9

Room 1 Room 4 Room 7

Room 2 Room 5 Room 8

Room 3 Room 6

Goal
Room

a) Environment of Example 2.1 b) Modified environment

Figure 10.2: Original environment of Example 2.1 and modified environment that
includes extra obstacles.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2000

4000

6000

8000

T
ot

al
 r

ew
ar

d

Learning performance

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

Time units

P
ro

ba
bi

lit
y

Greedy choice probability

Figure 10.3: Learning performance of the robot when the environment dynamics are
altered at time t = 3330. We also plot (in red) the learning performance of a second

robot that only trained in the modified environment.

many situations the effect of inaccuracies in terms of belief-states and policy learning
is easily accommodated by the learning algorithm.

To see this, consider the following example.

Example 10.1. We return to Example 2.1 and consider once again a mobile
robot moving in the environment of Figure 10.2.a). The robot can be modeled
by the MDP (X,A,P, r, γ) described Chapter 2 and the navigation problem
can be solved by using any of the methods in the first part of the thesis.

Suppose now that, during learning, the environment is modified to ac-
commodate two large obstacles that did not exist originally, as depicted in
Figure 10.2.b). We tested the effect of this on the learning of the robot and
plotted the obtained learning performance in Figure 10.3.

For the purpose of comparison, we allowed a second robot to learn in the
modified environment from the start. We refer to the first robot as the test

10.2. General discussion 231

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

α

T
ot

al
 d

is
c.

 r
ew

ar
d

Performance with varying world model

Figure 10.4: Performance of the robot following policy δ0 as α goes from 0 to 1. For
each α we also plot (in red) the performance of the optimal policy δα.

robot (plotted in blue) and the second robot as the control robot (plotted in
red).

Notice two important phenomena. First of all, the abrupt change in the
slope of the learning curve for the test robot clearly indicates that the sudden
change in the scenario severely affected the performance of the robot. This
is also visible in the plot indicating the probability of choosing the optimal
action, that abruptly decreased.

The second important aspect to observe is that, after some time, the slope
of the learning curve for the test robot again changes, indicating convergence to
the optimal policy in the new environment. This can be verified by observing
that the final slope of the learning curve for the test robot matches that of the
control robot.

Denote by P(I) the transition probability matrix for the environment in
Figure 10.2.a) and P(II) the transition probability matrix for the environment
in Figure 10.2.b). Given a nonnegative α ≤ 1 the matrix Pα given by

Pαa (x, y) = (1− α)P(I) + αP(II)

is clearly a transition probability matrix, a “mixture” of the two matrices P(I)

and P(II). Denote by δα the optimal policy for the MDP (X ,A,Pα, r, γ), where
X , A and r are as defined in Example 2.1.

To further analyze the robustness of the learnt policy with respect to
changes in the environment, we tested the performance of δ0 as we changed α
from 0 to 1. For each value of α, we tested δ0 for 10 time units and plot in
Figure 10.4 the average total discounted reward obtained over 2, 000 indepen-
dent Monte-Carlo trials. We also plot, for each α, the average total discounted
reward obtained using policy δα.

Notice that, for α approximately between 0 and 0.8 the performance of δ0

is not significantly worse than that of the optimal policy δα. Only when the
environment changes significantly (in this case, some of the paths are blocked)
does the performance significantly worsen, as expected. �

232 10. General Conclusions

This example illustrates that, for small changes in the model/sensor behavior,
the learnt policy should not suffer a too severe degradation in performance. How-
ever, in the presence of severe model/sensor inaccuracies, the use of belief-tracking
may lead to undesirable situations. For example, it may lead to beliefs that are in-
consistent with the actual state of the process and induce meaningless action choice.
In the presence of severe model inaccuracies, alternative solution methods must be
considered. The study of partially observable Markov decision processes with im-
precise parameters has been very recently introduced in [130] following on previous
work on bounded-parameter MDPs [94].

Convergence conditions in practice

The several convergence theorems provided along the text identified multiple con-
ditions for the corresponding conclusions to hold. These conditions can be grouped
into two main classes: the conditions on the algorithms (that depend only on a care-
ful implementation of the learning algorithm) and the conditions on the process. We
now provide a brief overview of the latter class of conditions in terms of robotic nav-
igation, in order to convey a clearer understanding of the theoretical requirements
of our results in practical terms.

ψ-irreducibility The concept of irreducibility of Markov chains is deeply related
with the ability of the chain to visit its state-space. Roughly speaking, the
irreducibility of a Markov chain is, in a sense, similar to the concept of control-
lability in dynamic systems. The Markov processes considered in the thesis cor-
respond to navigation problems and describe the movement of a robot/group
of robots in an environment described by a topological map. The state-space
of the process corresponds to the possible locations in this map, and irre-
ducibility corresponds to the ability of a robot/group of robots to reach every
part of the state-space. Therefore, this condition is trivially verified in robotic
navigation tasks, since non-visitable states can be eliminated from the map.

Aperiodicity The concept of aperiodicity in Markov chains is related with the
existence of periodic orbits in the trajectories of the Markov chain. Requiring
the Markov chain to be aperiodic is the same as requiring the trajectories of
the robot not to be forcefully periodic. In most scenarios, the need for infinite
exploration automatically renders the chain aperiodic.

Recurrence The concept of recurrence is related with the ability of a chain to
re-visit its state-space. This is also a reasonable condition to require, since it
simply ensures that the robot does not get stuck in a part of the state-space.
This can easily be prevented by resorting to straightforward analysis of the
discrete-event model of the robot [194, 196].

Geometric ergodicity In chains with finite state-space, geometric ergodicity is
an immediate consequence of irreducibility and aperiodicity. It corresponds
to one of the strongest concepts of stability in Markov chains. A chain is
geometrically ergodic if its “average” state-distribution converges exponentially

10.3. Future work 233

to a stationary measure. The verification of this condition for the problems
of interest is conducted in Theorem 4.7.4, where an additional condition for
geometric ergodicity of a POMDPs(besides irreducibility and aperiodicity) is
identified that relies on the existence of a distinguishable state.

Similarity function Finally, the use of a similarity function to ensure coordination
in infinite settings is, in fact, simple to justify. If a group of robots is able to
coordinate in a given configurationXt, it is only reasonable to assume that they
should be able to coordinate (in a similar fashion) in nearby configurations.
The use of a similarity function (which is user defined and can be chosen
“almost” freely) simply formalizes this concept of “nearby” configuration.

10.3 Future work

In concluding this thesis, we now discuss several open issues that can yield interesting
topics for future research.

First of all, as stated in Chapter 1, the thesis does not address the interface
between the decision-maker, working at a high level of abstraction, and the low
level interaction with the world (sensor data processing, actuator control, etc.).
This means that the most immediate direction for future work is to pursue the
development of such interface, aiming at validating the approach described herein
in real robots. Some of the works referred in Subsection 10.2.2 and in Chapter 2
provide useful departing points, but a significant amount of work must be developed
in the implementation of reliable low-level interface to allow the implementation of
decision-making at the level discussed in this thesis.

A second direction for future work, already mentioned in Chapter 8, we make
no use of eligibility traces in our algorithms. However, it is just expectable that the
methods described herein can easily be adapted to accommodate eligibility traces,
this eventually yielding better approximations (with tighter error bounds) [27, 321,
326].

On the other hand, although several negative counter-examples have been re-
ported in the literature, it is our belief that convergence of RL methods with non-
linear approximation architectures should be possible. This may be achieved by
restricting the non-linear approximations to lie in some “well-behaved” manifold
(e.g., convex, smooth...). We belief that it is likely that the theory of projected
dynamic systems [60] can be used to define a non-linear iterative method that relies
on some sort of projection into a convex manifold.

Yet in the subject of non-linear approximation, it would be interesting if, while
using essentially a linear approximation architecture, some parameters of the basis
functions could also be learnt. This would perhaps lie as an “intermediate step”
between linear and non-linear architectures.

With respect to the application of our approximate algorithms in partially ob-
servable scenarios, we implicitly assume the decision-maker to be able to maintain
accurate beliefs on the state of the underlying Markov chain, this being a central
point in the application of the algorithms. However, in large-dimensional spaces, this
may not always be possible, and the decision-makers may only be able to maintain

234 10. General Conclusions

approximate beliefs on the Markov chain. It is important to understand the impact
of approximate beliefs in the convergence of our methods. This may be especially
troublesome in multi-agent scenarios, if the use of approximated beliefs allows for
different decision-makers having non-consistent beliefs. In this case, we once again
face the problems occurring in problems with no centralized observations.

Also, as discussed in the end of Chapter 8, it would also be important to ex-
tend our framework and algorithms to situations where the agents have cognitive
autonomy. As suggested in the aforementioned chapter, the use of I-POMDPs (with
the individual beliefs over I-states) may be adequately combined with approximate
Q-learning, yielding a learning algorithm applicable to each individual agent and
that may converge to a subjective equilibrium [70, 98]. This encompasses multi-
agent problems where the different agents may have distinct and even conflicting
missions.

On a different perspective, the intractability of the several models proposed to
address multi-agent problems with partial observability has led several researchers
to consider several simplifying assumptions that may, potentially, decrease the com-
plexity of solution methods. For example, the use of explicit communication may be
used advantageously to decrease the overall complexity of the multi-agent decision
problem [212]. How to make advantageous use of communication is, therefore, an
interesting problem that may foster important advances in the theory of multi-agent
decision-making.

Finally, it would be interesting to further extend the applicability of this RL
approach to even more complex systems. A very challenging topic for future research
is the combination of optimization strategies arising both from classical control and
RL to hybrid or continuous-time problems.

Part III

Appendices

235

Appendix A

Some Mathematical Background

A.1 Martingale sequences . 237
A.2 Several useful inequalities . 239
A.3 The law of the iterated logarithm . 240
A.4 Some notes on measure spaces and norms 240

In this appendix, we present some mathematical tools that are used in the

thesis.

We present a brief review on martingale sequences and its convergence. We

then present two important inequalities that are used in different contexts: Hölder’s

inequality and Gronwall’s inequality. We proceed with a result from probability

theory describing the speed of convergence of particular sequences of random

variables, such as those featured in the laws of large numbers or in the central

limit theorem and conclude with some basic notions on measure theory.

A.1 Martingale sequences

A family of σ-fields {Fn} is said to be increasing if Fn ⊂ Fn+1. Given a σ-field F ,
a r.v. X is F-measurable if

E [X | F] = X.

Given an increasing family of σ-fields {Fn}, a sequence of r.v.s {Xn} is Fn-adapted
if Xn is Fn-measurable, for all n. A sequence of r.v.s {Xn} is said to be previsible if
Xn is Fn−1-measurable for all n.

Martingale Sequence

A martingale is a sequence of r.v.s {Mn} such that

238 A. Some Mathematical Background

• For some increasing family of σ-fields {Fn}, Mn is Fn-adapted;
• E [|Mn|] <∞ for all n; and

• E [Mn+1 | Fn] = Mn w.p.1.

The same definition holds if {Mn} is a sequence of random vectors, replacing the
absolute value |·| by some norm ‖·‖ in the previous definition.

We now present some results on the convergence of martingale sequences. Proofs
can be found in any standard book on probability theory or stochastic processes
[58, 105].

Theorem A.1.1. Let {Mn} be a martingale and suppose that there is a constant
K > 0 such that

E [|Mn|] < K, (A.1)

for all n. Then, there is a r.v. M such that, w.p.1,

lim
n→∞

Mn = M

and E [M] <∞.

Notice that the condition (A.1) basically states that the sequence {Mn} is uni-
formly bounded. Before introducing the next result, the following definition is
needed.

Martingale Increment

If Mn is a martingale, the sequence {Sn} given for each n by Sn = Mn −Mn−1

is called a martingale increment.

The next theorem relates the convergence of a martingale with the boundedness
of the corresponding martingale increment.

Theorem A.1.2. Let {Mn} be a martingale and {Sn} the corresponding martingale
increment. If there is 1 ≤ p ≤ 2 such that, w.p.1,

∞∑
n=1

E [|Sn|p | Fn−1] <∞, (A.2)

A.2. Several useful inequalities 239

then the martingale {Mn} converges w.p.1.

A.2 Several useful inequalities

In this section, we provide several inequalities that will prove useful throughout the
thesis.

Lemma A.2.1 (Hölder Inequality). Let X, Y be r.v.s. For any p : 1 < p <∞ and
1/p+ 1/q = 1,

|E [XY]| ≤ E [|XY |] ≤ E [|X|p] 1
p E [|Y |q] 1

q . (A.3)

By taking Y ≡ 1 in (A.3), we get a new, very useful, inequality

E [|X|] ≤ E [|X|p] 1
p .

We next present the Gronwall inequality, commonly used to bound the dif-
ference between the solutions of two differential equations ẏ(t) = f(t, y(t)) and
ż(t) = g(t, z(t)) in terms of the difference between the initial conditions and/or the
difference between f and g. The original inequality seems to have first appeared in
[106]; a proof can be found in [126].

Theorem A.2.2 (Gronwall Inequality). Let X be a Banach space and U ⊂ X an
open set in X . Let f, g : [a, b]×U → X be continuous functions and let y, z : [a, b]→
U satisfy the initial value problems

ẏ(t) = f(t, y(t)); y(a) = y0;

ż(t) = g(t, z(t)); z(a) = z0.

Also assume there is a constant C > 0 so that

‖g(t, x2)− g(t, x1)‖ ≤ C ‖x2 − x1‖

and a continuous function ϕ : [a, b]→ [0∞) so that

‖f(t, y(t))− g(t, y(t))‖ ≤ ϕ(t).

Then for t ∈ [a, b],

‖y(t)− z(t)‖ ≤ eC|t−a| ‖y0 − z0‖+ eC|t−a|
∫ t

a

e−C|s−a|ϕ(s)ds.

240 A. Some Mathematical Background

A.3 The law of the iterated logarithm

Let {Xn} be a sequence of independent, identically distributed random variables,
and let Sn =

∑n
i=1Xi. Assume that E [Xn] = µ < ∞ and E

[|X|2] = σ2, where
0 < σ2 <∞.

By the law of large numbers, we know that

Sn
n
→ µ (A.4)

w.p.1 and, by the central limit theorem,

Sn − nµ
σ
√
n
→ N(0, 1) (A.5)

in distribution. We denoted by N(0, 1) the normal (Gaussian) distribution.
However, none of the two referred convergence results describes the amplitude

of the fluctuations of each of the terms in the sequences Sn/n and Sn/σ
√
n around

the limits described in (A.4) and (A.5). The law of the iterated logarithm provides
a bound on these fluctuations, conveying an estimate on the “speed of convergence”
of these sequence to the corresponding limits.

Theorem A.3.1 (Law of the Iterated Logarithm). Let {Xn} be a sequence of
independent, identically distributed random variables verifying E [Xn] = µ and
E [X2] = σ2, where µ <∞ and 0 < σ2 <∞. Then,

lim
n→∞

sup
|Sn − nµ|

σ
√

2n log log n
= 1 (A.6)

w.p.1.

Notice that the law of iterated logarithm implies that given any constant K > 1,∣∣∣∣Snn − µ
∣∣∣∣ ≤ Kσ

√
2n−1/2 log log n

w.p.1, for sufficiently large n.

A.4 Some notes on measure spaces and norms

In this appendix, we provide some mathematical details on measure spaces and
norms that play an important role in the interpretation of some of the results in the
thesis.

Let X be a set and B(X) a σ-field on X. This means that B(X) is a family of
subsets of X with the following properties:

• X ∈ B(X);

A.4. Some notes on measure spaces and norms 241

• If U ∈ B(X) then X − U ∈ B(X);

• For any index set I, if Ui ⊂ X, i ∈ I, then ⋃i∈I Ui ∈ B(X).

and the sets in B(X) are measurable sets. If X is endowed with a topology, we define
the Borel σ-field on X as the σ-field generated by the open sets in X (i.e., the “small-
est” σ-field that includes all open sets). A measure space is a tuple (X,B(X) , µ),
where µ is a measure on B(X). Without going into too many details, a measure on
B(X) is a function µ : B(X) −→ R that assigns a “volume” to each set in B(X) and
verifies

µ

(⋃
i∈I

Ui

)
=
∑
i∈I

µ(Ui),

for any collection of sets Ui ∈ B(X) such that Ui ∩Uj = ∅ if i 6= j. It is a probability
measure if µ(U) ≥ 0 for all U ∈ B(X) and µ(X) = 1.

Let X be a set and B(X) a σ-field on X. Given two measures ν and µ on B(X),
ν is absolutely continuous w.r.t. µ if ν(U) = 0 for every measurable set U such that
µ(U) = 0 and we denote this as ν � µ. When ν � µ and µ� ν, the two measures
are said equivalent. When ν � µ, there is a µ-measurable function f : X −→ R

such that, for any U ∈ B(X),

ν(U) =

∫
U

f(x)µ(dx).

The function f is known as the Radon-Nikodym derivative of ν w.r.t. µ and is
usually denoted as

f =
dν

dµ
.

A function f : X −→ R is measurable if f−1(U) ∈ B(X) for any measurable
set U ⊂ R. A function f : X −→ R is a simple function if there is a collection of
measurable sets Ui, i = 1, . . . , n and a set of real numbers bi, i = 1, . . . , n such that
f(x) = bi if x ∈ Ui. In this case, we write∫

X

fdµ =

∫
X

f(x)µ(dx) =
n∑
i=1

biµ(Ui).

Simple functions are always measurable and for any non-negative measurable func-
tion there is a sequence of simple functions {fk} such that, for every x ∈ X,
f(x) = limk→∞ fk(x) and we can take∫

X

f(x)µ(dx) = lim
k→∞

∫
X

fk(x)µ(dx).

For a general measurable function, we can always write f(x) = f+(x)− f−(x), with
f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0) and∫

X

f(x)µ(dx) =

∫
X

f+(x)µ(dx)−
∫
X

f−(x)µ(dx).

242 A. Some Mathematical Background

Generally, when integrating over the whole space X, we represent the above expres-
sion succinctly as (µf) or, if µ is a probability measure, as E [f].

The total variation norm of a measure µ on B(X) is defined as

‖µ‖ = sup
|f |≤1

|µf | = sup
U∈B(X)

µ(U)− inf
U∈B(X)

where f is any real valued function defined on X.
Two functions f, g : X −→ R are equal µ-a.e. if∫

X

|f(x)− g(x)|µ(dx) = 0.

Notice that this defines an equivalence relation on all real functions defined on X.
The space of such equivalent classes is linear and can be endowed with an inner
product or a norm. We refer to such space as the space of measurable functions on
X. When this is the case, we usually abusively refer to the norm of a function f
while meaning the norm of the equivalence class of f .

Given a measure space (X,B(X) , µ), we define the following norms on the space
of measurable functions on X:

‖f‖1 =

∫
X

|f(x)|µ(dx);

‖f‖2 =

(∫
X

f 2(x)µ(dx)

) 1
2

;

and, more generally

‖f‖p =

(∫
X

fp(x)µ(dx)

) 1
p

.

We consider one further norm

‖f‖∞ = sup
x∈X
|f(x)| ,

where the sup above corresponds to the essential supremum, defined for the equiv-
alence class of function f as

sup
x∈X

f(x) = inf
g∼f

sup
x∈X

g(x),

where the sup in the right-hand side of the expression above now corresponds to the
standard supremum. When clear from the context, we use the sup operator without
specifying whether referring to the standard supremum or the essential supremum.

Finally, given a measure space (X,B(X) , µ), the space of all measurable func-
tions f such that ‖f‖p < ∞ is a Banach space and is denoted as Lp (X). In
particular,

• L1 (X) is known as the space of absolutely integrable functions ;

A.4. Some notes on measure spaces and norms 243

• L2 (X) is a Hilbert space with the inner product

〈f, g〉 =

∫
X

f(x)g(x)µ(dx)

and is known as the space of square-integrable functions ;

• The space of all measurable functions f such that ‖f‖∞ <∞ is a Banach space
denoted as L∞ (X) and known as the space of essentially bounded functions.

244

Appendix B

Markov Chains and Stochastic
Stability

B.1 Markov chains and transition probabilities 245

B.2 Irreducibility . 248

B.3 Minorization properties . 249

B.4 Periodicity . 251

B.5 Topology in Markov chains . 252

B.6 Invariant measures . 253

B.7 Recurrence and drift . 254

B.8 Ergodicity . 257

B.9 Limit theorems and the Poisson equation 260

B.10 Discrete state-spaces . 263

The purpose of this appendix is to provide a set of analytical tools regarding

the stability of Markov chains in general state-spaces, namely, geometric ergodicity.

We present fundamental concepts such as ψ-irreducibility, aperiodicity and

recurrence. We describe how these properties relate with the stable behavior of

the trajectories of the chain. We also provide conditions under which the law of

large numbers, the central limit theorem and the law of iterated logarithm hold

along the trajectories of the chain, and introduce the Poisson equation.

Throughout the appendix, we closely follow the terminology and notation of

[201] and we refer to this book for formal proofs of the statements presented

here.

B.1 Markov chains and transition probabilities

Before actually getting into Markov chains, we introduce some general concepts on
stochastic processes, to establish the notation.

246 B. Markov Chains and Stochastic Stability

A stochastic process {Xt} is a sequence of r.v.s, each Xt ∈ X and where t is a
parameter taking values in some index set T . Parameter t is usually referred as time
although it may bear no relation with any actual time.1 A stochastic process can
be classified as discrete-time or as continuous-time, depending on the set T being
discrete or continuous.

Given a probability measure µ defined on B(X), suppose that

P [X0 ∈ U] = µ(U).

Then, µ is called the initial measure for the process {Xt}. We use Pµ [·] to denote the
probability induced by the initial measure µ and Eµ [·] the corresponding expected
value. In particular, if µ = δx for some x ∈ X , we write Px [·] instead of Pµ [·] and
Ex [·] instead of Eµ [·].2

Given any initial measure µ, define the probability kernel P as

P(x, U) = Px [X1 ∈ U] ,

with x ∈ X and U ∈ B(X).

Time-homogeneous Markov Chain

A discrete-time stochastic process {Xt} is a time-homogeneous Markov chain if,
given any family of sets {U0, . . . , Ut} in B(X),

Pµ [X0 ∈ U0, . . . , Xt ∈ Ut] =

∫
U0

. . .

∫
Ut−1

P(dxt−1, Ut) . . .P(x0, dx1)dµ(x0),

(B.1)
for all t ∈ T .

Notice that the property expressed in (B.1) is equivalent to the more known
property

P [Xt+1 ∈ U | Ft] = P [Xt ∈ U | Xt−1 = x] = P(x, U),

in that any chain verifying any of the two necessarily verifies the other. We denoted
by Ft the σ-field generated by the history of the process up to time t. The kernel
P is called a transition probability kernel. A Markov chain is thus defined by its
state-space X and the corresponding transition probabilities, determined by P.

It can also be shown that, given an arbitrary set X and a probability kernel
P there is a Markov chain with state-space X and corresponding transition prob-
abilities defined by P. Then, it is possible to refer to a Markov chain as a pair
(X ,P) where X is a set and P is a properly defined probability kernel. We refer
interchangeably to a Markov chain either as a pair (X ,P) or a sequence {Xt}.

1This nomenclature goes back to the early works on stochastic processes in which such processes
were used to study time series of random events.

2We denoted by δx the point-mass function at x.

B.1. Markov chains and transition probabilities 247

Notice that, given an initial measure µ, it is possible to determine the probability
Pµ [Xt ∈ U] for any t ∈ T . From (B.1) it is immediate that

Pµ [Xt ∈ U] =

∫
X
. . .

∫
X

P(dxt−1, U) . . .P(x0, dx1)dµ(x0).

In order to simplify the notation, define the kernel Pk recursively as

P1(x, U) = P(x, U)

and
Pk(x, U) =

∫
P(y, U)Pk−1(x, dy).

The kernel Pk is known as the k-step transition probability kernel, since it defines
the a k-step transition probability:

Pk(x, U) = P [Xt+k ∈ U | Xt = x] .

The kernels introduced next play an important role in the theory of Markov
chains.

m-Skeleton Chain

Given a Markov chain (X ,P), them-skeleton chain of (X ,P) is the Markov chain
(X ,Pm).

Resolvent Chain

Given a Markov chain (X ,P), the resolvent chain for (X ,P) is the Markov chain
defined for 0 < ε < 1 as (X ,Kaε), with the kernel Kaε given by

Kaε(x, U) = (1− ε)
∞∑
i=0

εiPi(x, U),

for every x ∈ X and every A ∈ B(X).

Sampled Chain

248 B. Markov Chains and Stochastic Stability

Let a be a probability measure defined on B(N). Given a Markov chain (X ,P),
the a-sampled chain for (X ,P) is a Markov chain (X ,Ka), with the kernel Ka

defined as

Ka(x, U) =
∞∑
i=0

a(i)Pi(x, U),

for every x ∈ S and every U ∈ B(X). The probability measure a is referred to
as a sampling distribution.

Each of the chains (X ,Pm), (X ,Kaε) and (X ,Ka) can be interpreted as a Markov
chain obtained from (X ,P) by sampling it at random times such that the time-
difference between two consecutive samples, ts, verifies respectively

P [ts = m] = 1;

P [ts = i] = (1− ε)εi;
P [ts = i] = a(i).

B.2 Irreducibility

The concept of irreducibility of a Markov chain was first introduced in the context
of countable state-space Markov chains. In this setting, an irreducible Markov chain
visits every state in the state-space with non-zero probability. This is a desirable
property for a Markov chain, since it ensures that the state-space X is not split
into several regions that do not communicate. It will soon become apparent that
irreducibility is one of the most basic requirements for a Markov chain to exhibit
“stable” behavior.

When dealing with infinite state-space Markov chains, the concept of irreducibil-
ity becomes slightly more elaborate, giving rise to the alternate notions of irreducibil-
ity measure and ψ-irreducibility.

Given a Markov chain (X ,P) and a set U ∈ B(X), let τU denote the first time
that the Markov chain reaches the set U , i.e.,

τU = min
t∈T
{Xt ∈ U, t ≥ 1} .

The value τU is a r.v. representing the first time instant in which the chain enters
the set U . As such, it is usually referred to as the first return time to set U .

Irreducibility Measure

Let ϕ be some measure on B(X). A Markov chain (X ,P) is ϕ-irreducible if,

B.3. Minorization properties 249

given any set U ∈ B(X), whenever ϕ(U) > 0 we have, for all x ∈ X ,

Px [τU <∞] > 0.

In a ϕ-irreducible chain, every ϕ-large set is reached in finite time with non-zero
probability. However, the converse may not hold: there may be sets reached in finite
time with non-zero probability that are ϕ-small. This leads to

Proposition B.2.1. Let (X ,P) be a ϕ-irreducible chain, for some measure ϕ. Then,
there is a maximal irreducibility measure ψ such that

• (X ,P) is ψ-irreducible;

• Given any measure ϕ′, if (X ,P) is ϕ′-irreducible, then ψ � ϕ′;

• If ψ(U) = 0, then ψ
({x ∈ X | Px[τU <∞] > 0}) = 0;

Proposition B.2.1 motivates the following definition.

ψ-Irreducible Chain

A Markov chain (X ,P) is ψ-irreducible if it is ϕ-irreducible for some measure
ϕ and ψ is a maximal irreducible measure verifying the conditions in Proposi-
tion B.2.1.

A set U ∈ B(X) is full if its complementary set U c = X −U has zero ψ-measure,
i.e., if ψ(U c) = 0. A set U ∈ B(X) is absorbing if P(x, U) = 1, for all x ∈ U .

It can be shown that all irreducibility measures are equivalent [201]. Therefore,
given a ψ-irreducible Markov chain, we denote by B+(X) the family of all sets with
positive ψ-measure without specifically identifying the the maximal irreducibility
measure ψ.

B.3 Minorization properties

Markov chains have been around since 1906, when they were first formalized by
the Russian mathematician Andrei Markov (1856-1922) [180, 181]. Afterwards,
Markov chains were generalized to countable spaces by Andrei Kolmogorov (1903-
1987) [144]. Markov chains in countable state-spaces have been the central topic in
numerous publications and have been applied in many different fields of research,

250 B. Markov Chains and Stochastic Stability

from engineering to economic modeling. A good reference on countable state-space
Markov chains is the book by Kijima [141].

The concepts introduced in this section establish the conditions that allow the
state-space of a Markov chain to be interpreted as an countable agglomerate of
“small” sets, each behaving as a single state in terms of transition probabilities.

Small Set

Given a Markov chain (X ,P), a set C ∈ B(X) is a small set if there exists some
m > 0 and a non-trivial measure νm defined on B(X) such that

Pm(x, U) ≥ νm(U), (B.2)

for all x ∈ C and all U ∈ B(X). Whenever (B.2) holds, the set C is said to be
νm-small.

A small set may be roughly interpreted as a set of states that behave as a
whole, single “super-state” in the m-skeleton chain (X ,Pm) (in terms of transition
probabilities). A generalization of this concept for a generically sampled Markov
chain is given in the following definition.

Petite Sets

Given a Markov chain (X ,P) and a sampling distribution a, a set C ∈ B(X) is
a νa-petite set if there exists a non-trivial measure νa on B(X) such that

Ka(x, U) ≥ νa(U), (B.3)

for all x ∈ C and all U ∈ B(X).

It should be clear from the very definition of petite set that every small set is
petite. In the next section we see that the converse also holds for ψ-irreducible,
aperiodic chains.

Proposition B.3.1. Given a ψ-irreducible Markov chain (X ,P), the following state-
ments hold:

1. If a set U ∈ B(X) is νa-petite, there is a sampling distribution b and a maximal
irreducibility measure ψb such that U is also ψb-petite;

B.4. Periodicity 251

2. The union of two petite sets is petite;

3. There is a sampling distribution c and an increasing sequence {Ci} of ψc-
petite sets, all corresponding to the same sampling distribution c, such that⋃
iCi = X , where ψc is a maximal irreducibility measure equivalent to ψ.

The importance of the previous proposition lies in the fact that it establishes a
close relation between the classical concept of irreducibility for Markov chains with
countable state-space and the concept of ψ-irreducibility for Markov chains with a
general state-space.

Since each set Ci, being petite, behaves as a “whole” in terms of transition prob-
abilities for the chain (X ,Kc), we can interpret each Ci as a “generalized state” of
the sampled chain. Assertion 3 of Proposition B.3.1 now states that the state-space
X is simply the union of a countable collection of such generalized states. Therefore,
we expect the chain (X ,Kc) to be similar to a chain with countable state-space, in
terms of irreducibility behavior.

B.4 Periodicity

In the theory of Markov chains, periodicity is a property deeply related to the
behavior of the trajectories of a particular chain. Therefore, such concept plays a
central role in establishing the concept of stability for Markov chains.

Theorem B.4.1. Consider a ψ-irreducible Markov chain (X ,P) and let C ∈ B+(X)
be a νm-small set. Let

EC = {n ≥ 1 | C is νn-small, with νn = knνm} ,

where the kn are positive constants for each n ∈ EC. If d is the g.c.d. of EC, there
exists a family D of disjoint sets D1, . . . , Dd ∈ B(X) such that

• For every x ∈ Di, P(x,Di+1) = 1, i = 1, . . . , d (mod d);

• ψ(X −⋃d
i=1Di

)
= 0.

The family D is called a d-cycle and is maximal.

We notice that maximal in the context of the theorem means that if there is a
d′-cycle, then either d′ divides d or d′ = d. In the latter case, and upon an index
reordering, Di = Di′ almost everywhere.

As stated in [201], the d-cycle does not depend on the particular small set C
chosen, except, perhaps, on a ψ-null set of points.

252 B. Markov Chains and Stochastic Stability

Periodic and Aperiodic Markov Chains

Let (X ,P) be a ψ-irreducible Markov chain. The largest d for which there is a
d-cycle for the Markov chain is called the period of (X ,P). If d = 1, the chain is
said to be aperiodic and periodic otherwise.

A Markov chain with period d returns to a set Di ∈ D at time t only if t = kd+i,
for some k ∈ N.

The following theorem establishes an important relation between aperiodicity
and minorization properties in a Markov chain.

Theorem B.4.2. If (X ,P) is an aperiodic ψ-irreducible Markov chain, then every
petite set is small.

B.5 Topology in Markov chains

So far, Markov chains have been considered as having general state-spaces with no
particular properties. However, in many practical situations, the state-space is actu-
ally endowed with a suitable topological structure (for example, X is a subset of Rp,
for some p ∈ N). If this is the case, it is important to perceive the relation between
concepts such as petiteness and common topological concepts, such as compactness
or openness.

Whenever a Markov chain (X ,P) is defined in a topological space X , we implicitly
assume that X is a locally compact, separable and metrizable topological space, with
B(X) the corresponding Borel σ-field.

Feller Chain

Consider a Markov chain (X ,P) defined in a topological space X . If, given any
open set O ∈ B(X), the function

PO(x) = P(x,O)

is a lower semi-continuous function, then (X ,P) is called a Feller chain.

A function f is lower semi-continuous if

lim inf
y→x

f(y) ≥ f(x).

B.6. Invariant measures 253

Therefore, the Feller property basically ensures that, given a point x ∈ X and an
open set O, the transition probabilities from x to O do not “drastically” decrease
in points around x. The following theorem provides some tools that may help to
determine whether a given chain verifies the Feller property.

Theorem B.5.1. A Markov chain (X ,P) verifies the Feller property (i.e., is a Feller
chain) if and only if P maps the set C(X) of all bounded, continuous functions defined
on X into itself.

The following results, however simple they may appear, provide powerful tools
in assessing the stability of Markov chains.

Theorem B.5.2. Let (X ,P) be a ψ-irreducible Feller chain. If there is an open
petite set O ∈ B+(X), then all compact subsets of X are petite.

Theorem B.5.3. Let (X ,P) be a ψ-irreducible Feller chain. If ψ has non-empty
support, then all compact subsets of X are petite.

B.6 Invariant measures

Invariant measures play an important role in the analysis of convergence of Markov
chains. An invariant measure µ∗ is a measure on B(X) that remains unchanged
under P. Therefore, invariant measures in Markov chains play a similar role to that
of equilibrium points in dynamical systems.

Invariant Measure

Given a Markov chain (X ,P), a probability measure µ∗ is called invariant if∫
X
µ∗(dx)P(x, U) = µ∗(U). (B.4)

It is now convenient to introduce the following notation. Given a measurable

254 B. Markov Chains and Stochastic Stability

function f defined on X and a probability measure µ on B(X), we define

(Pf)(x) = Ex [f(X1)] =

∫
X
f(y)P(x, dy);

(µP)(U) = Pµ [X1 ∈ U] =

∫
X

P(x, U)dµ(x);

(µf) = Eµ [f(X0)] =

∫
X
f(x)dµ(x).

In terms of these operators, (B.4) can be rewritten as

µ∗(U) = (µ∗P)(U).

It arises as a consequence of the definition of invariant measure that, given an
initial probability measure µ on B(X), if the limit distribution

µ̄ = lim
n→∞

µPn

exists, then it must be an invariant distribution. This can be seen by performing
the following computation:

µ̄ = lim
n→∞

µPn = lim
n→∞

µPn+1 = lim
n→∞

µPnP = µ̄P. (B.5)

Positive Chain

If (X ,P) is a ψ-irreducible Markov chain admitting an invariant probability
measure µ∗, then (X ,P) is called a positive chain.

The existence of an invariant probability measure greatly depends on the long-
term behavior of the Markov chain and on the frequency with which the chain
returns to ψ-large sets. This recurrent behavior is described and explored in the
following section. For now, we conclude this section with the following result.

Theorem B.6.1. If µ∗ is the invariant probability measure for a positive ψ-
irreducible Markov chain, then µ∗ is equivalent to ψ.

B.7 Recurrence and drift

As referred in the previous section, the existence of an invariant probability measure
µ∗ is related to the recurrence of the trajectories described by a Markov chain. Define

B.7. Recurrence and drift 255

ηU as the number of visits to a set U ∈ B(X), i.e.,

ηU =
∞∑
t=0

IU(Xt),

where IU is the indicator function of the set U .

Recurrent and Transient Sets

Given a Markov chain (X ,P), a set U ∈ B(X) is recurrent if

Ex [ηU] =∞,

for any x ∈ X . Otherwise, U is transient. In particular, if a constant M > 0
exists such that, for all x ∈ X ,

Ex [ηU] < M,

the set U is uniformly transient.

The following theorem establishes an essential relation between ψ-irreducibility
and recurrence/transience.

Theorem B.7.1. If (X ,P) is a ψ-irreducible Markov chain, one of the two following
statements holds:

• Every set in B+(X) is recurrent, and (X ,P) is called a recurrent chain;

• There is a countable covering of X by uniformly transient sets, and (X ,P) is
called a transient chain. In this case, every petite set is uniformly transient.

Another important concept in the analysis of the long-term behavior of a Markov
chain is the concept of drift. The drift measures the “expected change” in the chain
during one time step. It is possible to define a Lyapunov-like criterion to establish
the stability/unstability of a Markov chain in terms of this drift.

Drift

Given a non-negative measurable function V : X −→ R, the drift operator ∆ is

256 B. Markov Chains and Stochastic Stability

defined as

(∆V)(x) = (PV)(x)− V (x) =

∫
X
V (y)P(x, dy)− V (x),

for all x ∈ X .

The referred introduction of the Lyapunov-like criterion to establish stability of a
Markov chain in terms of convergence to an invariant measure is addressed in detail
in Section B.8. Such criterion is sustained by the recurrence properties of Markov
chains. A first and very simplified version of such result is provided in the following
theorem.

Theorem B.7.2. Consider a ψ-irreducible Markov chain (X ,P). Then,

1. (X ,P) is transient if and only if there exists a bounded non-negative function
V and a set C ∈ B+(X) such that, for all x ∈ Cc,

(∆V)(x) ≥ 0

and there is a set B defined as

B =

{
x ∈ X | V (x) > sup

y∈C
V (y)

}
such that B ∈ B+(X).

2. (X ,P) is recurrent if there exists a petite set C ∈ B(X) and a non-negative
measurable function V such that, for all x ∈ Cc,

(∆V)(x) ≤ 0

and the family of sets {Bt} defined as

Bt = {x ∈ X | V (x) ≤ t}

is such that each Bt is petite.

The principle behind this theorem is simple to explain. Interpret the function
V as a Lyapunov-like function and the function (∆V) as its temporal derivative.
Statement 1 states that once the chain is off the set C, it is not likely to return to
C. Then C is transient and, since C ∈ B+(X), Theorem B.7.1 implies that (X ,P)
is transient. On the other hand, statement 2 establishes C as a petite recurrent set
which, by Theorem B.7.1, implies (X ,P) to be recurrent.

The notion recurrence can be further strengthened to that of Harris recurrence.

B.8. Ergodicity 257

Harris Recurrence

A set U ∈ B(X) is said to be Harris recurrent if, for any x ∈ X ,

Px [ηU =∞] = 1.

A ψ-irreducible Markov chain in which all sets U ∈ B+(X) are Harris recurrent
is a Harris (recurrent) chain.

B.8 Ergodicity

In this section, we address the problem of existence of the invariant probability
measure µ∗ and the convergence behavior of the chain with respect to this measure.

An invariant measure µ∗ remains unchanged under the operator P. As such, a
Markov chain with initial distribution µ0 = µ∗ is described, at all times, by the
invariant measure µ∗ and is therefore stationary.

In dynamic systems theory, the study of stability is related with the convergence
of the system towards stationary behavior and the same occurs in Markov chains.
In particular, the most powerful stability result presented here bears interesting
resemblances with the known Lyapunov stability theorem for dynamic systems.

Theorem B.8.1. Every recurrent Markov chain (X ,P) admits a unique (up to
constant multiples) invariant measure µ∗. In particular, if there is a petite set C ∈
B(X) such that

sup
x∈C

Ex [τC] <∞,

the invariant measure µ∗ is finite and the chain (X ,P) is positive.

The concept of stability for Markov chains is related with the convergence of
the trajectories of the chain towards stationarity. Therefore, we need the following
concepts.

Ergodic Markov Chain

A Markov chain (X ,P) is ergodic if∣∣P(x, U)t − µ∗(U)
∣∣→ 0

258 B. Markov Chains and Stochastic Stability

for any x ∈ X and any U ∈ B(X).

Geometrically Ergodic Markov Chain

A Markov chain (X ,P) is geometrically ergodic if, given any initial measure µ0

on B(X),
∞∑
t=0

rt
∥∥µ0P

t − µ∗∥∥ <∞
where r is some constant such that r > 1 and ‖·‖ is the total variation norm.

Uniformly Ergodic Markov Chain

A Markov chain (X ,P) is uniformly ergodic if

sup
x∈X

∥∥Pt(x, ·)− µ∗∥∥→ 0

as t→∞.

The two following theorems establish sufficient conditions to guarantee ergodicity
and geometric ergodicity.

Theorem B.8.2. Let (X ,P) be a positive aperiodic Harris chain with invariant
probability measure µ∗ on B(X). Then, the following statements hold:

1. There is a petite set C ∈ B(X) such that

sup
x∈C

Ex [τC] <∞;

2. There is a petite set C ∈ B(X) and a non-negative function V finite at some
point x0 ∈ X such that

(∆V)(x) ≤ −1 + bIC(x),

for some constant b > 0;

B.8. Ergodicity 259

3. For any x ∈ X ,
sup

U∈B(X)

|P(x, U)− µ∗(U)| → 0. (B.6)

Theorem B.8.3. Let (X ,P) be a ψ-irreducible and aperiodic Markov chain. If
the chain is positive recurrent with invariant probability measure µ∗ on B(X), the
following statements are equivalent:

1. There is a petite set C ∈ B(X) such that

sup
x∈C

Ex [kτC] <∞,

for some constant k > 1;

2. There is a petite set C ∈ B(X) and a non-negative function V ≥ 1 finite in
some point x0 ∈ X such that

(∆V)(x) ≤ −βV (x) + bIC(x),

where β and b are constants verifying b <∞ and β > 0;

3. For any x ∈ X ,
∞∑
t=0

rt
∥∥µ0P

t − µ∗∥∥ <∞, (B.7)

for some constant r > 1.

We conclude this section with the following convergence theorem, binding all
concepts of ergodicity introduced.

Theorem B.8.4. For any Markov chain (X ,P) the following are equivalent:

1. The chain is uniformly ergodic;

2. There are constants r > 1 and R <∞ such that, for all x ∈ X ,∥∥Pt(x, ·)− µ∗∥∥ ≤ Rr−t;

3. There is t ∈ T such that

sup
x∈X

∥∥Pt(x, ·)− µ∗∥∥ < 1;

260 B. Markov Chains and Stochastic Stability

4. The state-space X is νm-small for some m;

5. The chain is aperiodic and there is a petite set C ∈ B(X) with

sup
x∈X

Ex [τC] <∞,

in which case for every U ∈ B+(X),

sup
x∈X

Ex [τU] <∞;

6. The chain is aperiodic and there is a petite set C ∈ B(X) and a constant k > 1
with

sup
x∈X

Ex [kτC] <∞,

in which case for every U ∈ B+(X),

sup
x∈X

Ex [kτU] <∞;

7. The chain is aperiodic and there is a petite set C ∈ B(X) and a everywhere
bounded function V ≥ 1 such that

(∆V)(x) ≤ −βV (x) + bIC(x),

where β and b are constants verifying b <∞ and β > 0.

B.9 Limit theorems and the Poisson equation

Given a Markov chain (X ,P) and a measurable function f : X −→ R, the Poisson
equation for the chain w.r.t. f is

(I− P)ν(x) = f(x)− µf, (B.8)

where I is the identity operator. If the chain (X ,P) is geometrically ergodic, the
solution ν to (B.8) is well defined for all x ∈ X and verifies

ν(x) =
∞∑
t=0

(
Pt(f − µf))(x).

We can interpret the solution ν(x) of the Poisson equation as being the total “error”
obtained by replacing each term f(xt) by its mean value µf along a trajectory {xt}
of the chain starting at a point x0 = x.

The existence of a solution for the Poisson equation (B.8) is important in deriving
limit theorems for Markov chains such as the law of large numbers or the law of the

B.9. Limit theorems and the Poisson equation 261

iterated logarithm. Let f : X −→ R be a measurable function and (X ,P) a positive
Harris chain with invariant probability measure µ∗. Define the sequence {St(f)} as

St(f) =
t∑
i=0

f(Xi)

for each t ∈ T . We have the following result.

Theorem B.9.1. If (µ∗ |f |) < ∞ then the law of large numbers holds for the se-
quence {St}. In other words,

lim
t→∞

1

t
St(f) = (µ∗f)

w.p.1.

By further strengthening the conditions on the Markov chain, we obtain the
following results.

Theorem B.9.2. Let (X ,P) be a uniformly ergodic Markov chain and f a measur-
able function such that f 2(x) ≤ 1. Denote by F the centered function

F (x) = f(x)− (µ∗f).

Then, the constant

σ2 = Eµ∗
[
F 2(X0)

]
+ 2

∞∑
i=1

Eµ∗ [F (X0)F (Xi)]

is well defined, non-negative and finite. Furthermore,

lim
t→∞

1

t
S2
t (F) = σ2.

Theorem B.9.3. Under the conditions of Theorem B.9.2, if σ2 > 0 the central limit
theorem and the law of the iterated logarithm hold for the sequence {St(F)}, i.e.,

lim
t→∞

St(F)

σ
√
t

d
= N(0, 1)

in distribution and
lim
t→∞

sup
St(F)

σ
√

2t log log t
= 1.

262 B. Markov Chains and Stochastic Stability

* * *

Consider now a controlled Markov chain (X ,Pθ), where the transition kernel Pθ
is allowed to depend on a parameter θ. Let µθ be the invariant probability measure
for the chain (X ,Pθ). A simpler version of the following theorems can be found in
the notes on stochastic approximation by Delyon [67] and in a more general form in
the book by Benveniste et al. [21]. In the following theorems, ‖·‖ denotes a generic
norm.

Theorem B.9.4. Let (X ,Pθ) be a controlled Markov chain on a compact space X
with control parameter θ. If, for θ in some compact C, the Markov chain (X ,Pθ) is
geometrically ergodic and there is q ≥ 1 such that∫

X
‖Pqθ(x, dy)− Pqθ′(x, dy)‖ ≤ K1 ‖θ − θ′‖ (B.9)

for some K1 > 0, then there is a constant ρ : 0 < ρ < 1 independent of θ such that

‖Pnθ − µθ‖ < K2ρ
n,

for some K2 > 0 (which may depend on θ).

Theorem B.9.5. Let (X ,Pθ) be a controlled Markov chain on a compact space X
with control parameter θ. Suppose that the conditions of Theorem B.9.4 are verified.
Let H : C×X −→ RM be a measurable function such that, for all θ in some compact
set C,

‖H(θ, x)‖ ≤ K3(1 + ‖θ‖) (B.10a)
‖PnθH(θ, ·)− Pnθ′H(θ′, ·)‖ ≤ K3 ‖θ − θ′‖ , (B.10b)

for 0 ≤ n ≤ q and some positive constant K3. Then, for each θ ∈ C there is a
solution νθ for the Poisson equation

(I− Pθ)νθ(x) = H(θ, x)− (µθH)(θ),

and the solutions νθ verify
‖νθ(x)‖ ≤ K4

and
‖νθ(x)− νθ′(x)‖ ≤ K4 ‖θ − θ′‖ ,

for all x ∈ X , θ, θ′ ∈ C and some positive constant K4.

B.10. Discrete state-spaces 263

B.10 Discrete state-spaces

All the results presented so far in this appendix concern Markov chains with a general
(infinite) state-space. However, it is very common in applications that the actual
state-space is countable or even finite. The following results are simple restatements
of the central theorems presented so far when considering the particular case of
countable/finite Markov chains.

Consider a Markov chain (X ,P) on a countable state-space X . Since X is count-
able, we assume with no lack of generality that X =

{
1, 2, . . . , n, . . .

}
. In this

particular case, the kernel P can be represented as a matrix.
Given any two elements i, j ∈ X , j is accessible from i (denoted i → j) if there

is k > 0 such that
Pk(i, j) = P[Xt+k = j | Xt = i] > 0.

If i and j are mutually accessible, then we say that they communicate and denote
it as i ↔ j. Notice that the relation ↔ is an equivalence relation. Denote by E(i)
the equivalence class of element i.

Irreducible Markov Chain

A Markov chain (X ,P) defined in a countable set X is irreducible if for some
i ∈ X , E(i) = X .

Positive Markov Chain

A Markov chain (X ,P) defined in a countable state-space X is positive if there is
an invariant probability vector, i.e., if there is a probability vector µ∗ such that

µ∗>P = µ∗>

and µ∗(i) > 0 for all i ∈ X .

We conclude this appendix on Markov chains with the following propositions.

Proposition B.10.1. Every irreducible, aperiodic, positive Markov chain (X ,P)
defined in a countable set X is ergodic.

264 B. Markov Chains and Stochastic Stability

Proposition B.10.2. Every irreducible and aperiodic Markov chain (X ,P) defined
in a finite set X is ergodic.

Proposition B.10.3. Every ergodic Markov chain (X ,P) defined in a countable set
X is geometrically ergodic.

Appendix C

Game Theory and Markov Games

C.1 Strategic games . 265

C.1.1 Nash equilibria . 268

C.1.2 Best response . 269

C.1.3 Bayesian games . 270

C.2 Mixed equilibria . 271

C.3 Strictly competitive games . 273

C.4 Fully cooperative games . 274

C.5 Stochastic games . 276

C.6 Fictitious play . 278

C.7 Adaptive play . 279

C.7.1 Adaptive play for repeated games 279

C.7.2 Biased adaptive play . 282

In this appendix we briefly review several important concepts on game theory.

We present several fundamental concepts such as pure and mixed strategy,

best response and Nash equilibrium. We describe the principles behind fictitious

play and adaptive play and provide important theorems regarding the conver-

gence of these strategies. For the particular case of zero-sum games we provide

a brief description of the minimax principle and a result on the existence of a

max-minimization strategy.

Throughout the appendix, we closely follow the terminology and notation of

[226, 227] and we refer to these books for formal proofs of the statements presented

herein.

C.1 Strategic games

Game theory provides a mathematical framework to model situations in which sev-
eral decision-makers interact. These interactions can take place at different levels,

266 C. Game Theory and Markov Games

going from “games” in the common everyday sense to more complex interactions,
such as those taking place in economical or biological systems.

Consider a set of N players, which we abusively denote by N . We write Ak to
represent the set of all actions available to player k. The global set of possible actions
is denoted by A = ×Nk=1Ak, where ×Nk=1Ak represents the cartesian product of the
family of sets

{Ak, k = 1, . . . , N
}
. An element a ∈ A is a N -tuple a = (a1, . . . , aN)

and is called a joint action or action profile. Each element ak ∈ Ak is an individual
action. The tuple

a−k = (a1, . . . , ak−1, ak+1, . . . , aN)

is a reduced joint action, and we write

a = (a−k, ak)

to indicate that the individual action of player k in the joint action a is ak.
We need the following definition.

Preference relation

A binary relation % on a set A is called a preference relation if it is complete,
reflexive and transitive.1

A strategic game is a possible model of interaction between decision-makers.
This model consists of a set of players, a set of possible actions for each player and
a set of preferences over the set of possible actions. Formally,

Strategic game

A strategic game is a tuple
(
N, (Ak), (%k)

)
, where

• N is the set of players;

• For each player k ∈ N , Ak represents the set of all possible actions available
to player k;

• For each player k ∈ N , %k is a preference relation on the setA = ×Nk=1Ak—
the preference relation of player k.

The preference relation %k of player k can often be represented using a reward
function rk : A −→ R. The reward function is also known as payoff function or

1A binary relation ∼ on a set X is complete if, given any two elements a, b ∈ X, either a ∼ b or
b ∼ a; it is reflexive if, given any a ∈ X, a ∼ a; it is transitive if, given any a, b, c ∈ X, a ∼ b and
b ∼ c implies that a ∼ c.

C.1. Strategic games 267

Table C.1: The game of matching pennies. The numbers represent the win/loss in
Euros.
Heads Tails

Heads +1, −1 −1, +1

Tails −1, +1 +1, −1

utility function, and is built so as to verify, for any a, b ∈ A, rk(a) ≥ rk(b) whenever
a %k b. Therefore, whenever the preferences for each player are established through
the rewards rk, we represent a strategic game as a tuple

(
N, (Ak), (rk)).2

Example C.1 (Matching Pennies). Consider the game of matching pennies,
in which two players simultaneously choose whether to show the head or the
tail of a coin. If the sides of the two coins match, player 2 pays player 1 the
amount of 1 e. Otherwise player 1 pays player 2 the amount of 1 e. This
game is summarized in table C.1. The choice of player 1 being Heads or Tails
corresponds to the first and second rows in Table C.1. Similarly, the choice of
player 2 being Heads or Tails corresponds to the first and second columns in
Table C.1. The numbers in the table correspond to the rewards received by
players 1 and 2, respectively.

In this game, the interest of the players are exact opposites: the win of one
implies the loss of the other. Games where the interests of the different players
are exact opposites are known as being strictly competitive or zero-sum games
on account of the fact that the sum of the rewards of the players is always
zero. These games are further analyzed in Section C.3. �

Example C.2 (Prisoner’s Dilemma). Suppose that two suspects of a major
crime are held under custody for interrogation. The interrogators keep the two
suspects in separate cells. There is enough evidence on each of the suspects
to keep them on custody for minor accusations, but no evidence that relates
either of the suspects with the major crime, unless one (or both) of the suspects
acts as an informer. If either of the suspects acts as an informer, it will
provide evidence to convict the other of the major crime and will be released
as a witness. However, if both suspects decide to confess, they will both be
convicted of the major crime. This game is summarized in table C.2.

2Defining a preference relation in terms of a pay-off function can be somewhat misleading.
Consider a situation where A = {a, b, c}. Suppose that the preferences of player k are given by the
reward function rk, where rk(a) = 0, rk(b) = 1 and rk(c) = 100. This payoff function should be
interpreted as simply stating that c %k b %k a. A second payoff function rk1 such that rk1 (a) = 0,
rk1 (b) = 100 and rk1 (c) = 101 represents just as well the preferences of player k, and so does any
payoff function rk verifying rk(c) > rk(b) > rk(a).

268 C. Game Theory and Markov Games

Table C.2: The prisoner’s dilemma. The numbers represent the number of years in
liberty.

Quiet Inform

Quiet −1, −1 −4, 0

Inform 0, −4 −3, −3

Unlike in the game of matching pennies, in this game the interests of the
players are not exact opposites.

Notice that both players have to win from cooperating, since they both
prefer the action profile (Quiet, Quiet) to the action profile (Inform, Inform).
On the other hand, since no player can be sure of what the other player’s
action choice, it will do best by choosing the individual action Inform.

Take, for example, player 1. If player 2 chooses to remain quiet, then player
1 does better by informing. However, if player 2 chooses to inform, player 1
will also do better by informing. The same reasoning can be replicated for
player 2. Therefore, the outcome of the game will be the (unexpected) action
profile (Inform, Inform). �

The payoffs in games such as the prisoner’s dilemma or matching pennies can
be represented by matrices, as evident from Tables C.1 and C.2. This is usually the
case in strategic games defined by reward functions, and such games are also known
as matrix games.

We now address the process of decision-making in strategic games.

C.1.1 Nash equilibria

In strategic games (and other classes of games) there is an implicit assumption
of rationality on the players. This means that each player i chooses from all its
individual actions available the best action according to its preference relation %i.

When choosing its action, each player is expected to compare the different actions
and opt for the “best” action as provided by its preference relation. However, the
best action for each player in a game often depends on the other player’s choice of
actions. This leads to the following definition.

Nash Equilibrium

A Nash equilibrium of a strategic game
(
N, (Ak), (%k)

)
is an action profile a∗ ∈ A

such that, for every player k ∈ N ,

a∗ %k
(
(a∗)−k, ak

)
,

for all ak ∈ Ak.

C.1. Strategic games 269

Table C.3: Equivalent reward function for the prisoner’s dilemma.
Quiet Inform

Quiet 2, 2 0, 3

Inform 3, 0 1, 1

A Nash equilibrium can be interpreted as an action profile capturing a steady-
state play in the strategic game

(
N, (Ak), (%k)

)
. In fact, if a∗ is a Nash equilibrium,

no player benefits from individually deviating its play from a∗.

Example C.2. (cont.) Consider once again the game of the prisoner’s
dilemma. The payoff function summarized in Table C.2 is equivalent to Ta-
ble C.3 (see footnote 2 in page 267).

As already seen, since there is no communication between the players, the
outcome of the game will be (Inform, Inform). In fact, assuming both players
to be rational, given any of the other player’s choice, each player can always do
better by choosing Inform. The action profile (Inform, Inform) is, therefore,
a Nash equilibrium for the prisoner’s dilemma. �

Not every strategic game has a Nash equilibrium. For example, the matching
pennies game does not have a Nash equilibrium. The problem of existence of equi-
libria is addressed next.

C.1.2 Best response

In finding the Nash equilibria for a strategic game it is often useful to consider each
player’s best response functions. The best response function for player k ∈ N is a
set-valued function Bk : A−k −→ 2A

k such that, for every ak ∈ Bk(a−k),

rk
(
a−k, ak)

) ≥ rk(a−k, bk),

for any bk ∈ Ak. In other words, the individual actions in Bk(a−k) are the best
responses for player k when the other players play the reduced action a−k. A Nash
equilibrium is an action profile a∗ such that

(a∗)k ∈ Bk
(
(a∗)−k), for all k ∈ N.

Define the set-valued function B : A −→ 2A by

B(a) = ×Nk=1B
k(a−k).

Clearly, a Nash equilibrium is a point a∗ ∈ A such that a∗ ∈ B(a∗). Using Kakutani’s
fixed point theorem, it is possible to show the following

270 C. Game Theory and Markov Games

Proposition C.1.1. A strategic game
(
N, (Ak), (%k)

)
has a Nash equilibrium if,

for all k ∈ N , the set Ak is a non-empty, compact and convex subset of Rp and the
preference relation %k is

• Continuous;

• Quasi-concave on Ak.2

The conditions in Proposition C.1.1 are sufficient but not necessary. For example,
any game in whichAk has finitely many elements is non-convex and therefore violates
the conditions of the theorem. However, there are strategic games (such as the
prisoner’s dilemma) that have finitely many actions and for which Nash equilibria
do exist.

C.1.3 Bayesian games

We now describe a class of games where the players lack some information on the
other players. This can occur in many different situations: the players may be
unaware of the other players’ preference relations or of any other aspect relevant to
the decision making process. As such, Bayesian games are also known as strategic
games with imperfect information.

In a Bayesian game, the state of the game is the complete set of relevant features
of the game. We denote such state by X and admit X to take values in a finite set
X of possible states. Obviously, the state of a Bayesian game is determined upon
the start of the game and each player k ∈ N holds a prior belief πk. The vector πk
is a probability distribution over X and each πk(x) translates the belief of player k
on the state of the game taking the particular value x ∈ X .

Before choosing its action, each player k ∈ N receives a signal τ k(x) conveying
the player k some information on the actual state of the game. Each signal function
τ k depends deterministically on the state X of the game and takes values in some
set T k of possible signals. The elements tk of T k are known as the possible types of
player k. When a player k receives a particular signal tk ∈ T k, it knows the state of
the game to lie in the set (τ k)−1(tk) and adequately updates its belief on the state
of the game using its prior beliefs πk. A player k ∈ N is of type tk if it receives the
signal tk.

All this leads to the following definition.

Bayesian game

A Bayesian game is a tuple
(
N,X , (Ak), (τ k), (rk)), where

2A function f : X −→ R is quasi-concave if, for every a ∈ R, the set Lf (a) = {x ∈ X | f(x) ≥ a}
is convex. X is some subset of an Euclidean space.

C.2. Mixed equilibria 271

• N is the set of players;

• X is the set of game states;

• For each player k ∈ N , Ak represents the set of all possible actions available
to player k;

• For each player k ∈ N , τ k represents the corresponding signal function;

• For each player k ∈ N , rk is a payoff function over the setA×X , translating
the preference relation of player k.

It is possible to associate with each Bayesian game an equivalent strategic game
with perfect information as follows. The new set of players N̂ is defined as the set
of all pairs (k, tk), where tk ∈ T k. The set of possible actions for each player (k, tk)
is Ak. Finally, denote by a(k, tk) the action of player (k, tk). When the state of the
game is x, player k receives the signal τ k(x) and its type is, thus, τ k(x). We denote
by ak(x) the action of player (k, τ k(x)). The expected payoff of player k when its
type is tk and it chooses action ak is thus

r̂k(a−k, ak) =
∑
x∈X

P
[
x | tk] rk((a−k(x), ak), x).

With this new payoff function, we obtain a strategic game (N̂ , (Ak), (r̂k)), where
N̂ =

{
(k, tk) | k ∈ N, tk ∈ T k}.

Making use of the strategic game associated with a Bayesian game, we have the
following definition.

Bayesian game Nash Equilibrium

A Nash equilibrium for a Bayesian game
(
N,X , (Ak), (τ k), (rk)) is a Nash equi-

librium for the associated strategic game.

C.2 Mixed equilibria

So far, we have considered strategic games as triples
(
N, (Ak), (%k)

)
, where the pref-

erence relation %k of each player k ∈ N is defined over the set A = ×Nk=1Ak. How-
ever, it is often the case that the players choose their actions in a non-deterministic
way, and it is necessary to include in the model some mechanism traducing the
player’s preferences over possible lotteries over the actions in A. In the remain-
der of this appendix, we consider only strategic games in the form

(
N, (Ak), (rk)),

i.e., strategic games in which the preferences are given by a payoff function.

272 C. Game Theory and Markov Games

Strategy

A strategy σk for player k in a strategic game
(
N, (Ak), (rk)) is a probability

distribution over the set Ak.

A strategy σk assigns a probability σk(ak) to each action ak ∈ Ak. We say that
player k follows strategy σk when playing the game

(
N, (Ak), (rk)) if it chooses each

action ak ∈ Ak with probability σk(ak). If a strategy σk assigns probability 1 to
some action ak ∈ Ak, then σk is a pure strategy. Otherwise, it is called a mixed
strategy.

The tuple σ = (σ1, . . . , σN) is a joint strategy or strategy profile. A reduced
strategy profile or reduced joint strategy is a tuple

σ−k = (σ1, . . . , σk−1, σk+1, . . . , σN),

and write write
σ = (σ−k, σk)

to indicate that the individual strategy of player k in the joint strategy σ is σk. The
support of a strategy σk is the set of all actions ak ∈ Ak such that σk(ak) > 0.

Consider a strategic game
(
N, (Ak), (rk)) and suppose that the agents are allowed

to choose their actions randomly. Denote by Rk the random payoff received by player
k in a play of the game.

Mixed Strategy Nash Equilibrium

A mixed strategy Nash equilibrium of a strategic game
(
N, (Ak), (rk)) is a strat-

egy profile σ∗ such that, for every player k ∈ N ,

Eσ∗
[
Rk
] ≥ E((σ∗)−k, σk)

[
Rk
]

(C.1)

for all strategies σk.

The next theorem was established by John F. Nash in 1949 [216].

Theorem C.2.1. Every strategic game
(
N, (Ak), (rk)) with finite A has a mixed

strategy Nash equilibrium.

A strategic game verifying the conditions of the previous theorem is known as
a finite strategic game. The next result further characterizes mixed strategy Nash
equilibria.

C.3. Strictly competitive games 273

Theorem C.2.2. Given a finite strategic game
(
N, (Ak), (rk)), a strategy σ∗ is a

mixed strategy Nash equilibrium if and only if, for every k ∈ N ,

• Given the reduced strategy (σ∗)−k, the expected payoff of every action ak in the
support of (σ∗)k is the same;

• Given the reduced strategy (σ∗)−k, the expected payoff of every action ak not
in the support of (σ∗)k is, at most, the expected payoff of any action in the
support of (σ∗)k.

C.3 Strictly competitive games

As illustrated in the example of matching pennies, there are games in which two
players have opposing goals. Such games are known as strictly competitive or zero-
sum, since the payoffs of the players in such games usually add up to 0. This leads
to the following general definition.

Strictly Competitive Game

A strategic game
(
N, (Ak), (rk)) is strictly competitive if N = 2 and

r1(a1, a2) ≥ r1(b1, b2) ⇒ r2(a1, a2) ≤ r2(b1, b2).

A player k is said to maxminimize if it chooses its actions assuming that the
other player will always choose its own action so as to hurt player k as much as
possible. This leads to the following definition.

Maxminimizer

Let
({1, 2} , (Ak), (rk)) be a strictly competitive strategic game. An individual

strategy (σ1)∗ is a maxminimizer for player 1 if

min
σ2

E((σ1)∗, σ2)

[
R1
] ≥ min

σ2
E(σ1, σ2)

[
R1
]

for any individual strategy σ1 of player 1. Similarly, an individual strategy (σ2)∗

is a maxminimizer for player 2 if

min
σ1

E(σ1, (σ2)∗)

[
R2
] ≥ min

σ1
E(σ1,σ2)

[
R2
]

274 C. Game Theory and Markov Games

for any individual strategy σ2 of player 2.

It is now possible to introduce the following result.

Theorem C.3.1. Let
({1, 2} , (Ak), (rk)) be a strictly competitive strategic game.

Then,

• If ((σ1)∗, (σ1)∗) is a mixed strategy Nash equilibrium, (σ1)∗ is a maxminimizer
for player 1, (σ2)∗ is a maxminimizer for player 2, and

max
σ1

min
σ2

E(σ1, σ2)

[
R1
]

= min
σ2

max
σ1

E(σ1, σ2)

[
R1
]

= E((σ1)∗, (σ2)∗)

[
R1
]

;

• If
max
σ1

min
σ2

E(σ1, σ2)

[
R1
]

= min
σ2

max
σ1

E(σ1, σ2)

[
R1
]
,

(σ1)∗ is a maxminimizer for player 1 and (σ2)∗ is a maxminimizer for player
2, then ((σ1)∗, (σ2)∗) is a mixed strategy Nash equilibrium.

This result yields the following corollary.

Corollary C.3.2. Let
({1, 2} , (Ak), (rk)) be a strictly competitive strategic game.

If (σ1, σ2) and (σ̄1, σ̄2) are two mixed strategy Nash equilibria, then so are (σ̄1, σ2)
and (σ1, σ̄2). Furthermore, all the previous equilibria yield the same expected payoff
for the two players.

We conclude this section with the observation that, in a strictly competitive
game, if player k plays a Nash equilibrium then its expected payoff is at least the
equilibrium payoff.

C.4 Fully cooperative games

In the previous section we addressed strictly competitive games, in which two players
with opposing interests interact in a common scenario. The converse to this situation
would be if the two players had the exact same interests. Such games are known as
fully cooperative, and we address them in this section.

We start with a formal definition.

C.4. Fully cooperative games 275

Fully Cooperative Game

A strategic game
(
N, (Ak), (rk)) is fully cooperative if

rk(a) ≥ rk(b) ⇒ rl(a) ≥ rl(b) (C.2)

for all k, l ∈ N and all a, b ∈ A.

Fully cooperative games are also known as team games. Notice that (C.2) implies
that all players share the same preference relation %k on A and, therefore, we can
assume with no loss of generality that

r1 = r2 = . . . = rN = r.

Therefore, a fully cooperative game can be represented by a tuple
(
N, (Ak), r) with

a unique payoff function r for all players.
In a general strategic game

(
N, (Ak), (rk)), an action profile a∗ ∈ A is a coordi-

nated or Pareto-optimal (Nash) equilibrium if it maximizes the payoff received for
every player. This leads to the following definition.

Coordinated Equilibrium

Let
(
N, (Ak), (rk)) be a strategic game. A strategy profile σ∗ is a coordinated

equilibrium for the game if

Eσ∗
[
Rk
]

= max
a∈A

rk(a),

for all k ∈ N .

Clearly, not all strategic games have coordinated equilibria. For those that do
have strategic equilibria, it is always possible to find at least one pure strategy
equilibrium. This is the case of fully cooperative games, as stated in the following
result.

Theorem C.4.1. Every fully cooperative game
(
N, (Ak), r) has at least one coordi-

nated (Nash) equilibrium σ∗.

This result yields the following corollary.

276 C. Game Theory and Markov Games

Corollary C.4.2. Let
(
N, (Ak), r) be a fully cooperative strategic game. Then, all

coordinated equilibria for the game yield the same expected payoff for all the players.

C.5 Stochastic games

Stochastic games can be seen as multi-state generalizations of strategic games or,
on the other hand, as a multi-agent generalizations of Markov decision processes.
They were first introduced by Shapley [273] in 1953.

Consider a finite MDP (X,A,P, r, γ). At each time instant, the state of the
process is a r.v. Xt taking values in X . The transition probabilities depend on the
control parameter at time t, represented by At, and are given by the transition
probability kernel P according to

P [Xt+1 = j | Xt = i, At = a] = Pa(i, j).

In a standard MDP, the control parameter At is chosen by a single decision-maker
so as to control the time-evolution of the chain {Xt}. Each transition (i, a, j) grants
the decision maker with a reward r(i, a, j).

Suppose now that A is the cartesian product of N smaller sets Ak, i.e., A =
×Nk=1Ak. The control parameter at each time t is now a N -tuple At = (A1

t , . . . , A
N
t),

with each Akt ∈ Ak. Suppose also that r is a function defined in X × A × X but
taking values in RN . It is therefore possible to write

r(i, a, j) =
(
r1(i, a, j), . . . , rN(i, a, j)

)
,

each rk defined on X ×A×X and taking values in R.
A stochastic game is a generalized MDP (X,A,P, r, γ) in which the set A and

the reward function r are as described above. There are N independent decision-
makers (the players), each choosing the value of one individual control parameter
Akt . Each transition (i, a, j) grants player k with a reward rk(i, a, j). This leads to
the following definition.

Stochastic Game

A stochastic game or Markov game is a tuple
(
N,X , (Ak),P, (rk), γ), where

• N is the set of players in the game;

• X is the set of game-states;

• A = ×Nk=1Ak is the cartesian product of the individual action sets Ak;

C.5. Stochastic games 277

• P represents the transition probability kernels. In the simplest case where
X is finite, each Pa is a matrix with xyth entry given by

Pa(i, j) = P [Xt+1 = j | Xt = i, At = a] ;

• r = (r1, . . . , rN) is the reward function, assigning a reward rk(x, a, y) to
player k each time a transition from x to y occurs “under” the joint action
a.

In a stochastic game, each player seeks to maximize its total expected payoff,
defined as in Markov decision processes by

V k({At} , i) = E

[
∞∑
t=0

γtRk(Xt, At) | X0 = i

]

with i ∈ X and Rk(i, a) the random reward received by player k for taking action a
in state i.

An individual strategy for player k can now be seen as a sequence
{
σkt
}
. Each

σkt is a mapping σkt : X ×A −→ [0, 1] and the control sequence
{
Akt
}
generated by{

σkt
}
verifies

P
[
Akt = ak | Xt = i

]
= σkt (i, a), (C.3)

for all t. A strategy profile {σt} = ×Nk=1

{
σkt
}
generates a control sequence {At},

where each element At is a N -tuple (A1
t , . . . , A

N
t), each Akt verifying (C.3) for all

t ∈ T and all k ∈ N . To simplify the notation, we denote a strategy profile
{σt} simply by σt. We write (V σt)k(i) instead of V k({At} , i) whenever the control
sequence {At} is generated by the strategy profile σt and refer to V σt as being the
value function associated with strategy σt. A strategy σt is stationary if

σ1 = . . . = σt = . . . ,

in which case we represent it simply by σ = σ1.

Stochastic Game Nash Equilibrium

A Nash equilibrium for a stochastic game
(
N,X , (Ak),P, (rk), γ) is a strategy

profile σ∗t such that, for every player k ∈ N ,

(V σ∗t)k(i) ≥ (V ((σ∗t)
−k, σkt))k(i),

for all strategies σkt and all states i ∈ X .

The following result was established by Fink [85].

278 C. Game Theory and Markov Games

Theorem C.5.1. Every finite stochastic game
(
N,X , (Ak),P, (rk), γ) has a station-

ary Nash equilibrium.

We conclude this section by defining a Q-function in the context of stochastic
games. Given a stochastic game

(
N,X , (Ak),P, (rk), γ) the Q-function associated

with a strategy σt is defined for player k as

(Qσt)k(i, a) =
∑
j∈X

Pa(i, j)
[
rk(i, a, j) + γ(V σt)k(j)

]
,

for all x ∈ X and all a ∈ A.

C.6 Fictitious play

Fictitious play is an iterative procedure originally proposed by Brown [49] to de-
termine the solution for a strictly competitive game. This procedure was shown
to converge in this class of games by Robinson [254] and later extended to other
particular classes of games by several authors (see, for example, [22, 125, 147, 202]).

In its original formulation, two players repeatedly engaged in a strictly com-
petitive game

({1, 2} , (Ak), (rk)). Each player maintains an estimate of the other
player’s strategy as follows: let nt(a) denote the number of times that the individ-
ual action a was played up to (and including) the tth play. At play t, each player k
estimates the other player’s strategy to be

σ̂−kt (a) =
nt(a)

t
, (C.4)

for each a ∈ A−k. Player k then estimates the expected payoff of each of its indi-
vidual actions according to

EP (ak) =
∑

a−k∈A−k
rk(a−k, ak)σ̂−kt (a−k)

and randomly chooses its action from the set of best responses,

BRt =

{
ak ∈ Ak | ak = arg max

bk∈Ak
EP (bk)

}
.

Robinson [254] showed that this methodology yields two sequences {σ̂1
t } and {σ̂2

t }
converging respectively to σ1 and σ2 such that σ = (σ1, σ2) is a Nash equilibrium
for the game

({1, 2} , (Ak), (rk)). The sequences {σ̂1
t } and {σ̂2

t } define a fictitious
play processes.

In a general strategic game
(
N, (Ak), (rk)), the players repeatedly engage in the

game and each player k ∈ N maintains at each play an estimate σ̂−kt of the reduced
strategy σ−k used by the remaining players. This estimate is determined similarly to

C.7. Adaptive play 279

the one in (C.4) and is used to determine the strategy to follow: the agent uses the
current estimate to determine the expected payoff of each of its individual actions
and randomly chooses its action from the corresponding best response set.

It is not possible to ensure that fictitious play converges in all games. However,
for particular classes of games (see the references at the beginning of this section), it
is possible to establish the convergence of fictitious play, and this methodology can
be used by a set of agents to learn and converge in behavior to a Nash equilibrium.

Fictitious Play Property

We say that a game has the fictitious play property if every fictitious play process
converges in beliefs to an equilibrium.

The following two results are particularly useful for the work in the thesis [59,
323].

Theorem C.6.1. Every strictly competitive game has the fictitious play property.

Theorem C.6.2. Every fully cooperative game has the fictitious play property.

C.7 Adaptive play

Adaptive play was first proposed by Young [345] as an alternative method to fic-
titious play. The basic underlying idea is similar to fictitious play, but the actual
method works differently from fictitious play.

Young [345] was able to establish that for games that are weakly acyclic, adaptive
play converges w.p.1 to a pure strategy Nash equilibrium. Since the two methods
described in this section (adaptive play and biased adaptive play) are central in the
algorithms presented in Chapters 7 and 8, we provide a detailed description of both
methods and their convergence properties.

C.7.1 Adaptive play for repeated games

Before describing the process of adaptive play, we need the concept of K-sample.
LetK andm be two integers such that 1 ≤ K ≤ m and let h be a vector of length

m. We refer to any set of K samples randomly drawn from h without replacement
as a K-sample and denote it generically by K(h).

280 C. Game Theory and Markov Games

Let Γ =
(
N, (Ak), (rk)) be a strategic game. Let t be some time index taking

values in an index set T and suppose that, for every t ∈ T , the players repeatedly
engage in the game Γ. Each player k ∈ N chooses an action akt ∈ Ai as described
below, and the action profile at = (a1

t , . . . , a
N
t) is referred to as the play at time t.

The history of plays up to time t is a set Ht = {a1, . . . , at}.
At each time instant t ∈ T , each player k ∈ N chooses its actions akt as follows.

Let K and m be two integers such that 1 ≤ K ≤ m. For t ≤ m, each player chooses
its actions randomly; for t ≥ m + 1, each player k inspects K plays drawn without
replacement from the most recentm plays. We denote byHt themmost recent plays
at time t. Let nK(a−k) be the number of times that the reduced action a−k appears
in the K-sample K(Ht). Player k then uses the K-sample K(Ht) to choose its best
response strategy by calculating its expected payoff w.r.t. the estimated strategy
played by its opponents: for each individual action ak ∈ Ak, player k determines
the corresponding expected payoff EP (ak) as

EP (ak) =
∑

a−k∈A−k
rk(a−k, ak)

nK(a−k)

K

It then randomly chooses its action from the set of best responses,

BRt =

{
ak ∈ Ak | ak = arg max

bk∈Ak
EP (bk)

}
.

Notice that this procedure is similar to fictitious play in that it chooses the best
response action w.r.t. the estimated reduced strategy σ̂−k. The only difference lies
in the fact that adaptive play uses incomplete history sampling, while fictitious play
uses the complete history to estimate σ−k.

Notice that the sample history of m plays is a Markov chain {Ht}. Given a
history vector h with length m and an action ak ∈ Ak, we define pk(i) = P

[
ak | h]

as the probability of player k choosing action ak given h. This probability is non-
zero if and only if there is a K-sample K(h) such that ak is the best response to
the strategy σ̂−k estimated from K(h). Given any two history vectors h and h′, the
transition probability for the chain {Ht} is given by

P [Ht+1 = h′ | Ht = h] =
N∏
k=1

pk(ak | h),

where ak is kth component of the last action in h′.
As shown in [345], a history h is an absorbing state of the chain {Ht} if and only

if it consists of m successive plays of a strict Nash equilibrium a∗. Young [345] also
provides the conditions under which adaptive play converges to one such absorbing
state.

To formally present such result, we need the following definitions.

C.7. Adaptive play 281

(Q,Q)

(Q, I)

(I,Q)

(I, I)

Figure C.1: Best response graph for the prisoner’s dilemma.

Best Response Graph

Let Γ =
(
N, (Ak), (rk)) be a strategic game with finite action-spaceA = ×Nk=1Ak.

The best response graph for game Γ is a directed graph G = (V,E), where V = A
and, given any two vertices a, b ∈ V , (a, b) ∈ E if and only if a 6= b and there is
exactly one k ∈ N such that bk ∈ B(a−k) and a−k = b−k.

A best response graph is build by considering all joint actions inA as vertices and
setting a directed edge from a joint action a to a joint action b if the two actions are
composed of the same individual actions for all players except one. For that single
player k, bk is a best response to the reduced action a−k. The following example
illustrates this concept for the prisoner’s dilemma.

Example C.2. (cont.) Consider once again the prisoner’s dilemma, whose
payoff function is represented in Table C.3. The best response graph for this
example is depicted in Figure C.1

There are four vertices, (Q,Q), (Q, I), (I,Q) and (I, I), each corresponding
to one of the actions in A: (Quiet, Quiet), (Quiet, Inform), (Inform, Quiet)
and (Inform, Inform).

The edges are set as follows. If player 1 chooses action Quiet, then the
best response for player 2 is to play Inform. This means that there should
be a directed edge from (Q,Q) to (Q, I). A similar reasoning leads to the
conclusion that there should also be a directed edge from (Q,Q) to (I,Q).
Finally, if any of the players chooses action Inform, the other player’s best
response is to also play Inform. This justifies the two remaining edges in the
graph. �

282 C. Game Theory and Markov Games

Table C.4: Fully cooperative game with multiple equilibria.
a b

a 10 −20

b −20 5

Weakly Acyclic Game

A strategic game Γ =
(
N, (Ak), (rk)) is weakly acyclic if, given any vertex a in

its best response graph, there is a directed path to a vertex a∗ from which there
is no exiting edge (a sink).

It should be clear that a sink as described in the previous definition corresponds
necessarily to a strict Nash equilibrium. Consider, for example, the best response
graph in Figure C.1. The graph is weakly acyclic, as can easily be checked from
the definition. On the other hand, the only sink is the vertex (I, I). This vertex
corresponds to the action (Inform, Inform) which, as seen before, is the only Nash
equilibrium for the game of prisoner’s dilemma.

Given a weakly acyclic strategic game Γ =
(
N, (Ak), (rk)), we denote by L(a)

the shortest path from the vertex a to a strict Nash equilibrium in the best response
graph of Γ. Let L(Γ) = maxa∈A L(a).

Theorem C.7.1. Let Γ =
(
N, (Ak), (rk)) be a weakly acyclic strategic game. If

K ≤ m

L(Γ) + 2
,

then adaptive play converges w.p.1 to a strict Nash equilibrium.

C.7.2 Biased adaptive play

Biased adaptive play is a variant of adaptive play proposed by Wang and Sandholm
[330]. This method is designed to address problems of equilibrium selection in fully
cooperative games. In this class of games, fictitious play is known to converge to
a Nash equilibrium. However, if there are multiple equilibria with different values,
there is no guarantees that the fictitious play process converges to the coordinated
equilibrium.

Consider, for example, the fully cooperative game in Table C.4. The boldface
entry represents the only coordinated equilibrium, (a, a). However, the action (b, b)

C.7. Adaptive play 283

is also a Nash equilibrium, and there are no guarantees that either fictitious play or
adaptive play converges to the coordinated equilibrium.

To describe how biased adaptive play works, we start with the following defini-
tion. Let Γ =

(
N, (Ak), r) be a fully cooperative strategic game and let D be a set

containing some of the Nash equilibria in Γ (and no other joint actions).

Weakly Acyclic Game w.r.t a Bias Set

Γ is a weakly acyclic game w.r.t. the bias set D if, given any vertex a in the best
response graph of Γ, there is a directed path to either a Nash equilibrium in D
or a strict Nash equilibrium.

Given a fully cooperative strategic game Γ =
(
N, (Ak), r), we construct a virtual

game V G =
(
N, (Ak), rV G

)
, where rV G(a) = 1 if a is a coordinated equilibrium for

Γ and rV G(a) = 0 otherwise. By setting D = {a ∈ A | rV G(a) = 1}, the game V G
is weakly acyclic w.r.t. the set D. Furthermore, as argued in [330], by learning how
to play a Nash equilibrium in the virtual game V G, the players learn how to play a
coordinated equilibrium in the original game Γ.

Given the virtual game V G, the players proceed as in adaptive play: given a
K-sample K(Ht) obtained from the history of the m most recent plays, each player
k checks if

1. There is a joint action a∗ ∈ D such that, for all the actions a ∈ K(Ht),
a−k = (a∗)−k;

2. There is at least one action a∗ ∈ D such that a∗ ∈ K(Ht).

If these two conditions are verified, player k is “lead to believe” that the remaining
players have coordinated in an action a∗ in D. Therefore, if conditions 1 and 2 are
met, player k chooses its best response (a∗)k such that

a∗ = max
t∈T
{at | at ∈ K(Ht) and at ∈ D} .

If either 1 or 2 or both do not hold, then player k chooses its action as in adaptive
play.

We now have the following theorem, found in [330].

Theorem C.7.2. Let Γ =
(
N, (Ak), r) be a fully cooperative, weakly acyclic game

w.r.t. some bias set D. If
K ≤ m

L(Γ) + 2
,

then biased adaptive play converges w.p.1 to either a strict Nash equilibrium or a
Nash equilibrium in D.

284 C. Game Theory and Markov Games

Once again, the constant L(Γ) is defined as L(Γ) = maxa∈A L(a), where L(a) is
now the shortest path in the best response graph of Γ going from vertex a to either
a strict Nash equilibrium or a Nash equilibrium in D.

We conclude this appendix with two observations. The first observation concerns
the use of a virtual game to ensure that the biased adaptive play converges to a co-
ordinated equilibrium. Notice that this technique can easily be used with fictitious
play, guaranteeing convergence of this method to a coordinated equilibrium. How-
ever, computationally speaking, biased adaptive play presents similar convergence
guarantees while being computationally more efficient, because of the incomplete
history sampling.

The second observation is related with the application of fictitious play, adaptive
play and biased adaptive play to fully cooperative stochastic games. Although these
methods were presented for a repeated game framework, it is possible to apply them
mutatis mutandis to the stochastic game framework. In fact, the Q-values for a
coordinated equilibrium define for each state x ∈ X a fully cooperative strategic
game (N, (Ak), Q) to which the three referred methods can be applied, as long as
every state x is visited infinitely often [330].

Appendix D

Stochastic Approximation

D.1 Convergence of stochastic approximation algorithms 285

D.1.1 A general convergence result 286

D.1.2 Simpler convergence results 289

D.2 Asymptotic behavior . 291

In this appendix, we present some background on stochastic approximation.

We present a convergence result for general stochastic approximation algo-

rithms and discriminate the conditions necessary to ensure convergence w.p.1.

We provide an interpretation of stochastic approximation algorithms in terms of

solutions of ordinary differential equations, and describe the corresponding limit

points in terms of equilibria of such ODEs. We also provide several simpler con-

vergence results of great use on several proofs of convergence along the thesis.

We conclude with a law of iterated logarithm describing the rate of convergence

of such methods.

D.1 Convergence of stochastic approximation algorithms

Stochastic approximation algorithms are known since the 19th century, but a formal
treatment of convergence was not completed until the pioneer works of Robbins
and Monro [253] and Kiefer and Wolfowitz [140]. Since then, these algorithms
have been fundamental in numerous applications such as stochastic optimization,
system identification, signal modeling, adaptive filtering or machine learning, and
have inspired numerous works, such as the books by Ljung and Söderström [172],
Benveniste et al. [21] or Kushner and Yin [153].

The original stochastic approximation algorithms address the problem of de-
termining the zero of a real-valued function h when the function is not known but
noise-corrupted samples of h are available at any desired point. The algorithm takes

286 D. Stochastic Approximation

the form
θt+1 = θt + αtH(θt, X), (D.1)

where θt is the current estimate of the point of interest, {αt} is a sequence of positive
step-sizes and H(θt, X) is a noisy sample of h(θt) that depends on the r.v. X.

In the 1970s, Ljung introduced the ODE method for the analysis of stochastic
approximation algorithms [171]. This method studies the convergence of the se-
quence {θt} generated by algorithm (D.1) by comparing it with the trajectory of an
associated ODE

θ̇ = h(θ).

This method allows the application of results from dynamical systems theory (such
as the Lyapunov theorem) to the study of convergence of stochastic approximation
algorithms.

The ODE method proved to be a powerful tool in the analysis of stochastic ap-
proximation algorithms. Some illustrative applications of this method can be found
in Abounadi et al. [5], Borkar [31], Borkar and Meyn [34], Kushner and Lakshmi-
varahan [152]. Kushner and Clark [151] provided a rather general set of conditions
for convergence, known as the Kushner-Clark conditions, afterwards explored in
several other works [148, 153, 198].

D.1.1 A general convergence result

In this subsection, we present a general convergence theorem used in establishing
the convergence of several algorithms introduced in the thesis.

Consider the generic stochastic approximation algorithm

θt+1 = θt + αt+1H(θt, Xt+1) + α2
t+1Ct+1(θt, Xt+1), (D.2)

where {Xt} is a controlled Markov chain taking values in a compact subset X ⊂ Rp.
The corresponding transition probabilities are given by

P [Xt+1 ∈ U | Fn] = Pθt(Xn, U),

for all U ∈ B(X). The set {αt} is a decreasing sequence of positive step-sizes
verifying ∑

t

αt =∞ and
∑
t

α1+λ
t <∞,

for some λ ∈ [0.5; 1]. Let h : RM −→ RM be defined from H as

h(θ) = EX [H(θ,Xt)] , (D.3)

where EX [·] represents the expectations with respect to the steady-state probability
measure of the chain {Xt} (see Appendix B).

For the purposes of the convergence theorem below, we admit the following

D.1. Convergence of stochastic approximation algorithms 287

assumptions to hold for some norm ‖·‖:

‖H(θ, x)‖ ≤ K1(1 + ‖θ‖)(1 + ‖x‖q1); (Ass. 1.a)
E [1 + ‖Xt+1‖ | X0 = x, θ0] ≤ K2(1 + ‖x‖q2); (Ass. 1.b)

‖νθ(x)‖ ≤ K3(1 + ‖θ‖)(1 + ‖x‖q3); (Ass. 1.c)
‖Ct(θ, x)‖ ≤ K4(1 + ‖θ‖)(1 + ‖x‖q4), (Ass. 1.d)

where K1, K2, K3 and K4 are positive constants and q1, q2, q3 and q4 are positive
integers. In (Ass. 1.c), νθ is the solution (for fixed θ) of the Poisson equation

(I− Pθ)νθ(x) = H(θ, x)− (µθH)(θ),

and µθ is the invariant probability measure for the chain (X ,Pθ).
We further admit that

‖Pθνθ(x)− Pθ′νθ′(x)‖ ≤ K5(1 +R1−λ) ‖θ − θ′‖λ (1 + ‖x‖q5), (Ass. 2)

where ‖θ‖ ≤ R, ‖θ′‖ ≤ R, K5 is a positive constant and q5 is a positive integer.
The following generic convergence theorem can be found in the book by Ben-

veniste et al. [21], Theorem 17.

Theorem D.1.1. Suppose that (Ass. 1) and (Ass. 2) hold. Then,

1. if there exists a positive function U : RM −→ R with bounded continuous
second derivative such that, for all θ : ‖θ‖ ≥ K0,

(a) dU(θ)/dt = 〈dU(θ)/dθ, h(θ)〉 ≤ 0;

(b) there is β > 0 such that U(θ) ≥ β ‖θ‖2;
then the sequence {θt} is bounded w.p.1;

2. if, furthermore, there exists a vector θ∗ ∈ RM such that

(a) dU(θ)/dt = 〈dU(θ)/dθ, h(θ)〉 < 0 for all θ 6= θ∗;

(b) U(θ) = 0 iff θ = θ∗;

then the sequence {θt} converges to θ∗ w.p.1.

Since Theorem D.1.1 plays a fundamental role in establishing the convergence of
the several algorithms in this thesis, we briefly analyze its assumptions and assertions
so as to gain some insight on the ideas behind this result.

We start by rewriting (D.2) as

θt+T = θt +
t+T∑
i=t

αi+1H(θi, Xi+1). (D.3)

288 D. Stochastic Approximation

The summation on the right-hand side can be seen as a sample average of H(θ, x)
over T samples of the process {Xt}. As such, we could write

θt+T ≈ θt +
t+T∑
i=t

αi+1E [H(θi, Xi+1)] +
t+T∑
i=t

αi+1ei, (D.4)

where the eis are error terms. Suppose, in particular, that the process {Xt} quickly
becomes stationary. Then, (D.4) further simplifies to

θt+T ≈ θt +
t+T∑
i=t

αi+1E [H(θi, X)] . (D.5)

where X is the “stationary version” of {Xt}. On the other hand, if H is slowly
varying in θ, we can write

θt+T ≈ θt +
t+T∑
i=t

αi+1E [H(θt, X)] . (D.6)

Let τ =
∑t+T

i=t αi+1 and h(θ) = E [H(θt, X)]. Then, (D.6) becomes

θt+T ≈ θt + τh(θt). (D.7)

Equation (D.7) is the Euler forward approximation of the ODE

θ̇t = h(θt)

and we would expect that, under suitable conditions, the trajectories of this ODE
are close to those of (D.2).

The several assumptions in Theorem D.1.1 ensure that the several approxima-
tions in (D.4), (D.5), (D.6) and (D.7) are “valid”. If such assumptions are fulfilled,
the algorithm closely follows the associated ODE. Therefore, if this ODE asymptot-
ically converges to some equilibrium point, so does the algorithm. The function U
referred in the Theorem is simply a Lyapunov function ensuring the existence of an
asymptotically stable equilibrium point for the ODE.

From all stated so far, we can coarsely interpret the several assumptions of
Theorem D.1.1 as follows.

• The assumptions on the step-sizes ensure that the sum in (D.3) has an aver-
aging effect, in part allowing the approximation in (D.4);

• The bounds on ‖H‖ and E [‖Xt‖], the existence of νθ and corresponding
bounde on ‖νθ‖ ensure that the error resulting from replacing H(θ,Xt) by
its mean field h(θ) (approximation (D.5)) are not too significant;1

• Finally, the bounds on ‖H‖ and assumption (Ass. 2) ensure that both H and
1The solution νθ(x) of the Poisson equation can be interpreted as the total error obtained by

replacing H(θ,Xt) by h(θ) along a trajectory {xt} of the chain verifying x0 = x.

D.1. Convergence of stochastic approximation algorithms 289

h vary slowly with θ, ensuring that the error in the approximation (D.6) is
also not significant.

A more detailed argument on the approximations involved in the ODE method
can be found in the fundamental work by Ljung [171] and on the more general survey
by Bharath and Borkar [29].

D.1.2 Simpler convergence results

We now present several simpler convergence results that can be established using
Theorem D.1.1. These results and corresponding proofs can can be found in [131,
280, 300].

Lemma D.1.2. Let X be a finite set and define the iterative process

∆t+1(x) = (1− gt(x))∆t(x) + ft(x)Ft(x)

for x ∈ X. Then ∆t → 0 as long as

• ∑t ft(x) =∞ and
∑

t f
2
t (x) <∞;

• ∑t gt(x) =∞ and
∑

t g
2
t (x) <∞;

• E [ft(x) | Ft] ≤ E [gt(x) | Ft] uniformly w.p.1;

• ‖E [Ft(x) | Ft]‖W ≤ γ ‖∆t‖W , with 0 < γ < 1;

• var [Ft(x) | Ft] ≤ C(1 + ‖∆t‖W)2, for some constant C > 0.

We denoted by ‖·‖W the weighted maximum norm w.r.t. some vector W . The
following lemma is very similar to Lemma D.1.2, allowing however the analysis of a
somewhat different class of stochastic algorithms.

Lemma D.1.3. Let X be a finite set and define the iterative process

∆t+1(x) = (1− ft(x))∆t(x) + ft(x)Ft(x)

for x ∈ X. Then ∆t → 0 as long as

• 0 ≤ ft(x) ≤ 1,
∑

t ft(x) =∞ and
∑

t f
2
t (x) <∞;

• ‖E [Ft(x) | Ft]‖W ≤ γ ‖∆t‖W + ct, with 0 ≤ γ < 1 and ct → 0 w.p.1;

• var [Ft(x) | Ft] ≤ C(1 + ‖∆t‖W)2, for some constant C > 0.

290 D. Stochastic Approximation

These simple results allow for clear and straightforward proofs of convergence
for several of the algorithms described in this thesis.

The following result is more elaborate and therefore more broadly applicable.
It was first introduced by Szepesvári and Littman in the context of generalized
Markov decision processes and used to establish the convergence of several classes
of reinforcement learning methods [166, 168, 252, 299, 300, 302].

Let B be a normed vector space and T an operator on B. Let T = {T0, T1, . . .}
be a sequence of random operators, Tt : B × B −→ B. Given a subset U ⊂ B, let
F0 : U −→ 2B be a mapping assigning to each element u ∈ U a set F0(u) of possible
initial conditions.

We are interested in analyzing the convergence of the iteration ut+1 = Tt(ut, ut)
to a fixed point f ∗ of T . The following definition formalizes the idea that the
sequence T approximates the operator T .

The sequence T approximates T on the set U and with initial values from F0(u)
if, for all u ∈ U and all initial conditions u0 ∈ F0(u), the iteration vt+1 = Tt(vt, u)
converges to T (u) w.p.1. Furthermore, if U = {u}, we say that T approximates
T on u, with initial values from F0(u).

The following definition will also be useful in the theorem below.

A set U ⊂ B is invariant under an operator Tt : B×B −→ B if, for all u, v ∈ U ,
Tt(u, v) ∈ U . If T is a sequence {T0, T1, . . .} of operators, we say that U is
invariant under T if it is invariant under each Tt ∈ T.

We are now in position to present the following theorem.

Theorem D.1.4. Let X be an arbitrary set and let B be the space of all bounded
functions on X. Let T : B −→ B be an operator with fixed-point u∗ and let T =
{T0, T1, . . .} be a sequence of operators approximating T at u∗ for initial values from
F0(u

∗). For some u0 ∈ F0(u
∗), define the sequence {ut} recursively as ut+1 =

Tt(ut, ut).
Then, the sequence {ut} converges to u∗ w.p.1 as long as

• There exist random functions 0 ≤ ft(x) ≤ 1 and 0 ≤ gt(x) ≤ 1 such that

ft(x) ≤ γ(1− gt(x)),

for some γ < 1;

• For all v1, v2 ∈ B,

|Tt(v1, u
∗)(x)− Tt(v2, u

∗)(x)| ≤ gt(x) |v1(x)− v2(x)| ;

D.2. Asymptotic behavior 291

• For all v, v1 ∈ B,

|Tt(v, u∗)(x)− Tt(v, v1)(x)| ≤ ft(x)(‖u∗(x)− v1(x)‖+ ct),

where ct → 0 w.p.1 as t→ 0;

• For all k > 0,
n∏
t=k

gt(x)→ 0

as n→∞ uniformly in x.

D.2 Asymptotic behavior

The following result, from [234], describes a law of iterated logarithm for general
stochastic algorithms. Several works in the literature address the rate of convergence
of specific reinforcement learning methods, and can be seen as particular applications
of the more general result presented here. We refer, in particular, the works by
Szepesvári [298], Kearns and Singh [137] and Even-Dar and Mansour [82].

Rewrite equation D.2 as

θt+1 = θt + αt+1

[
h(θt) +H(θt, Xt+1)− h(θt)

]
+ α2

t+1Ct+1(θt, Xt+1), (D.8)

and write
ηt+1 = H(θt, Xt+1)− h(θt)

and
ct+1 = αt+1Ct+1(θt, Xt+1).

We denoted by h the RM -valued function defined in (D.3). Using this new notation,
(D.8) becomes

θt+1 = θt + αt+1

[
h(θt) + ηt+1

]
+ αt+1ct+1.

Let θ∗ be the equilibrium point of the ODE

θ̇t = h(θt).

We suppose the following assumptions to hold.

(Ass. 1) There is a neighborhood V of θ∗ such that, for all θ ∈ V ,

h(θ) = M(θ − θ∗) + O(‖θ − θ∗‖a),

for some stable matrix M and some constant a > 1. We denote by −λ the
largest real part of the eigenvalues of M.

292 D. Stochastic Approximation

(Ass. 2) The gain sequence verifies αt = α0/t for some α0 > 1/2λ.2

(Ass. 3) There is a positive constant K such that, for ‖θt − θ∗‖ ≤ K,

E [ct+1 | Ft] = 0

and
sup
t≥0

E
[
‖ct+1‖b | Ft

]
<∞,

for some b > 2.

The following result follows.

Theorem D.2.1. Suppose that (Ass. 1) through (Ass. 3) hold. Then, if θt → θ∗

w.p.1,

lim
t→∞

sup
‖θt − θ∗‖√

αt log
(∑t

τ=1 ατ
) ≤ K0, (D.9)

w.p.1, where K0 is some constant.

2In the paper [234], Pelletier actually considers more general step-size sequences. We present
only this simplified version of the result in [234], since it is sufficient for our purposes.

Appendix E

Q-learning using sample-based
approximation

E.1 Sample-based approximation . 294

E.2 Main result . 294

E.2.1 Combining Q-learning with linear function approximation . . 295

E.2.2 Linear approximation using sample-based projection 296

E.3 Proof of Theorem E.2.1 . 298

E.3.1 Convergence of the iterates . 299

E.3.2 Boundedness of the iterates 302

E.3.3 Limit of convergence and error bounds 303

E.4 Discussion . 304

In this appendix, we describe a linear approximation mechanism to use with Q-

learning that is closely related with sample-based strategies such as interpolation-

based Q-learning [302].

We describe a variation of Q-learning with linear function approximation dif-

ferent from the one in Chapter 4 and derive a set of conditions that imply the

convergence of this method w.p.1, when a fixed learning policy is used. We show

that, under these conditions, the algorithm exhibits approximation errors that ver-

ify similar bounds to those in [321]. We discuss the relation between the results

herein and those obtained in several related works in the literature, such as interpo-

lated Q-learning or Borkar’s functional Q-learning. The approximation mechanism

described is passible of interpretation according to two different perspectives: as a

sample-based approximation mechanism using convex interpolation or as a linear

approximation mechanism relying on a set of basis functions.

294 E. Q-learning using sample-based approximation

E.1 Sample-based approximation

In this appendix we address the problem of function approximation in Q-learning
from a different perspective: instead of deriving conditions that ensure the orthog-
onal projection to be non-expansive in the sup-norm, we propose a sample-based
projection that is naturally non-expansive in the sup-norm.

The use of sample-based projection operators was thoroughly used in the algo-
rithm proposed by Szepesvári and Smart [302] and dubbed as interpolation-based
Q-learning. This method makes use of a set of sample points and defines a projection
operator that simply considers the value of the projected function at those sample
points. The set of sample points can actually be augmented so as to improve the ac-
curacy of the approximation: the authors establish a mechanism that ensures that,
as the number of samples grows to infinity, the obtained approximation converges
to the optimal function.

In kernel-based reinforcement learning [225], the authors also pursue the idea
of using sample points to approximate a desired functional. In this method, the
transitions in the history of the process are used as samples from which the operator
H introduced in (4.3) is approximated.

Finally, in a somewhat different approach, Spaan and Vlassis [283, 284, 327] in-
troduce approximate VI algorithms for POMDPs based on point samples obtained
according to the dynamics of the POMDP. They provide error bounds for the ob-
tained approximation.

The approach described in this appendix is similar to that described in Chap-
ter 4 in that we use linear function approximation with Q-learning. However, the
conditions imposed on the basis functions used allow for the choice of a set of
“sample”-points that are then used in an interpolation-like fashion to attain the
desired approximations.

In this appendix we consider a parameterized family Q of functions Qθ : X ×
A −→ R, where θ is a parameter in RM . We want to determine the point θ∗ in
parameter space such that Qθ∗ is the best approximation of Q∗ in Q, in a sense yet
to be made clear. By defining a suitable recursion for θ, we reduce the determination
of the infinite-dimensional function Q∗ to the determination of a finite-dimensional
vector θ∗.

Remark: Throughout the appendix, we use the symbol π to denote a policy,
instead of the customary symbol δ. We reserve the symbol δ to represent the
Dyrac delta. �

E.2 Main result

In this section, we establish the convergence properties of Q-learning when using lin-
ear function approximation. We identify the conditions ensuring convergence w.p.1
and derive error bounds for the obtained approximation. As will soon become ap-
parent, the results derived herein are deeply related with other approaches described
in the literature, e.g., [32, 103, 279, 302, 320].

E.2. Main result 295

P

Q∗ = HQ∗

Q(θ∗) = PHQ(θ∗) Q

PQ∗

Figure E.1: Optimal function Q∗ = HQ∗ and the fixed-point of Q(θ∗) of the combined
operator PQH. Notice that, in general Q(θ∗) 6= PQQ∗.

E.2.1 Combining Q-learning with linear function approximation

In our pursuit to approximate Q∗, we start by considering a family of functions
Q = {Qθ} parameterized by a finite-dimensional parameter vector θ ∈ RM . If we
replace the iterative procedure to find Q∗ by a suitable “equivalent” procedure to
find a parameter θ∗ so as to best approximate Q∗ by a function in Q, we move from
a search in an infinite dimensional function space to a search in a finite dimensional
space (RM). This has an immediate implication: unless if Q∗ ∈ Q, we will not
be able to determine Q∗ exactly. Instead, we will determine the fixed point of a
combined operator PQH, where PQ is some mapping that “projects” a function q
defined in X ×A to a point in Q (see Fig. E.1).

We admit the family Q to be linear in that if q1, q2 ∈ Q, then so does αq1 + q2
for any α ∈ R. Q is therefore the linear span of some set of linearly independent
functions ξi : X ×A −→ R, and each q ∈ Q can be written as

q(x, a) =
M∑
i=1

ξi(x, a)θ(i),

where θ(i) is the ith component of the vector θ ∈ RM . If Ξ = {ξ1, . . . , ξM} is a set of
linearly independent functions, we interchangeably use Qθ and Q(θ) to denote the
function

Qθ(x, a) =
M∑
i=1

ξi(x, a)θ(i) = ξ>(x, a)θ, (E.1)

where ξ(x, a) is a vector in RM with ith component given by ξi(x, a).

We throughout let Ξ = {ξi, i = 1, . . . ,M} be a set of M bounded, linearly inde-
pendent functions verifying ∑

i

|ξi(x, a)| ≤ 1 (E.2)

for all (x, a) ∈ X × A and eventually introduce further restrictions on the set Ξ as
needed.

296 E. Q-learning using sample-based approximation

E.2.2 Linear approximation using sample-based projection

We now consider a sample-based approximation model that, while imposing some-
what strict conditions on the set of functions Ξ, will allow us to derive useful error
bounds for the obtained approximation Qθ∗ . For that we assume that the functions
in Ξ verify

‖ξi‖∞ = 1. (E.3)

We remark that if (E.2) and (E.3) simultaneously hold, linear independence of the
functions in Ξ arises as an immediate consequence. To see this, notice that for each
function ξi ∈ Ξ there is a point (x, a) such that |ξi(x, a)| = 1, as ‖ξi‖∞ = 1. Then,
since

∑
i |ξi(x, a)| ≤ 1, ξj(x, a) = 0 for all j 6= i. This, in turn, implies the functions

in Ξ are linearly independent. As in the previous subsection, we take the family Q
as the linear span of Ξ.

For each function ξi ∈ Ξ take a point (xi, ai) in X ×A such that |ξi(xi, ai)| = 1,
and denote by I the set obtained by gatheringM of such points, one for each ξi ∈ Ξ.
If B is the set of all (essentially) bounded functions defined on X × A and taking
values on R, we define a mapping P : B −→ RM as

(Pf)(i) = f(xi, ai), (E.4)

where f is an arbitrary function in B, (Pf)(i) is the ith component of the vector
Pf and (xi, ai) is the point in I corresponding to ξi. Notice that Pf is properly
defined for every f ∈ B and verifies

‖Pf‖∞ ≤ ‖f‖∞
and

Pαf1+f2 = αPf1 + Pf2.

Our variant of Q-learning iteratively determines the point θ∗ ∈ RM verifying the
fixed-point recursion

θ∗ = PHQ(θ∗), (E.5)

where H is the operator defined in (3.2). Since H is a contraction in the maximum
norm and

∑
i |ξi(x, a)| ≤ 1, the fixed point in (E.5) is properly and uniquely defined.

To derive the expression of the algorithm, we remark that (E.5) can be explicitly
written as

θ∗(i) =

∫
X
δ(xi,ai)(x, a)

∫
X

[
r(x, a, y) + γmax

u
ξ>(y, u)θ∗

]
Pa(x, dy)dµ(x, a),

where µ is some probability measure on X ×A and δ(xi,ai) is the Dirac delta centered
around (xi, ai).

We are now in position to describe the algorithm. Let gε be a smooth Dirac

E.2. Main result 297

approximation,1 such that ∫
gε(x, a; y, u)dµ(y, u) = 1

lim
ε→0

∫
gε(x, a; y, u)f(y, u)dµ(y, u) = f(x, a).

Let π be a stochastic stationary policy and suppose that {xt}, {at} and {rt} are
sampled trajectories from the MDP (X,A,P, r, γ) using policy π. Then, given any
initial estimate θ0, we generate a sequence {θt} according to the update rule

θt+1(i) = θt(i) + αtgεt(xi, ai;xt, at)
[
rt + γmax

u∈A
ξ>(xt+1, u)θt − ξ>(xt, at)θt

]
,

where {εt} is a sequence verifying

εt+1 = (1− βt)εt.

More generally, we can have

εt+1 = εt + βth(εt),

where h is chosen so that the ODE ẋt = h(xt) has a globally asymptotically stable
equilibrium in the origin.

Under some regularity assumptions on the Markov chain (X ,Pπ) obtained using
the policy π and on the step-sizes αt and βt, the trajectories of the algorithm closely
follow those of an associated ODE with a globally asymptotically stable equilibrium
point θ∗. Therefore, the sequence {θt} will converge w.p.1 to the equilibrium point
θ∗ of the ODE.

We now state our main convergence result. Given an MDP (X,A,P, r, γ), let
π be a stationary stochastic policy and (X ,Pπ) the corresponding Markov chain
with invariant probability measure µX . Assume µX to be absolutely continuous
w.r.t. the Lebesgue measure on X and bounded away from zero. Denote by Eπ [·]
the expectation w.r.t. the probability measure µπ defined for every set Z×U ⊂ X×A
as

µπ(Z × U) =

∫
Z

∑
a∈U

π(x, a)µX(dx).

Also, define α̂t(i) as
α̂t(i) = αtgεt(xi, ai;xt, at).

Theorem E.2.1. Let (X,A,P, r, γ) be a Markov decision process and assume the
Markov chain (X ,Pπ) to be geometrically ergodic with invariant probability measure

1There are several common smooth Dirac approximations, e.g.,

gε(x; y) =
1

ε
√
π
e−‖x−y‖

2/ε2 .

298 E. Q-learning using sample-based approximation

µX absolutely continuous w.r.t. the Lebesgue measure on X and bounded away from
0. Further suppose that π(x, a) > 0 for all a ∈ A and µX-almost all x ∈ X .

Let Ξ = {ξi, i = 1, . . . ,M} be a set of M functions defined on X × A and tak-
ing values in R. In particular, admit the functions in Ξ to verify ‖ξi‖∞ = 1 and∑

i |ξi(x, a)| ≤ 1.
Then, the following hold:

1. Convergence: For any initial condition θ0 ∈ RM , the algorithm

θt+1(i) = θt(i) + αtgεt(xi, ai;xt, at)
[
rt + γmax

u∈A
ξ>(xt+1, u)θt − ξ>(xt, at)θt

]
,

(E.6a)

εt+1 = (1− βt)εt. (E.6b)

converges w.p.1 as long as the step-size sequences {αt} , {βt} are such that∑
t

αt =∞;
∑
t

α2
t <∞; (E.7a)∑

t

βt =∞;
∑
t

β2
t <∞, (E.7b)

βt = o(αt) and αt is built so that mini
∑

t α̂t(i) =∞.

2. Limit of convergence: Under these conditions, the limit function Q(θ∗) of
(E.6) verifies

Qθ∗(x, a) = (PQHQθ∗)(x, a), (E.8)

where PQ : B → Q denotes the operator given by

(PQQ)(x, a) = ξ>(x, a)PQ.

3. Error bounds: Under these conditions, the limit function Qθ∗ verifies the
bound

‖Q(θ∗)−Q∗‖∞ ≤
1

1− γ ‖PQQ
∗ −Q∗‖∞ . (E.9)

E.3 Proof of Theorem E.2.1

We separately establish each of the three assertions of Theorem E.2.1. To prove
the first assertion, we establish the trajectories {θt} generated by algorithm (E.6)
to closely follow those of an associated ODE with a globally asymptotically stable
equilibrium point. As long as the iterates of the algorithm remain bounded, this
will imply the convergence to the equilibrium point of the associated ODE.

To prove the second assertion of Theorem E.2.1, we provide an interpretation
of the equilibrium point of the associated ODE as the fixed point of a composite
operator. This interpretation will then lead to the third assertion of Theorem E.2.1.

E.3. Proof of Theorem E.2.1 299

E.3.1 Convergence of the iterates

To prove the convergence of the sequence {θt} generated by (E.6), we follow a similar
argument to that in [32, 33].

Consider a general ODE in RM ,

d

dt
Z(t) = h(Z(t)), (E.10)

for a Lipschitz map h : Rp −→ Rp. Further suppose that the ODE (E.10) has a
globally asymptotically stable equilibrium Z∗.

Given any T > 0 and σ > 0, a bounded measurable function z : R+ −→ RM is a
(T, σ)-perturbation of (E.10) if there is a sequence Tn of positive real numbers such
that T0 = 0, Tn →∞, with Tn+1 − Tn > T and the following holds

sup
t∈[Tn,Tn+1]

‖Zn(t)− z(t)‖ ≤ σ,

where Zn(t) is a solution of (E.10) defined in the interval [Tn, Tn+1].
We now introduce the Hirsch lemma [124], whose proof can be found, for example,

in [33].

Lemma E.3.1 (Hirsch Lemma). Given any ρ > 0 and T > 0, there is a σ0 such that,
for all σ < σ0, every (T, σ)-perturbation of (E.10) converges to an ρ-neighborhood
of Z∗.

Consider the ODE
d

dt
θt(i) = (PHQ(θt))i − θt(i). (E.11)

It is not hard to see that this ODE has a globally asymptotically stable equilibrium
θ∗ verifying

θ∗(i) = (PHQ(θ∗))i

since, as remarked in Subsection E.2.2, P is a non-expansion in the sup-norm, H is
a contraction in the sup-norm and ‖ξi‖∞ = 1 for i = 1, . . . ,M .

Consider, on the other hand, the ODE

d

dt
θεt (i) = hε(θt) =

=

∫
gε(xi, ai;x, a)

[
(HQθεt

)(x, a)−Qθεt
(x, a)

]
dµπ(x, a).

(E.12)

By hypothesis, gε(xi, ai; ·) → δ(xi,ai) as ε → 0. By taking θε0 = θ0, a standard
argument using the Gronwall inequality leads to the conclusion that the solutions
θεt of (E.12) verify θεt → θt as ε → 0, and this convergence holds uniformly in

300 E. Q-learning using sample-based approximation

compact time intervals.2 This implies that, given any T > 0 and σ > 0, θεt is a
(T, σ

2
)-perturbation of (E.11) for sufficiently small ε.

Our purpose is to establish that, for fixed ε, the trajectories of the algorithm
(E.6) closely follow those of (E.12). Thus, for fixed ε, rewrite (E.6) in the form

θt+1 = θt + αtH
ε(θt, Yt+1), (E.13)

where Yt+1 = (Xt, At, Xt+1). Since the chain {Xt} is geometrically ergodic and
π(x, a) > 0 for µπ-almost all x ∈ X , it follows that so is the chain {Yt}.

Using the geometric ergodicity of the chain {Yt} and the Poisson equation in-
volving Hε(θ, Y), we can rewrite (E.13) as

θt+1 = θt + αth
ε(θt) + αt(et+1 + ηt+1), (E.14)

where, for each i = 1, . . . ,M ,
∑∞

t=0 αtet(i) < ∞ and ‖ηt‖ → 0. To see that this is
so, recall that the Poisson equation involving Hε(θ, Y) is given by

υθ(y)− (Pπυθ)(y) = Hε(θ, y)− hε(θ),

where υθ is the solution for a given θ. Under the geometrical ergodicity of {Yt} the
solution for this equation always exists [201] and we can rewrite

Hε(θt, Xt+1)i = hε(θt)i + υθt(Xt+1)i − (Pπυθt)(Xt+1)i =

= hε(θt)i + υθt(Xt+1)i − (Pπυθt)(Xt)i+

+ (Pπυθt)(Xt)i − (Pπυθt+1)(Xt+1)i+

+ (Pπυθt+1)(Xt+1)i − (Pπυθt)(Xt+1)i =

= hε(θt)i + ζt+1(i) + (ut(i)− ut+1(i)) + ηt+1(i),

with

ζt+1(i) = υθt(Xt+1)i − (Pπυθt)(Xt)i;

ut(i) = (Pπυθt)(Xt)i;

ut+1(i) = (Pπυθt+1)(Xt+1)i;

ηt+1(i) = (Pπυθt+1)(Xt+1)i − (Pπυθt)(Xt+1)i.

Finally, setting et+1(i) = ζt+1(i) + (ut(i) − ut+1(i)) leads to (E.14). The two afore-
mentioned properties of et and ηt, namely

∑∞
t=0 αtet(i) < ∞ and ‖ηt‖ → 0, arise

as consequences of the geometric ergodicity assumption on the underlying Markov
chain and of the properties of the solution υθ of the Poisson equation (see Appendix B
and the references [66, 201]).

2In particular, in an interval [t, t+ τ] we have

‖θεt − θt‖ ≤ Kε

(
eCτ − 1

)
,

for some positive constant C and some positive, ε-dependent constant Kε that goes to 0 with ε.

E.3. Proof of Theorem E.2.1 301

We now proceed as in [33]. Define the sequences

τ0 = 0; τk =
k−1∑
t=0

αt;

T0 = 0; Tn+1 = min {τk | τk > Tn + T} ,

and let {θt} be a sample trajectory obtained using (E.13) with constant ε. From
{θt} build the continuous-time process θ̄0(t) by taking θ̄0(τk) = θk and using linear
interpolation in the interval [τk, τk+1]. In particular (E.14) yields

θ̄0(τt+1) = θ̄0(τt) + (τt+1 − τt)hε(θ0(τt)) + ρ(τt), (E.15)

with
ρ(τt) = αt(et+1 + ηt+1).

By interpreting (E.15) as a discretized version of the ODE (E.12) with noise ρ(τt), we
can once again resort to the Gronwall inequality to bound the distance between θ̄0(t)
and θεt in each interval [Tk, Tk+1] by a constant that can be made arbitrarily small for
large enough k. But this means that, for any σ > 0, the process θ̄t0(t) = θ̄0(t + t0)
is a (T, σ

2
)-perturbation of (E.12) for t0 large enough.

By combining this conclusion with the previous conclusion on θεt , we see that,
for any T > 0 and σ > 0, θ̄t0(t) is a (T, σ)-perturbation of (E.11) (for ε sufficiently
small).

Consider now the ODE
d

dt
εt = 0. (E.16)

and the approximate process

εt+1 = εt − αt βt
αt
εt. (E.17)

Repeating the exact same procedure used for θ̄0
t , and by noticing that βt = o(αt),

we build a process ε̄t0t such that, for any σ > 0, ε̄t0t is a (T, σ)-perturbation of (E.16)
for t0 large enough. Finally, since

∑
t α̂t(i) = ∞, this leads to the conclusion that,

given any T > 0 and σ > 0, (θ̄t0t , ε̄
t0
t) is a (T, σ)-perturbation of the system of ODEs

d

dt
θt(i) = (PHQ(θt))i − θt(i); (E.18a)

d

dt
εt = 0, (E.18b)

for t0 large enough.
We now notice that, in general, a smaller ε will require a larger t0 to ensure

that θ̄t0(t) is a (T, σ)-perturbation of (E.12). On the other hand, εt as generated by
(E.6b) converges to 0. Therefore, to guarantee that there is t0 such that (θ̄t0t , ε̄

t0
t)

is a (T, σ)-perturbation of (E.18), it is necessary to ensure that εt approaches zero
sufficiently slowly. By choosing the sequence αt so that

∑
t α̂t(i) = ∞, we ensure

302 E. Q-learning using sample-based approximation

that the trajectories {θt} approach the trajectories of the ODE (E.12) faster than gεt
approaches the Dirac delta and are in position to apply the Hirsh lemma to conclude
that, for any ρ > 0, the process (θ̄t0t , ε̄

t0
t) converges to a ρ-neighborhood of (θ∗, 0).

This, in turn, implies that θt → θ∗ as long as the sequence {θt} remains bounded,
which we establish in the continuation.

E.3.2 Boundedness of the iterates

To establish the boundedness of the iterates, we replicate the procedure in [34].
Let {θt} be a trajectory generated by (E.6). We build a scaled sequence {θ̂t} by

setting

θ̂t =
θt
λn

where λn = max {‖θTn‖ , 1}, for every t in [Tn, Tn+1) and Ti are as defined in Sub-
section E.3.1. If the sequence θt is unbounded, this means that lim supλn = ∞, so
we analyze the behavior of θ̂t as λn →∞.

In Subsection E.3.1, we established the trajectories {θt} to closely follow those
of the ODE

d

dt
θt = h(θt),

where h(θ) = PHQ(θ)−θ. For the scaled sequence θ̂t, we now consider the function
hλ(θ), given by

hλ(θ) =
h(λθ)

λ
,

with λ > 0. Notice that, as λ→∞, hλ approaches the function h∞ given by

h∞(θ)i = γmax
b∈A

∫
ξ>(y, b)θPai(xi, dy)− θi.

Define the operator F : RM −→ RM with ith component given by

F(θ)i = γmax
b∈A

∫
ξ>(y, b)θPai(xi, dy).

This operator is a contraction in the sup-norm (due to the fact that
∑

i |ξi(x, a)| ≤ 1)
and, hence has a single fixed point. Since the origin is a fixed point of F, the ODE
associated with h∞ has a single equilibrium point at the origin and this equilibrium
point is globally asymptotically (exponentially) stable.

By repeating the procedure used in Subsection E.3.1, we can build by inter-
polation a continuous time process from the scaled sequence θ̂t. In each interval
[Tn, Tn+1], this continuous-time process is a (T, σ)-perturbation of the ODE,

d

dt
θt = hλn(θt), (E.19)

for any T > 0 and any σ > 0 (by eventually considering a time-shifted version of
the continuous time process, as in Subsection E.3.1). This implies the boundedness
of θt as a consequence.

E.3. Proof of Theorem E.2.1 303

In fact, suppose that {θt} is not bounded. This implies that λn →∞ eventually
along a subsequence. Since the solutions of (E.19) converge exponentially fast to an
arbitrarily small neighborhood of the origin (depending on λn), by taking n large
enough we can ensure that

∥∥θ̂Tn+1

∥∥ ≤ C for any C < 1. But this implies that∥∥θTn+1

∥∥
‖θTn‖

≤ C

or, equivalently,
∥∥θTn+1

∥∥ ≤ C ‖θTn‖. Therefore, whenever θt leaves, say, the unit ball
in RM , it returns exponentially fast toward it, and θt remains bounded.

We refer to [32, 34], where a similar process is apllied to establish boundedness
of an iterative process.

E.3.3 Limit of convergence and error bounds

We have established that the sequence {θt} generated by (E.6) converges w.p.1 to a
point θ∗. The limit point θ∗ is the globally asymptotically stable equilibrium of the
ODE (E.11), verifying the following recursive relation:

θ∗ = PHQ(θ∗).

This provides an interpretation for the limit point of {θt} as the fixed point of the
combined operator PHQ(·), where Q is now understood as a mapping from RM to
B.

To conclude the proof of Theorem E.2.1, it remains to establish statement 3,
thus providing the error bounds for the approximation. To this, we perform some
explicit computations, yielding

‖Q(θ∗)−Q∗‖∞ = ‖Q(θ∗)−Q(PQ∗) +Q(PQ∗)−Q∗‖∞ ≤
≤ ‖Q(θ∗)−Q(PQ∗)‖∞ + ‖Q(PQ∗)−Q∗‖∞ =
= ‖Q(θ∗ − PQ∗)‖∞ + ‖Q(PQ∗)−Q∗‖∞ =
= ‖Q(PHQ(θ∗)− PHQ∗)‖∞ + ‖Q(PQ∗)−Q∗‖∞

Using the fact that ‖ξi‖ = 1, we get

‖Q(θ∗)−Q∗‖∞ ≤
= ‖PHQ(θ∗)− PHQ∗‖∞ + ‖Q(PQ∗)−Q∗‖∞ ≤
= γ ‖Q(θ∗)−Q∗‖∞ + ‖Q(PQ∗)−Q∗‖∞ ,

and this finally leads to

‖Q(θ∗)−Q∗‖∞ ≤
1

1− γ ‖Q(PQ∗)−Q∗‖∞ .

This concludes the proof of Theorem E.2.1.

304 E. Q-learning using sample-based approximation

E.4 Discussion

We emphasize the similarity between interpolation-based Q-learning (IBQL) by
Szepesvári and Smart [302] and the algorithm in this appendix. The fundamen-
tal difference between these two methods lies on the fact that IBQL only makes use
of the estimated Q-function to predict the value of the next state. The updates of
IBQL rely on a vector d̂t of modified temporal differences with ith component given
by

d̂t(i) = rt + γmax
u∈A

Qθt(xt+1, u)− θt(i) =

= rt + γmax
u∈A

Qθt(xt+1, u)−Qθt(xi, ai).

Notice that each d̂t(i) is not a temporal-difference in the strict sense, since it does
not provide a one-step estimation “error”. This means that the information provided
by d̂t(i) may lead to “misleading” updates. Although not affecting the convergence
of IBQL in the long-run, IBQL may exhibit slower convergence because of this. On
the other hand, if IBQL is used with a vanishing ε, the effect of these misleading
updates will vanish as t → ∞. In the experimental results portrayed in [302], a
vanishing ε was used. Nevertheless, IBQL exhibited initially slower convergence
than of other methods, probably because of this reported effect.

We also remark that, in [302], the convergence result requires the underlying
Markov chain to be positive Harris and aperiodic. These conditions are actually
weaker than the geometric ergodicity required by our result. However, in many
practical situations, the former conditions will actually imply the latter.3 This
means that the conditions on the problem required in Theorem E.2.1 are essentially
similar to those in [302] placing the results of both papers in a common line of work
and, basically, leading to concordant conclusions.

Finally, we also refer the close relation between our method and the algorithm
by Borkar [32]. In the aforementioned work, Borkar provides a convergence anal-
ysis of what we may refer to as functional Q-learning. This functional Q-learning
can be seen as an extension of classical Q-learning to functional spaces, and arises
from the approach proposed by Baker [13] to stochastic approximation in function
spaces. The update equation for this method is fundamentally similar to (E.6).
The main difference is that, while we consider only a fixed, finite set of points
I = {(x1, a1), . . . , (xM , aM)}, the algorithm in [32] maintains a complete representa-
tion of Q∗, each component of which is updated at each iteration. Clearly, main-
taining such a representation of Q∗ is computationally impossible. Therefore, the
algorithm in [32] boils down to maintaining a complete record of the history of past
eventsH = {(x0, a0), . . . , (xt, at), . . .} and of the estimates Qt at each of these points.
Then, the value of Q∗ at a generic point (x, a) ∈ X ×A is estimated as

Qt+1(x, a) = Q0(x, a) +
t∑

k=0

αkgεk(xk, ak;x, a)
[
rk + γmax

u∈A
Qt(xk+1, u)−Qt(xk, ak)

]
.

3An aperiodic, positive Harris chain is geometrically ergodic as long as the support of µX has
non-empty interior.

E.4. Discussion 305

306

Appendix F

Proofs

F.1 Proofs for Chapter 3 . 308

F.1.1 Proof of Theorem 3.3.1 . 308

F.1.2 Proof of Theorem 3.3.2 . 309

F.1.3 Proof of Theorem 3.4.1 . 309

F.1.4 Proof of Theorem 3.4.2 . 310

F.1.5 Proof of Theorem 3.4.3 . 311

F.2 Proofs for Chapter 4 . 312

F.2.1 Proof of Theorem 4.5.2 . 312

F.2.2 Proof of Theorem 4.5.3 . 317

F.2.3 Proof of Lemma 4.7.1 . 318

F.2.4 Proof of Lemma 4.7.2 . 319

F.2.5 Proof of Lemma 4.7.3 . 319

F.3 Proofs for Chapter 7 . 321

F.3.1 Generalized Markov decision processes 321

F.3.2 Proof of Theorem 7.2.1 . 325

F.3.3 Proof of Theorem 7.2.2 . 325

F.3.4 Proof of Lemma 7.3.1 . 325

F.3.5 Proof of Theorem 7.3.2 . 327

F.3.6 Proof of Theorem 7.3.3 . 328

F.4 Proofs for Chapter 8 . 328

F.4.1 Proof of Theorem 8.2.1 . 328

F.4.2 Proof of Theorem 8.3.1 . 332

F.4.3 Proof of Theorem 8.4.1 . 332

F.4.4 Proof of Theorem 8.4.2 . 334

In this appendix, we provide the formal proofs of the main results presented

along the thesis.

308 F. Proofs

F.1 Proofs for Chapter 3

The proofs in this section belong to the theorems found in Chapter 3 of the main
text.

F.1.1 Proof of Theorem 3.3.1

The proof closely follows [300]. We use Theorem D.1.4 of Appendix D.
Let B be the space of bounded functions defined on X and consider the random-

ized operator Tt : B ×B −→ B defined by

Tt(U, V)(i) =

{∑
j∈X P̂t(it, j)

(
r̂t(it, j) + γV (j)

)
if i = it;

U(i) otherwise.

We want to show that the operator Tt approximates the dynamic programming
operator Tδ defined in (3.3).

Notice that, by assumption, all states i ∈ X are visited infinitely often; further-
more, when a state i is visited, Ut+1(i) does not depend on Ut. Therefore, to show
that Tt approximates Tδ we need only to show that∣∣∣∣∣∑

j∈X

P̂t(i, j)
(
r̂t(i, j) + γV (j)

)−∑
j∈X

Pδ(i, j)
(
rδ(i, j) + γV (j)

)∣∣∣∣∣→ 0

for all i ∈ X , where rδ is defined in Subsection 3.3.1.
Some explicit computations now yield∣∣∣∣∣∣

∑
j∈X

P̂t(i, j)
(
r̂t(i, j) + γV (j)

)−∑
j∈X

Pδ(i, j)
(
rδ(i, j) + γV (j)

)∣∣∣∣∣∣ ≤
≤ max

i∈X

∣∣∣∣∣∣
∑
j∈X

P̂t(i, j)
(
r̂t(i, j) + γV (j)

)−∑
j∈X

Pδ(i, j)
(
rδ(i, j) + γV (j)

)∣∣∣∣∣∣ ≤
≤ max

i∈X

∣∣∣∣∣∣
∑
j∈X

P̂t(i, j)
(
r̂t(i, j) + γV (j)

)−∑
j∈X

P̂t(i, j)
(
rδ(i, j) + γV (j)

)∣∣∣∣∣∣+

+ max
i∈X

∣∣∣∣∣∣
∑
j∈X

P̂t(i, j)
(
rδ(i, j) + γV (j)

)− Pδ(i, j)
(
rδ(i, j) + γV (j)

)∣∣∣∣∣∣ ≤
≤ max
i,j∈X

|r̂t(i, j)− rδ(i, j)|+ max
i∈X

∣∣∣∣∣∣
∑
j∈X

(
P̂t(i, j)− Pδ(i, j)

)(
rδ(i, j) + γV (j)

)∣∣∣∣∣∣ .
Since, by the law of large numbers, P̂t → Pδ and r̂t → rδ, the last term goes to zero
as t→∞ and, Tt approximates Tδ.

Now, by defining the functions ft(i) and gt(i) as

ft(i) =

{
γ if i = it;

0 otherwise

F.1. Proofs for Chapter 3 309

and

gt(i) =

{
0 if i = it;

1 otherwise,

all conditions of Theorem D.1.4 are verified, and the conclusion immediately follows.
2

F.1.2 Proof of Theorem 3.3.2

The proof is basically similar to that of Theorem 3.3.1. We use Theorem D.1.4 of
Appendix D.

Let B be the space of bounded functions defined on X × A and consider the
randomized operator Tt : B ×B −→ B defined by

Tt(Q,Q′)(i, a) =

{∑
j∈X P̂t(it, at, j)

(
r̂t(it, at, j) + γmaxb∈AQ′(j, b)

)
if (i, a) = (it, at);

Q(i, a) otherwise.

We want to show that the operator Tt approximates the dynamic programming
operator H defined in (3.2).

Repeating the reasoning in the proof of Theorem 3.3.1, we have that∣∣∣∣∣∣
∑
j∈X

P̂t(i, a, j)
(
r̂t(i, a, j) + γmax

b∈A
Q′(j, b)

)−∑
j∈X

Pa(i, j)
(
r(i, a, j) + γmax

b∈A
Q′(j, b)

)∣∣∣∣∣∣→ 0

for all (i, a) ∈ X ×A and this implies that Tt approximates H. Defining

ft(i, a) =

{
γ if (i, a) = (it, at);

0 otherwise

and

gt(i, a) =

{
0 if (i, a) = (it, at);

1 otherwise,

we can apply Theorem D.1.4 and the assertion of the theorem follows. 2

F.1.3 Proof of Theorem 3.4.1

The proof closely follows [131] We use Lemma D.1.3 of Appendix D.
For that purpose, we rewrite the update rule for TD(0) as

Vt+1(it) = (1− αt(it))Vt(it) + αt(it)
(
rt + γVt(it+1)

)
.

Subtracting V δ(it) in both sides and writing ∆t(it) = Vt(it)− V δ(it), we get

∆t+1(it) = (1− αt(it))∆t(it) + αt(it)
(
rt + γVt(it+1)− V δ(it)

)
.

By identifying the set X in Lemma D.1.3 of Appendix D with X and Ft(x) with

310 F. Proofs

rt + γVt(it+1)− V δ(it) we have, for i = it,

E [Ft(i) | Ft] =
∑
j∈X

Pδ(it, j)
[
rδ(it, j) + γVt(j)− V δ(it)

]
and 0 otherwise. We denoted by rδ(it, j) the reward r(it, δ(it), j), defined in Sec-
tion 3.3.

Now replacing the definition of V δ(it, at) in the expression for E [Ft(i) | Ft] yields

E [Ft(it) | Ft] =

=
∑
j∈X

Pδ(it, j)
[
rδ(it, j) + γVt(j, b)− V δ(it)

]
=

= γ
∑
j∈X

Pδ(it, j)
[
Vt(j)− V δ(j)

]
.

By computing the norm we obtain

‖E [Ft(i) | Ft]‖∞ =

= max
i
|E [Ft(i) | Ft]| ≤

≤ γmax
i

∑
j∈X

Pδ(i, j)
∣∣Vt(j)− V δ(j)

∣∣ ≤
≤ γ ‖∆t‖∞ .

This ensures the second condition of Lemma D.1.3. The third condition arises
immediately as a consequence of the fact that the rewards r are bounded. Therefore,
by Lemma D.1.3, ∆t → 0 w.p.1 or, equivalently, Vt → V δ w.p.1.

F.1.4 Proof of Theorem 3.4.2

The proof of this theorem is essentially similar to that of Theorem 3.4.1 and closely
follows [131]. We start by rewriting the update rule for Q-learning as

Qt+1(it, at) = (1− αt(it, at))Qt(it, at) + αt(it, at)
(
rt + γmax

b∈A
Qt(it+1, b)

)
and subtract Q∗(it, at) in both sides. We let ∆t(it, at) = Qt(it, at) − Q∗(it, at),
yielding

∆t+1(it, at) = (1− αt(it, at))∆t(it, at) + αt(it, at)
(
rt + γmax

b∈A
Qt(it+1, b)−Q∗(it, at)

)
.

By identifying the set X in Lemma D.1.3 of Appendix D with the set X ×A and
Ft(x) with rt + γmaxb∈AQt(it+1, b)−Q∗(it, at) we have, when (i, a) = (it, at),

E [Ft(i, a) | Ft] =
∑
j∈X

Pat(it, j)
[
r(it, at, j) + γmax

b∈A
Qt(j, b)−Q∗(it, at)

]
and 0 otherwise. Using the definition ofQ∗(it, at) in the expression of E [Ft(i, a) | Ft],

F.1. Proofs for Chapter 3 311

we have

E [Ft(it, at) | Ft] =

=
∑
j∈X

Pat(it, j)
[
r(it, at, j) + γmax

b∈A
Qt(j, b)−Q∗(it, at)

]
=

= γ
∑
j∈X

Pat(it, j)
[

max
b∈A

Qt(j, b)−max
b∈A

Q∗(j, b)
]
.

By computing the norm we obtain, easily,

‖E [Ft(i, a) | Ft]‖∞ =

= max
i,a
|E [Ft(i, a) | Ft]| ≤

≤ γmax
i,a

∑
j∈X

Pa(i, j) max
j,b

∣∣∣∣Qt(j, b)−max
b∈A

Q∗(j, b)

∣∣∣∣ =

= γ ‖∆t‖∞ .

This ensures the second condition of Lemma D.1.3.
Like in the proof of Theorem 3.4.1, the third condition arises from the fact that

the rewards r are bounded. Lemma D.1.3 ensures that ∆t → 0 w.p.1 or, equivalently,
Qt → Q∗ w.p.1.

On the other hand, the fact that the learning policy is GLIE ensures that, as
t→∞, δt(i, a)→ 1 if a = arg max

a∈A
Qt(i, a) and 0 otherwise. Since, as seen, Qt → Q∗

w.p.1, it is immediate that δt → δ∗ w.p.1. 2

F.1.5 Proof of Theorem 3.4.3

This proof follows from the proof of Theorem 3.4.2 and closely follows [280]. We use
Lemma D.1.3 of Appendix D.

As in the proof of Theorem 3.4.2, we start by rewriting the update rule for SARSA
as

Qt+1(it, at) = (1− αt(it, at))Qt(it, at) + αt(it, at)
(
rt + γmax

b∈A
Qt(it+1, b)

)
+

+ αt(it, at)γ
(
Qt(it+1, at+1)−max

b∈A
Qt(it+1, b)

)
.

Subtracting Q∗(it, at) in both sides and writing ∆t(it, at) = Qt(it, at)−Q∗(it, at), we
get

∆t+1(it, at) = (1− αt(it, at))∆t(it, at) + αt(it, at)
(
rt + γmax

b∈A
Qt(it+1, b)−Q∗(it, at)

)
+

+ αt(it, at)γ
(
Qt(it+1, at+1)−max

b∈A
Qt(it+1, b)

)
=

= (1− αt(it, at))∆t(it, at) + αt(it, at)
(
FQt (it, at) + Ct(it, at)

)
,

312 F. Proofs

where FQ(i, a) is

FQ
t (i, a) =

{
rt + γmaxb∈AQt(it+1, b)−Q∗(it, at) if (i, a) = (it, at)

0 otherwise

and

Ct(i, a) =

{
γ
(
Qt(it+1, at+1)−maxb∈AQt(it+1, b)

)
if (i, a) = (it, at)

0 otherwise.

From the proof of Theorem 3.4.2, we have that∥∥∥E [FQ
t (i, a) | Ft

]∥∥∥ ≤ γ ‖∆t‖ .

On the other hand, the learning policy δ is admittedly GLIE and, therefore,

ct = ‖E [Ct(i, a) | Ft]‖ → 0,

as t→∞.1

The bound on the variance of FQ
t (i, a) + Ct(i, a) arises as a consequence of the

corresponding bound on the variance of FQ
t (i, a). 2

F.2 Proofs for Chapter 4

The proofs in this section belong to several results found in Chapter 4 of the main
text.

F.2.1 Proof of Theorem 4.5.2

We separately establish each of the statements in Theorem 4.5.2. To prove State-
ment 1, we write (4.15) in the form

θt+1 = θt + αt+1H(θt, Yt+1),

and use Theorem D.1.1 of Appendix D: we show that the associated ODE has
a globally asymptotically stable equilibrium point, which implies the existence of
a Lyapunov function U verifying the requirements of the referred theorem. That
establishes convergence of (4.15) w.p.1.

To prove Statement 2 of Theorem 4.5.2, we provide an interpretation of the
equilibrium point of the ODE associated with algorithm (4.15) as the fixed point of
a composite operator.

1This holds since the estimates Qt remain bounded and the set X×A is finite. The boundedness
of Qt arises as a consequence Theorem 3.4.2: the trajectories {Qt} of the SARSA algorithm are
upper-bounded by those of Q-learning and lower-bounded by those of an alternate version of Q-
learning that minimizes Qt instead of maximizing it.

F.2. Proofs for Chapter 4 313

Regularity assumptions on Markov chains

In this subsection we prove that, under the assumptions of Theorem 4.5.2, Ass. 1
and Ass. 2 of Theorem D.1.1 actually hold.

Let Yt = (Xt−1, At−1, Xt) for each t ∈ T . The sequence {Yt} is a stochastic
process, since Xt−1, At−1 and Xt are r.v.s for all t. Furthermore, denoting by Ft the
σ-field generated by the history

Ht = {θ0, X0, . . . , Xt, A0, . . . , At} ,

we have
P [Yt+1 ∈ U | Ft] = P [Xt+1 ∈ U2, At ∈ UA, Xt ∈ U1 | Ft] ,

for any set U = U1×UA×U2, with U1, U2 ∈ B(X) and UA ⊂ A. This, in turn, leads
to

P [Yt+1 ∈ U | Ft] = P [Xt+1 ∈ U2, At ∈ UA, Xt ∈ U1 | Xt = x] = P [Yt+1 ∈ U | Yt]

and this means that {Yt} is a Markov chain with state-space X×A×X and transition
probabilities given by

P [Yt+1 ∈ U | Yt = (x, a, y)] =

{∑
b∈UA δ(y, b)Pb(y, U2), if y ∈ U1;

0 otherwise,
(F.1)

where U = U1 × UA × U2.
Let Y = X ×A×X denote the state-space and PY denote the transition proba-

bility kernel for the Markov chain {Yt}. Since {Xt} is assumed geometrically ergodic
with invariant probability measure µX , δ(x, a) > 0 for every a and µX-almost every
x and A is a finite set, {Yt} is also geometrically ergodic, with invariant probability
measure µY verifying

µY (U) =

∫
U1

∑
a∈UA

δ(x, a)Pa(x, U2)dµX(x),

with U = U1 × UA × U2, U1, U2 ∈ B(X) and UA ⊂ A. That µY above is indeed
invariant with respect to the transition probabilities PY in (F.1) can easily be checked
by applying directly the definition of invariant measure (see Appendix B).

We now write algorithm (4.15) as

θt+1 = θt + αt+1H(θt, Yt+1),

where {Yt} is as defined above and the ith component of H is given, for a generic θ,
by

H(θ, y)i = ξi(x, a)
(
r(x, a, z) + γmax

b∈A
ξ>(z, b)θ − ξ>(x, a)θ

)
, (F.2)

with y = (x, a, z). This leads to the following lemma.

314 F. Proofs

Lemma F.2.1. Under the conditions of Theorem 4.5.2 there is a constant K > 0
such that

‖H(θ, y)‖ ≤ K(1 + ‖θ‖),
where ‖·‖ denotes the sup-norm.

Proof We establish the assertion of the lemma by successively bounding the several
terms of H. We have, for y = (x, a, z),

‖H(θ, y)‖ = max
i=1,...,N

|Hi(θ, y)| ≤

≤ max
i=1,...,N

∣∣∣∣ξi(x, a)
(
r(x, a, z) + γmax

b∈A
ξ>(z, b)θ

)− ξ>(x, a)θ

∣∣∣∣ ≤
≤ max

i=1,...,N
|ξi(x, a)r(x, a, z)|+ γmax

b∈A

∣∣ξi(x, a)ξ>(z, b)θ
∣∣+
∣∣ξ>(x, a)θi

∣∣ .
Since, by assumption, |r(x, a, z)| ≤ R and |ξi(x, a)| ≤ 1, we have

‖H(θ, y)‖ ≤ R+ (1 + γ) ‖θ‖

and, finally, by setting K = max {R; (1 + γ)},

‖H(θ, y)‖ ≤ K(1 + ‖θ‖).

2

This leads to the following proposition.

Proposition F.2.2. Under the conditions of Theorem 4.5.2, Ass. 1 and Ass. 2 of
Theorem D.1.1 hold.

Proof Ass. 1.a follows trivially from Lemma F.2.1. Ass. 1.b follows from the fact
that Y is compact. Ass. 1.c follows from Theorem B.9.5 (see Appendix B) and since
PY does not depend on θ, Ass. 2 trivially holds. 2

Convergence of the iterates

Given that the requirements of Theorem D.1.1 of Appendix D are satisfied, that
same result guarantees the convergence of {θt} w.p.1 as long as the ODE

θ̇t = h(θt), (F.3)

with
h(θ) = EµY

[
ξ(x, a)

(
r(x, a, z) + γmax

b∈A
ξ>(z, b)θ − ξ>(x, a)θ

)]
, (F.4)

F.2. Proofs for Chapter 4 315

has a globally asymptotically stable equilibrium θ∗. This is established in the next
proposition.

Proposition F.2.3. The ODE
θ̇t = h(θt), (F.5)

where h is defined in (F.4), is globally asymptotically stable.

Proof We start by rewriting h as

h(θ) = h1(θ)− h2(θ),

with
h1(θ) = EµY

[
ξ(x, a)

(
r(x, a, z) + γmax

b∈A
ξ>(z, b)θ

)]
and

h2(θ) = EµY

[
ξ(x, a)ξ>(x, a)θ

]
.

Some simple calculations lead to the conclusion that

‖h1(θ1)− h1(θ2)‖∞ ≤ γ ‖θ1 − θ2‖∞ (F.6)

and
‖h2(θ1)− h2(θ2)‖∞ ≤ ‖θ1 − θ2‖∞ . (F.7)

On the other hand, suppose that {θ1
t } and {θ2

t } are two trajectories of the ODE
starting in different initial conditions. Explicit calculations now yield

d

dt

∥∥θ1
t − θ2

t

∥∥
p

=
∥∥θ1

t − θ2
t

∥∥1−p
p

∑
i

(θ1
t (i)− θ2

t (i))
p−1·

· (h1(θ
1
t)i − h1(θ

2
t)i)−

− ∥∥θ1
t − θ2

t

∥∥1−p
p

∑
i

(θ1
t (i)− θ2

t (i))
p−1·

· (h2(θ
1
t)i − h2(θ

2
t)i),

where we denoted by h1(θ)i the ith component of h1(θ) and similarly for h2. Applying
Hölder’s inequality to the summations leads to

d

dt

∥∥θ1
t − θ2

t

∥∥
p
≤ ∥∥h1(θ

1
t)− h1(θ

2
t)
∥∥
p
− ∥∥h2(θ

1
t)− h2(θ

2
t)
∥∥
p
.

Taking the limit as p→∞ and using (F.6) and (F.7) leads to

d

dt

∥∥θ1
t − θ2

t

∥∥
∞ ≤ γ

∥∥θ1
t − θ2

t

∥∥
∞ −

∥∥θ1
t − θ2

t

∥∥
∞

316 F. Proofs

which, in turn, leads to

d

dt

∥∥θ1
t − θ2

t

∥∥
∞ ≤ (γ − 1)

∥∥θ1
t − θ2

t

∥∥
∞ . (F.8)

Let λ = 1− γ > 0. Upon integration, (F.8) becomes∥∥θ1
t − θ2

t

∥∥
∞ ≤ e−λt

∥∥θ1
0 − θ2

0

∥∥
∞ .

This means that all trajectories of the algorithm approach exponentially fast and
the ODE is globally exponentially stable. 2

By further noticing that the ODE (F.5) is autonomous (does not depend explic-
itly on t), we can conclude (by taking θ2

t = θ1
t+T in the reasoning above) that no

periodic orbits can exist, which establishes the existence of a globally asymptotically
stable equilibrium point for (F.5). The fact that the ODE has a globally asymptoti-
cally stable equilibrium is sufficient to ensure the existence of a function U verifying
the conditions of Theorem D.1.1,2 which in turn establishes the convergence of the
sequence {θt} w.p.1.

Limit of convergence

An equilibrium point θ∗ for the ODE above verifies h(θ∗) = 0. By explicitly writing
h, it is clear that h(θ∗) = 0 is equivalent to

EµY

[
ξ(x, a)

(
r(x, a, z) + γmax

b∈A
ξ>(z, b)θ

)]
=

= EµY

[
ξ(x, a)ξ>(x, a)θ

]
which in turn leads to

θ∗ = Σ−1EµY

[
ξ(x, a)

(
r(x, a, z) + γmax

b∈A
ξ>(z, b)θ

)]
.

Therefore, the sequence {θt} generated by (4.15) converges w.p.1 to the limit point
θ∗ verifying the following recursive relation:

θ∗ = PHQ(θ∗)

or, more explicitly,
θ∗ = Σ−1EY [ξ(x, a)(HQθ∗)(x, a)] , (F.9)

where Q(θ) is the function
Qθ(x, a) = ξ>(x, a)θ.

The purpose of (4.15) is to approximate the optimal Q-function Q∗ by an el-
ement of the linear space Q spanned by the basis functions ξi ∈ Ξ. We would
like to determine the element q∗ ∈ Q that, in some sense, “best approximates” Q∗.

2This guarantee arises from standard converse Lyapunov theorems.

F.2. Proofs for Chapter 4 317

One possibility is to consider the orthogonal projection of Q∗ on Q. Denote the
orthogonal projection operator on Q by PQ.

Finding the projection of Q∗ on Q translates into finding the function f ∈ Q
verifying

f(x, a) = (PQQ∗)(x, a) = (PQHQ∗)(x, a).

However, f thus defined is not a fixed point of any of the involved operators, and
there is not an obvious procedure to write a stochastic approximation algorithm to
find f . Therefore, we instead consider the function g verifying

g(x, a) = (PQHg)(x, a). (F.10)

The function g is a fixed point of the operator PQH and can easily be implemented
using stochastic approximation. The projection PQ can be expressed as

(PQf)(x, a) = ξ>(x, a)Σ−1EY [ξ(z, u)f(z, u)]

for any function f . But this means that, given the limit point θ∗ of algorithm (4.15),
the corresponding function Qθ∗ verifies

Qθ∗(x, a) = ξ>(x, a)(PHQθ∗) =

= ξ>(x, a)Σ−1EY [ξ(z, u)HQθ∗(z, u)] =

= (PQHQθ)(x, a)

where the second equality comes from (F.9). Finally, this implies thatQθ∗ verifies the
fixed point equation in (F.10), which establishes statement (4.16) of Theorem 4.5.2.

This concludes the proof of Theorem 4.5.2. 2

F.2.2 Proof of Theorem 4.5.3

To establish the convergence of approximate SARSA with function approximation,
we once again resort to Theorem D.1.1 of Appendix D. We start by writing the
update rule as

θt+1 = θt + αt+1H
∗(θt, Yt+1)+

+ αt+1

(
E [Ht(θt, Yt+1, At+1)]−H∗(θt, Yt+1)

)
+

+ αt+1

(
Ht(θt, Yt+1, At+1)− E [Ht(θt, Yt+1, At+1)]

)
.

We consider the Markov chain {Yt} defined for each t as Yt = (Xt−1, At−1, Xt). We
denote by Y the corresponding domain of definition, Y = X ×A×X . The mappings
H∗ and Ht are given by

H∗(θ, Yt+1) = ξ(Xt, At)
(
r(Xt, At, Xt+1) + γmax

b∈A
ξ>(Xt+1, b)θ − ξ>(Xt, At)θ

)
;

Ht(θt, Yt+1, At+1) = ξ(Xt, At)
(
r(Xt, At, Xt+1) + γξ>(Xt+1, At+1)θ − ξ>(Xt, At)θ

)
.

318 F. Proofs

We now define two auxiliary mappings H and Ct as

H(θ, Yt+1, At+1) = H∗(θt, Yt+1) +Ht(θt, Yt+1, At+1)− E [Ht(θt, Yt+1, At+1)]

Ct(θ, Yt+1) =
1

αt

(
E [Ht(θt, Yt+1, At+1)]−H∗(θt, Yt+1)

)
,

and rewrite the update rule once again as

θt+1 = θt + αt+1H(θt, Yt+1, At+1) + α2
tCt(θt, Yt+1).

We notice that, since the policy (δθ)t is admittedly GLIE, there must be a con-
stant K0 such that, w.p.1,

‖Ct(θ, y)‖ ≤ K0(1 + ‖θ‖). (F.11)

In fact, since (δθ)t is GLIE, the action choice is greedy in the limit and, therefore

E [Ht(θt, Yt+1, At+1)]−H∗(θt, Yt+1)→ 0.

This, in turn, implies that
‖Ct(θ, y)‖ ≤ K

ct
αt
‖θ‖

for some K > 0 and some sequence ct → 0 and (F.11) follows.3

On the other hand, although the policy (δθ)t now depends on the parameter
vector θ, it is not hard to check that Propositions F.2.2 and F.2.3 still hold and that
the ODE associated with approximate SARSA has a globally asymptotically stable
equilibrium point θ∗ verifying

θ∗ = PHQθ∗ .

Therefore, by Theorem D.1.1, approximate SARSA with function approximation
converges to the same limit point of Q-learning with function approximation and
statement (4.20) follows. 2

F.2.3 Proof of Lemma 4.7.1

Notice that the fact that (X ,P) is irreducible means that for any state i ∈ X , there
is m > 0 such that

Pm(i, i∗) > 0.

On the other hand, since i∗ is admittedly “observable”, this means that if Xt = i∗

for some t ∈ T , then πt(i) = Ii∗(i). We will denote such belief by π∗.
The measure ϕ defined for any set U ∈ B(Sn) as ϕ(U) = Iπ∗(U) is an irreducibil-

ity measure for the chain (Sn, P̄) since

ϕ(U) > 0⇒ Pπ [τU <∞] > 0,

for any π ∈ Sn. Therefore, by Proposition B.2.1, there is an irreducibility measure
3As remarked in Chapter 3, it holds that lim ct/αt = M for some constant M , since otherwise

(δθ)t would not ensure sufficient exploration.

F.2. Proofs for Chapter 4 319

ψ on B(Sn) and (Sn, P̄) is ψ-irreducible. 2

F.2.4 Proof of Lemma 4.7.2

We proceed by contradiction.
Suppose that under the conditions of the lemma the chain (Sn, P̄) is periodic,

with period d > 1. It is clear that if a d-cycle exists with d > 1, then there is
a set Dk in the d-cycle such that π∗ ∈ Dk, where π∗ is as defined in the proof of
Lemma 4.7.1. This means that Pm(i∗, i∗) > 0 only if m = nd + k, for some n ∈ N.
This in turn means that i∗ has period d and hence (since (X ,P) is irreducible) so
do all the states in X . But this implies that the chain (X ,P) is periodic with period
d, which is false, by assumption. Then, (Sn, P̄) must be aperiodic and the proof is
complete. 2

F.2.5 Proof of Lemma 4.7.3

To prove the desired result, we show that there is a petite set C ∈ B+(Sn) and that
the chain (Sn, P̄) is weak Feller. We then apply Theorem B.5.2 to establish Sn to be
petite.

Notice, first of all, that since (X ,P) is irreducible and aperiodic and X is finite,
the chain (X ,P) is ergodic and, consequently, geometrically ergodic.

Let π∗ be as defined in the proof of Lemma 4.7.1. Take an arbitrary element
z ∈ Z and define π0 as

π0(j) =

∑
i∈X π

∗(i)P(i, j)O(j, z)∑
i,k∈X π

∗(i)P(i, k)O(k, z)
,

i.e., π0 is the belief state succeeding to π∗ when observation z occurs. Since∑
i

π0(i) = 1,

this means that there is a state j ∈ X such that π0(j) > 0. Let

J = min
i
{π0(i) | π0(i) > 0}

and
I = arg min

i
{π0(i) | π0(i) > 0} .

Take any 0 < ε1 < J and consider the set

C = {π ∈ Sn | π(I) > ε1} .

Clearly, the set C is open inRn and, consequently, it is open in the subspace topology
on Sn. On the other hand, π0 ∈ C.

We now show that C is νM -small, for some measure νM and some M ∈ N.

320 F. Proofs

Since the chain (X ,P) is irreducible by assumption, there is M > 0 such that

PM−1(I, i∗) > 0.

Let ε2 = PM−1(I, i∗). Using the Chapman-Kolmogorov inequality, for any π ∈ C
and any set U ∈ B(Sn),

P̄M(π, U) ≥ P̄M−1(π, {π∗})P̄(π∗, U) =

=
∑
j∈X

π(j)PM−1(j, i∗)P̄(π∗, U) >

> ε1ε2P̄(π∗, U).

Then, the measure νM defined for each set U ∈ B(Sn) as νM(U) = ε1ε2P̄(π∗, U) is a
measure on B(Sn) and C is νM -small and therefore petite. On the other hand, it is
immediate to see that, since π0 ∈ C, ψ(C) > 0.

We now show that the chain (Sn, P̄) is a (weak) Feller chain.

Let f be a bounded continuous function defined on Sn. Then, since Sn is compact
and P̄(π, ·) is a probability measure on B(() Sn),

(P̄f)(π) =

∫
Sn

P̄(π, dω)f(ω) ≤ max
π∈Sn
|f | ,

and (P̄f) is bounded. On the other hand, notice that, for any z ∈ Z, the n-
dimensional function π → Π(π, z) given by

Π(π, z)j =

∑
i∈X π(i)P(i, j)O(j, z)∑
i,k∈X π(i)P(i, k)O(k, z)

, (F.12)

is clearly continuous on π. Then, fz(π) defined for each π ∈ Sn and each z ∈ Z as

fz(π) = f(Π(π, z)),

where πz is given by (F.12) is the composition of two continuous functions and,
hence, continuous. Finally,

(P̄f)(π) =
∑
z

∑
i,j

π(i)P(i, j)O(j, z)fz(π)

and it is clearly also a continuous function of π. Then, P̄ maps C(Sn) into C(Sn)
and Theorem B.5.1 ensures that (Sn, P̄) is a weak Feller chain.

We have established (Sn, P̄) to be a ψ-irreducible Feller chain and have found a
petite set C ∈ B+(Sn). Theorem B.5.2 now ensures that all compact subsets of Sn
are petite and, since Sn is itself compact, it is petite and the proof is complete. 2

F.3. Proofs for Chapter 7 321

F.3 Proofs for Chapter 7

The proofs in this section belong to the results found in Chapter 7 of the main
text. We also introduce the framework of generalized Markov decision processes
by Szepesvári and Littman [299]. The use of this framework will greatly simplify
several of the proofs in this section.

F.3.1 Generalized Markov decision processes

Generalized Markov decision processes are, in its essence, similar to MDPs as de-
scribed in Chapter 2 and the methods featured are also similar to those described
in Chapter 3. However, the use of generalized operators will allow us to formally
cast team Markov games as a particular of a generalized MDP and thus use all the
method available for the latter class of processes. The generalized MDP (GMDP)
framework was introduced by Szepesvári and Littman [299] and further explored in
[168, 300].

A generalized Markov decision process is also a tuple (X ,A,P, r, γ), where X ,
A, P, r and γ are as in standard MDPs. For a matter of simplicity, we assume X to
be finite, but all definitions and results hold mutatis mutandis if X is infinite. We
will assume that P and r are unknown. A generalized MDP represents a generalized
decision-maker trying to optimize its expected discounted cumulative reward, with
a discount factor 0 < γ < 1. We referred a generalized decision-maker since we
make no a priori assumptions on the decision-making process. In particular, we do
not restrict decision-making to be ruled by a single deciding entity, thus including
the possibility of multiple decision-makers.

We also referred the optimization of the discounted cumulative reward, since we
make no prior assumptions on the optimization process. In particular, we do not
restrict this optimization to be a maximization, requiring it only to be non-expansive
and to verify

min
a∈A

f(x, a) ≤ (
⊗

f)(x) ≤ max
a∈A

f(x, a)

for any function f : X × A → R, where we denoted the generalized optimization
operator by

⊗
.

As in standard MDPs, the objective of the generalized decision-maker is to opti-
mize over all possible sequences of actions {At} the infinite-horizon total discounted
reward, defined as in (2.5). The difference is that the optimal value function V ∗ is
now defined for each state i ∈ X as

V ∗(i) =
⊗
{At}

E

[
∞∑
t=0

γtR(Xt, At) | X0 = i

]

and verifies the generalized Bellman equation

V ∗(i) =
⊗
a∈A

∑
j

Pa(i, j)
[
r(i, a, j) + γV ∗(j)

]
.

322 F. Proofs

The function Q∗ is naturally defined from V ∗ as

Q∗(i, a) =
∑
j

Pa(i, j)
[
r(i, a, j) + γV ∗(j)

]
and the optimal policy δ∗ as

δ∗(i) = arg
⊗
a∈A

Q∗(i, a),

for all i ∈ X . We once again emphasize that GMDPs and MDPs are, in its essence,
equivalent formulations. However, the use of generalized operator

⊗
in GMDPs will

prove very useful: by specifying the operator
⊗

we can handle MDPs and TMGs
using a common formulation and the results in any of the two frameworks carries
immediately to the other.

We now introduce the “generalized” versions of the ARTQI and Q-learning algo-
rithms, described in their original versions in Chapter 3.

We start by generalized ARTQI. In generalized MDPs, the maximization is re-
placed by the generalized optimization operator

⊗
. However, the expressions to

estimate P and r remain the same as those introduced in Chapter 3. As in ARTQI,
we apply the fixed point iteration for Q∗ using P̂t and r̂t instead of P and r:

Qt+1(it, at) = P̂t(it, at, j)
(
r̂t(it, at, j) + γ

⊗
b∈A

Qt(j, b)
)
,

The generalized version of Q-learning starts with any initial estimate Q0, and
uses the update

Qt+1(it, at) = Qt(it, at) + αt(it, at)

(
rt + γ

⊗
b∈A

Qt(it+1, b)−Qt(it, at)

)
(F.13)

to generate a sequence {Qt} of estimates for the optimal Q-function.
Convergence of the sequences {Qt} obtained with both generalized ARTQI and

generalized Q-learning can be established using Theorem D.1.4 in Appendix D. This
is summarized in the following results.

Theorem F.3.1. Given a generalized MDP (X ,A,P, r, γ), the sequence of estimates
{Qt} generated by generalized ARTQI converges to Q∗ w.p.1, as long as every state-
action pair (i, a) ∈ X ×A is visited infinitely often.

Proof The proof is similar to that of Theorem 3.3.2. We use Theorem D.1.4 of
Appendix D.

Let B be the space of bounded functions defined on X × A and consider the

F.3. Proofs for Chapter 7 323

randomized operator Tt : B ×B −→ B defined by

Tt(Q,Q
′)(i, a) =

{
P̂t(it, at, j)

(
r̂t(it, at, j) + γ

⊗
b∈AQ

′(j, b)
)

if (i, a) = (it, at);

Q(i, a) otherwise.

We want to show that the operator Tt approximates the operator T defined as

(TQ)(i, a) = Pa(i, j)
[
r(i, a, j) + γ

⊗
b∈A

Q∗(j, b)
]
.

By assumption, all state-action pairs (i, a) ∈ X × A are visited infinitely of-
ten; furthermore, when a pair (i, a) is visited, Qt+1(i, a) does not depend on Qt.
Therefore, to show that Tt approximates T defined above, we need only to show
that∣∣∣∣∣P̂t(i, a, j)[r̂t(i, a, j) + γ

⊗
b∈A

Q′(j, b)
]− Pa(i, j)

[
r(i, a, j) + γ

⊗
b∈A

Q′(j, b)
]∣∣∣∣∣→ 0

for all pairs (i, a).
Repeating the computations in the proof of Theorem 3.3.1 yields∣∣∣∣∣P̂t(i, a, j)[r̂t(i, a, j) + γ

⊗
b∈A

Q′(j, b)
]− Pa(i, j)

[
r(i, a, j) + γ

⊗
b∈A

Q′(j, b)
)∣∣∣∣∣ ≤

≤ max
i,a,j
|r̂t(i, a, j)− r(i, a, j)|+ max

i,a

∣∣∣∣∣[pt(i, a, j)− Pa(i, j)]

[
r(i, a, j) + γ

⊗
b∈A

Q′(j, b)

]∣∣∣∣∣ .
The law of large numbers ensures that P̂t → P and, clearly, r̂t → r. Thus, the last
term in the previous expression goes to zero as t→∞ and Tt approximates T .

Defining ft(i, a) and gt(i, a) as

ft(i, a) =

{
γ if (i, a) = (it, at);

0 otherwise

and

gt(i, a) =

{
0 if (i, a) = (it, at);

1 otherwise,

all conditions of Theorem D.1.4 are verified and the conclusion of the theorem fol-
lows. 2

Theorem F.3.2. Given a generalized MDP (X ,A,P, r, γ), the sequence of estimates
{Qt} generated by generalized Q-learning converges to Q∗ w.p.1 for any initial esti-
mate Q0, as long as ∑

t∈T

αt(i, a) =∞;
∑
t∈T

α2
t (i, a) <∞,

324 F. Proofs

and αt(i, a) = 0 if (i, a) 6= (it, at).

Proof We use Theorem D.1.4 of Appendix D.
Let B be the space of bounded functions defined on X × A and consider the

randomized operator Tt : B ×B −→ B defined by

Tt(Q,Q′)(i, a) ={
(1− αt(it, at))Q(it, at) + αt(it, at)

(
r(it, at, it+1) + γ

⊗
b∈AQ

′(it+1, b)
)

if (i, a) = (it, at);
Q(i, a) otherwise.

Further define the functions ft(i, a) and gt(i, a) to be

ft(i, a) =

{
γαt(it, at) if (i, a) = (it, at);

0 otherwise

and

gt(i, a) =

{
(1− αt(it, at)) if (i, a) = (it, at);

1 otherwise.

The restrictions imposed on the sequence of step-sizes {αt} ensures that these
functions verify the conditions of Theorem D.1.4.

It remains only to show that the operator Tt defined above approximates T at
Q∗. To see this, notice that, given any initial condition q0 ∈ B, the sequence {qt}
generated by the recursion qt+1(i, a) = Tt(qt, Q

∗)(i, a) verifies

qt+1(it, at) = (1− αt(it, at))q(it, at) + αt(it, at)
(
r(it, at, it+1) + γ

⊗
b∈A

Q∗(it+1, b)
)
.

Subtracting Q∗(it, at) on both sides and defining ∆t(i, a) = qt(i, a)−Q∗(i, a) yields

∆t+1(it, at) = (1− αt(it, at))∆(it, at) + αt(it, at)
(
r(it, at, it+1) + γ

⊗
b∈A

Q∗(it+1, b)−Q∗(it, at)
)
.

Repeating the steps in the proof of Theorem 3.4.2, we apply Lemma D.1.3 of
Appendix D to ensure that ∆t → 0 w.p.1 or, equivalently, qt → Q∗ w.p.1. Notice,
in particular, that the inequality∥∥∥∥∥⊗

b∈A

Qt(j, b)−
⊗
b∈A

Q∗(j, b)

∥∥∥∥∥ ≤ ‖∆t‖

holds since
⊗

is admittedly a non-expansion.
Then, by Theorem D.1.4, the conclusion of the Theorem follows. 2

In the next proofs we take advantage of the fact that TMGs can be recast as
generalized MDPs to trivially extend the proofs from Chapter 3.

F.3. Proofs for Chapter 7 325

F.3.2 Proof of Theorem 7.2.1

To prove Theorem 7.2.1 we make use of Theorem F.3.1 above by reducing a TMG
to a GMDP. To this we only need to show that the update in (7.3) can be written
in terms of a generalized operator

⊗
verifying the conditions above. By simple

inspection, we conclude that ⊗
a∈A

f(i, a) = max
a∈A

f(i, a)

that clearly verifies ∥∥∥∥∥⊗
a∈A

f −
⊗
a∈A

g

∥∥∥∥∥
∞

≤ ‖f − g‖∞

and
min
a∈A

f(x, a) ≤ (
⊗

f)(x) ≤ max
a∈A

f(x, a).

This means that TMGs are generalized MDPs with⊗
a∈A

f(i, a) = max
a∈A

f(i, a)

and the conclusion follows from Theorem F.3.1. 2

F.3.3 Proof of Theorem 7.2.2

As seen in the proof of Theorem 7.2.1, TMGs are generalized MDPs with⊗
a∈A

f(i, a) = max
a∈A

f(i, a)

and the conclusion of the Theorem follows immediately from Theorem F.3.2. 2

F.3.4 Proof of Lemma 7.3.1

The proof closely follows the proof of Lemma 6 in [330].
Let i ∈ X be some fixed state and let λT be the event that, for all t > T ,

max
a∈A
|Qt(i, a)−Q∗(i, a)| < K0

2
B(Nt).

Since, by assumption,

lim
t→∞

rate(Nt)

B(Nt)
= 0,

it holds that
lim
t→∞

K1rate(Nt)

K0B(Nt)
= 0,

326 F. Proofs

for any positive constant K1. Therefore, and since, by hypothesis,

‖Qt −Q∗‖ ≤ K0rate(Nt)

w.p.1, given any ρ > 0 there is a time instant T0(ρ) > 0 such that, for all t > T0,

P [λt] > 1− ρ. (F.14)

Take now two actions a, b ∈ A such that a ∈ opt(i) and b verifies

b = arg max
u/∈opt(i)

Q∗(i, u),

where we used the compact notation opt(i) to represent opt0(i). Define the quantity
δ = |Q∗(i, a)−Q∗(i, b)|. By assumption, B(Nt)→ 0 and, therefore, there is a time
instant T1 such that, for all t > T1,

K0B(Nt) <
δ

2
. (F.15)

Let T = max {T0, T1}. For all t > T it holds with probability p > 1 − ρ that,
given any action b /∈ opt(i),

Qt(i, b) +K0B(Nt) < Q∗(i, b) +K0B(Nt) +
K0

2
B(Nt) <

< Q∗(i, b) +
δ

2
+
δ

4
≤

≤ max
u∈A

Q∗(i, u)− δ

4
<

< max
u∈A

Qt(i, u). (F.16)

The first inequality arises from (F.14); the second inequality arises from (F.15); the
third inequality arises from the definition of δ and the last inequality arises from
(F.14) once again. On the other hand, for all t > T it holds with probability p > 1−ρ
that, given any action a ∈ opt(i),

Qt(i, a) +K0B(Nt) > Q∗(i, a) +
K0

2
B(Nt) > max

u∈A
Qt(i, u). (F.17)

The first inequality arises from (F.14) and the second inequality from (F.15).
By construction, we have that εt ≤ ε0B(Nt), and hence εt ≤ K0B(Nt) as long as

ε0 ≤ K0. Then, joining (F.16) and (F.17), it holds with probability p > 1− ρ that,
for all t > T ,

Qt(i, b) < max
u∈A

Qt(i, u)− εt
Qt(i, a) > max

u∈A
Qt(i, u)− εt,

for any actions a ∈ optεt(i) and b /∈ optεt(i). The first expression implies that,

F.3. Proofs for Chapter 7 327

for any t > T , no suboptimal action belongs to optεt(i); the second expression
implies that all optimal actions do belong to optεt(i). This means that, for all
t > T , V Gt = V G with probability p > 1 − ρ and, therefore, P [ΛT] > 1 − ρ. The
conclusion of the theorem follows. 2

F.3.5 Proof of Theorem 7.3.2

We repeat the proof of Theorem 7 from [330]. We will need an intermediate result
also from [330] that we reproduce here for the sake of completeness. This lemma
generalizes the conditions for convergence of BAP presented in Theorem C.7.2 of
Appendix C. In the following lemma, K is the length of the K-samples and L(Γ) is
as defined in Appendix C, page 282.

Lemma F.3.3. Let Γ =
(
N, (Ak), r) be a fully cooperative, weakly acyclic game

w.r.t. some bias set D. If each player k ∈ N follows an individual strategy with the
GLIE property and

K ≤ m

L(Γ) + 2
,

then BAP converges w.p.1 to either a strict Nash equilibrium or a Nash equilibrium
in D.

Proof See [330]. 2

Convergence of Qt to Q∗ arises as an immediate consequence of Theorem 7.2.1,
since the GLIE policy ensures sufficient exploration.

We now establish converge in behavior to a coordinated equilibrium in the TMG(
N,X , (Ak),P, r, γ) by establishing convergence in behavior to a coordinated equi-
librium in the state-game Γ∗i , for any state i ∈ X . This, as seen, is sufficient to ensure
convergence of OAL for all i ∈ X due to the assumption of infinite exploration under
the GLIE policy.

We start by remarking that the rate of convergence for model-based learning
has been shown to verify the law of iterated logarithm [137, 330]. This means that,
w.p.1,

max
a∈A
|Qt(i, a)−Q∗(i, a)| ≤ ‖Qt −Q∗‖∞ ≤ K0

√
log log(Nt)

Nt

,

for some positive constant K0.
Take some state i ∈ X and let ΛT be the event that, for all t > T , V Gt(i, ·) =

V G(i, ·) for some (and hence all) agent k ∈ N . Since the conditions of Lemma 7.3.1
are verified by hypothesis, it holds that, given any ρ1 > 0 there is T1(ρ1) such that

P [Λt] > 1− ρ1

for all t > T1.

328 F. Proofs

Suppose now that ΛT1 occurs for some T1 > 0 and let Γ =
(
N, (Ak), Q∗(i, ·)). As

shown in [330], L(Γ) < N ; by Lemma F.3.3, BAP converges w.p.1 to a strict Nash
equilibrium or a Nash equilibrium in D. By construction, there are no strict Nash
equilibria outside D and all equilibria in D are coordinated equilibria. Therefore, if
ΛT1 occurs, BAP converges w.p.1 to a coordinated Nash equilibrium w.p.1. In other
words, there is a time T2(ρ2, T) such that, for any t > T2,

P [λt | ΛT] > 1− ρ2,

where ρ2 is an arbitrary positive constant and λT is the event that, for t > T , all
agents play an optimal joint action at state i.

All the reasoning so far implies that there is a time instant T3(ρ1, ρ2) such that,
for all t > T3,

P [λt] > P [λt | Λt] P [Λt] = (1− ρ1)(1− ρ2) > 1− ρ1 − ρ2.

Since ρ1 and ρ2 are arbitrary, the conclusion of the theorem follows. 2

F.3.6 Proof of Theorem 7.3.3

This proof is basically similar to that of Theorem 7.3.2.
Convergence of Qt to Q∗ arises as an immediate consequence of Corollary 7.2.2,

since the GLIE policy ensures sufficient exploration and the step-sizes verify the
conditions of the corollary.

Converge in behavior is established by by noticing that Q-learning has been
shown to verify w.p.1 the following error bound [137, 298]:

max
a∈A
|Qt(i, a)−Q∗(i, a)| ≤ ‖Qt −Q∗‖∞ ≤ K0

√
log log(Nt)

Nt

,

for some positive constant K0. Convergence in behavior now follows from the exact
same steps used in the proof of Theorem 7.3.2. 2

F.4 Proofs for Chapter 8

The proofs in this section belong to the theorems found in Chapter 8 of the main
text.

F.4.1 Proof of Theorem 8.2.1

Before getting into the proof of Theorem 8.2.1, and for the sake of completeness, we
provide several intermediate results that have been assumed as certain in the main
text but that have not been formally established. These results will gradually build
up to Theorem 8.2.1.

We start by establishing the existence of an optimal deterministic policy in infi-
nite MDPs.

F.4. Proofs for Chapter 8 329

Lemma F.4.1. For every Markov decision process M = (X,A,P, r, γ) with finite
action-space A and compact state-space X ⊂ Rp there is an optimal deterministic
policy.

Proof Suppose that given a non-deterministic, non-stationary policy δt is optimal.
The optimal value function is given, at any state x ∈ X , by

V ∗0 (x) = Eδt

[
∞∑
t=0

γtR(Xt, At) | X0 = x

]
.

We remark that the index 0 in V ∗0 refers to the initial time instant. The use of this
index will become apparent in what follows. Isolating the first reward R(X0, A0)
leads to

V ∗0 (x) = Eδt [R(X0, A0) | X0 = x] + Eδt

[
γ
∞∑
t=0

γtR(Xt+1, At+1) | X0 = x

]
.

If we explicitly write the expectation with respect to the policy δt, we get

V ∗0 (x) =
∑
a∈A

δ0(x, a)
∫
X
r(x, a, y)Pa(x, dy)+

+ γ
∑
a∈A

δ0(x, a)
∫
X

Eδt

[∞∑
t=0

γtR(Xt+1, At+1) | X1 = y

]
Pa(x, dy)

which, by noticing the term between square brackets to be V ∗1 (y) (observe the time
index), leads to

V ∗0 (x) =
∑
a∈A

δ0(x, a)

∫
X

[r(x, a, y) + γV ∗1 (y)] Pa(x, dy).

Let
b = arg max

a∈A

∫
X

[r(x, a, y) + γV ∗1 (y)] Pa(x, dy). (F.18)

Clearly, we have that∫
X

[r(x, b, y) + γV ∗1 (y)] Pb(x, dy) ≥
∑
a∈A

δ0(x, a)

∫
X

[r(x, a, y) + γV ∗1 (y)] Pa(x, dy),

since δ0(x, a) ≤ 1 and
∑

a∈A δ0(x, a) = 1. But then, the deterministic policy δ∗0
defined for every x ∈ X by

δ∗0(x) = arg max
a∈A

∫
X

[r(x, a, y) + γV ∗1 (y)] Pa(x, dy)

must be optimal. Repeating the same reasoning for every t ∈ T , the conclusion of

330 F. Proofs

the lemma follows. 2

Remark: Notice that the action b in (F.18) is well defined sinceA is considered
finite. This finiteness assumption could be relieved by considering a compact
set A and continuous r and P. Also the compactness condition on X is not
necessary. However, for the purposes of the thesis, we have no need for the
more general the result and hence its current formulation. �

We now establish the existence of a optimal stationary policy in infinite MDPs.

Lemma F.4.2. For every Markov decision process M = (X,A,P, r, γ) with finite
action-space A and compact state-space X ⊂ Rp there is an optimal stationary
policy.

Proof From the proof of Lemma F.4.1, the policy δt defined at each time instant
as

δt(x) = arg max
a∈A

∫
X

[
r(x, a, y) + γV ∗t+1(y)

]
Pa(x, dy) (F.19)

is optimal. We would like to show that this policy is stationary or, which amounts
to the same thing, that V ∗t (x) is independent of t. We establish this last fact by
contradiction.

Let δ∗t be some optimal policy. The definition of the optimal value function for
two consecutive time instants T and T + 1 is

V ∗T (x) = Eδ∗t

[
∞∑
t=0

γtR(XT+t, AT+t) | XT = x

]

V ∗T+1(x) = Eδ∗t

[
∞∑
t=0

γtR(XT+t+1, AT+t) | XT+1 = x

]
.

Suppose that V ∗T (y) 6= V ∗T+1(y) for some y ∈ X . This can only occur due to the
time-differences in the policy δ∗t , for if δ∗t were time independent, the two previous
definitions would agree in every point and V ∗T (x) = V ∗T+1(x).

Define now two policies δ′t and δ′′t as follows. For every x ∈ X ,

δ′t(x) = δ∗t+1(x)

and
δ′′t (x) = δ∗t−1(x).

By definition, we have that V δ′t
T (x) = V ∗T+1(x) and V δ′′t

T+1(x) = V ∗T (x) for every x ∈ X .
Now, one of two things can happen:

F.4. Proofs for Chapter 8 331

1) V ∗T (y) < V ∗T+1(y). But then, V δ′t
T (y) > V ∗T (y) which is a contradiction since δ∗t is

optimal and therefore maximizes the expected discounted total reward in every
point.

2) V ∗T (y) > V ∗T+1(y). But then, V δ′′t
T+1(y) > V ∗T+1(y) which is also a contradiction for

the same reason.

This implies that V ∗t (x) does not depend on t and the policy δ∗t defined in (F.19)
is stationary. 2

With the two previous lemmas we established the existence of an optimal, sta-
tionary and deterministic policy in infinite MDPs. We now proceed with the proof of
Theorem 8.2.1. To that purpose, we start by proving that every team Markov game
has an associated MDP. The existence of a pure stationary equilibrium in the game
is established by showing every deterministic, stationary policy in the associated
MDP to constitute one such equilibrium for the game.

Let Γ =
(
N,X , (Ak),P, r, γ) be a team Markov game with compact state-space

X ⊂ Rp. Suppose that, at each time instant t ∈ T , each player k ∈ N chooses
its action ak according to some criterion provided by a centralized decision-maker.
From this perspective, we can look at the game Γ as an MDP (X,A,P, r, γ) where
X , P and r coincide and A = ×Nk=1Ak.4 Since the set A is the cartesian product of
N sets A1, . . . , AN , each element a ∈ A is a N -tuple (a1, . . . , ak) each ak being an
element of Ak. Define, for each k = 1, . . . , N a map φk : A −→ Ak assigning to each
action a ∈ A its kth component ak.

Lemmas F.4.1 and F.4.2 ensure that there is a deterministic, stationary optimal
policy δ∗. We now show that this policy is a pure, stationary Nash equilibrium in
Γ. For each k ∈ N , define the individual strategy σk(x) as

σk(x) = φk(δ∗(x)),

for all x ∈ X . Clearly, the joint strategy σ = (σ1, . . . , σN) is simply a “distributed”
version of δ∗ and, therefore,

V σ(x) = max
{At}

E

[
∞∑
t=0

γtR(Xt, At) | X0 = x

]
.

It is immediate that σ must be a Nash equilibrium. In fact, given any individual
strategy (σk)′,

V σ(x) ≥ V (σ−k, (σk)′)(x)

for all x ∈ X and any k ∈ N . In the other hand, since δ∗ is stationary, so is σ. And
since δ∗ is deterministic, σ is pure. This concludes the proof of the theorem. 2

4This interpretation is the converse of that described in Section 8.2 to introduce Markov games
with infinite state-spaces.

332 F. Proofs

F.4.2 Proof of Theorem 8.3.1

Consider the set of N players to be a unique (distributed) decision-maker following
a fixed policy δ given by

δ(x, a) = σ(x, a),

for every state-action pair (x, a). Then, the game Γ can be recast as an MDP
(X,A,P, r, γ), where A = ×Nk=1Ak, and the theorem is simply a restatement of
Theorem 4.5.2. 2

F.4.3 Proof of Theorem 8.4.1

The proof of this proposition will require several intermediate results before being
properly established. To simplify the exposition, we start by considering the case
where Q∗ is continuous in x. We then trivially extend this result to the case where
Q∗ is continuous ψ-a.e. We denote by µLeb the Lebesgue measure in Rp.

Suppose then that Q∗ is continuous in x. This means that each function V ∗a (x) =
Q∗(·, a) is continuous for each fixed a ∈ A. We now partition X in two sets C and
D and analyze the properties of each of these sets.

Take an arbitrary point x ∈ X and an arbitrary action a0 ∈ A. Then, one of
two statements below holds:

1. V ∗a0
(x) < V ∗(x). If this is the case, due to the continuity of V ∗ and V ∗a0

, the
inequality above holds for some neighborhood U of x. In other words, there is
a neighborhood U of x such that

V ∗a0
(y) < V ∗(y),

for all y ∈ U .
This has an interesting implication: for every point x ∈ X there is a neigh-
borhood U such that

opt(y) ⊂ opt(x), (F.20)

for all y ∈ U .
2. V ∗a0

(x) = V ∗(x). If this is the case, two possible situations can occur:

(a) There is a neighborhood U of x such that a0 ∈ opt(y) for all y ∈ U ;
(b) Given any neighborhood U of x there is a point y ∈ U such that

a0 /∈ opt(y); (F.21)

Denote by D(a0) the set of points x ∈ X verifying 2b and define the sets
D =

⋃
a∈AD(a) and C = X −D. We now show that

Lemma F.4.3. Given the sets C and D defined above, D = ∂C.

F.4. Proofs for Chapter 8 333

Proof From 1 and 2a, we see that a point x ∈ C has a neighborhood U such that
U ∩D = ∅. Then C = int (C) and since D = X − C, ∂C ⊂ D. Since C and D are
complementary and C = int (C), the conclusion of the lemma follows. 2

Since D = ∂C, it is immediate that D is closed in X and therefore measurable.
In turn, C must be open (in the subspace topology) and also measurable. We now
proceed with the following result.

Lemma F.4.4. The set D defined above verifies µLeb(D) = 0.

Proof Since we take the function Q∗ to be continuous in x, the function

V ∗(x) = max
a∈A

Q∗(x, a)

is also continuous and so is the function

V a(x) = Q∗(x, a),

defined for some a ∈ A. We define a new function Ga as

Ga(x) = V a(x)− V ∗(x).

Clearly, Ga is continuous and Ga(x) ≤ 0 for all x ∈ X . We will show the set of
points

ζGa = {x ∈ X | Ga(x) < 0}
to be a p-dimensional topological manifold. Clearly, such set is a subset of Rp and,
hence, Hausdorff and second countable (in the subspace topology). On the other
hand, any point x ∈ ζGa has a neighborhood U ⊂ ζGa , due to the continuity of Ga.
This neighborhood is a neighborhood in Rp and therefore ζGa is locally Euclidean
and a topological manifold of dimension p. Its boundary is a manifold of dimension
p− 1 and its Lebesgue measure is therefore zero.

By construction, we have that

∂C ⊂
⋃
a∈A

∂ζGa ,

and the conclusion follows. 2

We can now proceed with the proof of Theorem 8.4.1. For each point x ∈ C,
there is a neighborhood U such that

opt(x) = opt(y),

for all y ∈ U . This can be seen by noticing that a point in C either verifies Condi-
tion 1 or Condition 2a for every action a ∈ A. Therefore, given one such point x
and corresponding neighborhood U , it is immediate that the virtual game obtained

334 F. Proofs

by setting to 1 all optimal actions and to 0 all non-optimal actions is the same in
every point in U . This implies that, if ψ(U) > 0, there is a time T0 such that,
w.p.1, Sm(x,Ht) ⊂ U for t > T0. Since, for all t > T0 all K-samples are drawn from
Sm(x,Ht), convergence of standard BAP ensures that, for all points in C, ABAP
coordinates in an optimal Nash equilibrium w.p.1.

Notice that, if the irreducibility measure ψ is absolutely continuous w.r.t. the
Lebesgue measure, i.e., it has a Radon-Nikodym derivative w.r.t. µLeb, then we can
use Lemma F.4.4 to immediately establish the conclusion of Theorem 8.4.1 or, in
general, if ψ(D) = 0 (notice that the former implies the latter). However, this is
generally not so, and we need to further analyze the behavior of ABAP in the points
in D.

Suppose that ψ(D) > 0. Take an arbitrary point x ∈ D. One of two statements
surely holds:

• There is a neighborhood U of x such that opt(x) = opt(y) for all y ∈ U ∩D;

• Given any neighborhood U of x, there is a point y ∈ U ∩D such that opt(x) 6=
opt(y).

In the first statement holds for a point x, then either ψ(U∩D) = 0 or ψ has an atom
in U ∩ D. This implies that this set is visited infinitely often, and the reasoning
used to establish convergence of ABAP in C can be applied to the points in U ∩D.
Denote the set of such points by D0.

If the second statement holds, then we replicate the reasoning in the proof of
Lemma F.4.3 to establish that the set of points D1 = D−D0 is a (p−2)-dimensional
manifold. If ψ(D1) = 0, the proof is complete. Otherwise, we successively repeat
this process until we get a set Dn of isolated points (a 0-dimensional manifold).
Then, for each point x in Dn, either ψ({x}) = 0 or ψ({x}) > 0, and the set {x} is
visited infinitely often. But in such points, convergence of ABAP is an immediate
consequence of the convergence of BAP.

With this, we have (recurrently) established convergence of ABAP in all but a
set of points of null ψ-measure. Now if Q∗ is continuous in all but a ψ-null set of
points NQ, the previous proof holds for every point x in which Q∗ is continuous
(with some care when defining the p-dimensional manifolds ζGa), and the proof is
complete. 2

F.4.4 Proof of Theorem 8.4.2

This proof is basically similar to that of Theorems 7.3.2 and 7.3.3.
Convergence of θkt to θ∗ arises as an immediate consequence of Corollary 8.3.2.

In fact, since the GLIE strategy σθt ensures sufficient exploration and the remaining
conditions of Theorem 8.4.2 ensure the applicability of Corollary 8.3.2, then θt → θ∗

w.p.1.
Furthermore, Theorem D.2.1 of Appendix D ensures that

lim
t→∞

sup
‖θt − θ∗‖√

αt log
(∑t

τ=1 ατ
) ≤ K0.

F.4. Proofs for Chapter 8 335

Therefore, (8.8) and Lemma 7.3.1 guarantee that, w.p.1, the sequence of virtual
games V Gt obtained from the sequence of estimates {Qθt} converges to the virtual
game V G obtained from {Qθ∗}.

On the other hand, since r is continuous µθX-a.e., so is V ∗ and, therefore, Q∗. The
fact that the chain (X,Pθ) is geometrically ergodic for every θ implies, in particular,
that it is ψ-irreducible and Harris recurrent. But this means that we can apply
Theorem 8.4.1 and replicate the reasoning in the proof of Theorem 7.3.2 to guarantee
that, w.p.1, CAQL will converge in behavior to an optimal Nash equilibrium in µθX-
almost all x ∈ X . 2

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the 21st International Conference on Machine Learning,
volume 69 of ACM International Conference Proceeding Series, pages 1–8, New York,
NY, 2004. ACM Press.

[2] Douglas A. Aberdeen. A (revised) survey of approximate methods for solving par-
tially observable Markov decision processes. Technical report, National ICT Aus-
tralia, Canberra, Australia, 2003.

[3] Douglas A. Aberdeen. Policy-gradient algorithms for partially observable Markov
decision processes. PhD thesis, Australian National University, April 2003.

[4] Jinane Abounadi, Dimitri P. Bertsekas, and Vivek S. Borkar. Learning algorithms
for Markov decision processes with average cost. SIAM Journal on Control and
Optimization, 40:681–698, 2001.

[5] Jinane Abounadi, Dimitri P. Bertsekas, and Vivek S. Borkar. Stochastic approxima-
tion for non-expansive maps: Application to Q-learning algorithms. SIAM Journal
on Control and Optimization, 41:1–22, 2002.

[6] András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies
with Bellman-residual minimization based fitted policy iteration and a single sample
path. In Proceedings of the 19th Annual Conference on Learning Theory (COLT’06),
pages 574–588, 2006.

[7] Michael Athans. A tutorial on the LQG/LTR design method. Technical Report LIDS-
P-1542, Laboratory for Information and Decision Systems, Massachussets Institute
of Technology, March 1986.

[8] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally weighted
learning for control. Artificial Intelligence Review, 11(1-5):75–113, 1997.

[9] Tim Bailey and Eduardo M. Nebot. Localisation in large-scale environments.
Robotics and Autonomous Systems, 37(4):261–281, 2001.

[10] Leemon C. Baird. Reinforcement learning through gradient descent. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, May 1999.

337

338 BIBLIOGRAPHY

[11] Leemon C. Baird. Residual algorithms: Reinforcement learning with function ap-
proximation. In Proceedings of the 12th International Conference on Machine Learn-
ing (ICML’95), pages 30–37, San Francisco, CA, 1995. Morgan Kaufman Publishers.

[12] Leemon C. Baird and Andrew More. Gradient descent for general reinforcement
learning. In David A. Cohn, editor, Advances in Neural Information Processing
Systems, volume 11, pages 968–974, Cambridge, Massachussets, 1999. MIT Press.

[13] W. Baker. Learning via stochastic approximation in function space. PhD Thesis,
1997.

[14] David P. Barnes and John O. Gray. Behavior synthesis for cooperant mobile robot
control. In Proceedings of the International Conference on Control, pages 1135–1140,
1991.

[15] Peter L. Bartlett and Jonathan Baxter. Estimation and approximation bounds for
gradient-based reinforcement learning. In Proceedings of the 13th Annual Conference
on Computional Learning Theory (COLT’00), pages 133–141, San Francisco, CA,
2000. Morgan Kaufmann Publishers.

[16] Andrew G. Barto and Michael Duff. Monte-Carlo matrix inversion and reinforcement
learning. In J.D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neu-
ral Information Processing Systems, volume 6, pages 687–694, San Francisco, 1994.
Morgan Kauffmann Publishers.

[17] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning to act using
real-time dynamic programming. Technical Report UM-CS-1993-002, Department
of Computer Science, University of Massachusetts at Amherst, 1993.

[18] Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient estimation.
Journal of Artificial Intelligence Research, 15:319–350, 2001.

[19] Valentina Bayer and Thomas Dietterich. A POMDP approximation algorithm that
anticipates the need to observe. Technical Report 00-30-01, Department of Computer
Science, Oregon State University, 2000.

[20] Graeme Bell and Michael Weir. Forward chaining for robot and agent navigation us-
ing potential fields. In ACM International Conference Proceeding Series, volume 56,
pages 265–274, Darlinghurst, Australia, 2004. Australian Computer Society, Inc.

[21] Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive Algorithms and
Stochastic Approximations, volume 22 of Applications of Mathematics. Springer-
Verlag, Berlin, 1990.

[22] Ulrich Berger. Fictitious play in 2×n games. Game Theory and Information 0303009,
EconWPA, March 2003.

[23] Daniel S. Bernstein, Shlomo Zilberstein, and Neil Immerman. The complexity of
decentralized control of Markov decision processes. In Proceedings of the 16th Con-
ference on Uncertainty in Artificial Intelligence (UAI’00), pages 32–37. AUAI Press,
2000.

BIBLIOGRAPHY 339

[24] Daniel S. Bernstein, Shlomo Zilberstein, and Neil Immerman. The complexity of
decentralized control of Markov decision processes. Mathematics of Operations Re-
search, 27(4):819–840, 2002.

[25] Daniel S. Bernstein, Eric A. Hansen, and Shlomo Zilberstein. Bounded policy it-
eration for decentralized POMDPs. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI’05), pages 1287–1292, 2005.

[26] Dimitri P. Bertsekas and Sergey Ioffe. Temporal differences-based policy iteration
and applications in neuro-dynamic programming. Technical Report LIDS-P-2349,
Lab. for Information and Decision Systems, MIT, 1996.

[27] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Opti-
mization and Neural Computation Series. Athena Scientific, Belmont, Massachusetts,
1996.

[28] Dimitri P. Bertsekas, Vivek S. Borkar, and Angelia Nedić. Improved temporal differ-
ence methods with linear function approximation, chapter 9, pages 235–260. Wiley
Publishers, 2004.

[29] B. Bharath and Vivek S. Borkar. Stochastic approximation algorithms: overview
and recent trends. Sādhanā, 24(4, 5):425–452, 1999.

[30] Blai Bonet. An ε-optimal grid-based algorithm for partially observable Markov de-
cision process. In Claude Sammut and Achim G. Hoffmann, editors, Proceedings of
the 19th International Conference on Machine Learning (ICML’02), pages 51–58.
Morgan Kaufmann, 2002.

[31] Vivek S. Borkar. Asynchronous stochastic approximations. SIAM Journal on Control
and Optimization, 36(3):840–851, May 1998.

[32] Vivek S. Borkar. A learning algorithm for discrete-time stochastic control. Probability
in the Engineering and Informational Sciences, 14:243–258, 2000.

[33] Vivek S. Borkar. Stochastic approximation with two time scales. Systems & Control
Letters, 29(5):291–294, 1997.

[34] Vivek S. Borkar and Sean P. Meyn. The O.D.E. method for convergence of stochastic
approximation and reinforcement learning. SIAM Journal on Control and Optimiza-
tion, 38(2):447–469, 2000.

[35] Craig Boutilier. Sequential optimality and coordination in multiagent systems. In
Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJ-
CAI’99), pages 478–485, 1999.

[36] Craig Boutilier. Planning, learning and coordination in multiagent decision pro-
cesses. In Proceedings of the 6th Conference on Theoretical Aspects of Rationality
and Knowledge (TARK-96), pages 195–210, 1996.

[37] Craig Boutilier and David Poole. Computing optimal policies for partially observable
decision processes using compact representations. In Proceedings of the 13th National
Conference on Artificial Intelligence (AAAI’96), pages 1168–1175, Portland, Oregon,
USA, 1996. AAAI Press/The MIT Press.

340 BIBLIOGRAPHY

[38] Michael Bowling. Convergence problems of general-sum multiagent reinforcement
learning. In Proceedings of the 17th International Conference on Machine Learning
(ICML’00), pages 89–94. Morgan Kaufman Publishers, 2000.

[39] Michael Bowling and Manuela Veloso. An analysis of stochastic game theory for
multiagent reinforcement learning. Technical Report CMU-CS-00-165, School of
Computer Science, Carnegie Mellon University, 2000.

[40] Michael Bowling and Manuela Veloso. Scalable learning in stochastic games. In Pro-
ceedings of the AAAI Workshop on Game Theoretic and Decision Theoretic Agents
(GTDT’02), pages 11–18. The AAAI Press, 2000. Published as AAAI Technical
Report WS-02-06.

[41] Michael Bowling and Manuela Veloso. Rational and convergent learning in stochas-
tic games. In Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI’01), pages 1021–1026, 2001.

[42] Michael Bowling and Manuela Veloso. Rational learning of mixed equilibria in
stochastic games. In Proceedings of the 17th International Joint Conference on Ar-
tificial Intelligence (IJCAI’01), pages 1021–1026, 2001.

[43] Michael Bowling and Manuela Veloso. Simultaneous adversarial multi-robot learning.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI’03), pages 699–704, 2003.

[44] Justin Boyan and Andrew Moore. Generalization in reinforcement learning: Safely
approximating the value function. In G. Tesauro, D.S. Touretzky, and T.K. Lee,
editors, Neural Information Processing Systems 7, pages 369–376, Cambridge, MA,
1995. The MIT Press.

[45] Justin A. Boyan. Least-squares temporal difference learning. In Proceedings of the
16th International Conference on Machine Learning (ICML’99), pages 49–56, San
Francisco, CA, 1999. Morgan Kaufmann.

[46] Justin A. Boyan. Technical update: Least-squares temporal difference learning. Ma-
chine Learning, 49:233–246, 2002.

[47] Steven J. Bradtke. Incremental dynamic programming for on-line adaptive optimal
control. PhD thesis, University of Massachusetts at Amherst, September 1994. Avail-
able as CMPSCI Technical Report 94-62.

[48] Darius Braziunas and Craig Boutilier. Stochastic local search for POMDP controllers.
In Proceedings of the 19th National Conference on Artificial Intelligence (AAAI’04),
pages 690–696. AAAI Press, 2004.

[49] George W. Brown. Some notes on computation of games solutions. Research Mem-
oranda RM-125-PR, RAND Corporation, Santa Monica, California, 1949.

[50] Y. Uny Cao, Alex S. Fukunaga, and Andrew B. Kahng. Cooperative mobile robotics:
Antecedents and directions. Autonomous Robots, 4(1):1–23, 1997.

[51] Anthony R. Cassandra. Exact and approximate algorithms for partially observable
Markov decision processes. PhD thesis, Brown University, May 1998.

BIBLIOGRAPHY 341

[52] Anthony R. Cassandra. Optimal policies for partially observable Markov decision
processes. Technical Report CS-94-14, Department of Computer Sciences, Brown
University, August 1994.

[53] Anthony R. Cassandra, Leslie Kaelbling, and James A. Kurien. Acting under un-
certainty: Discrete Bayesian models for mobile-robot navigation. Mathematics of
Operations Research, 12(3):441–450, 1987.

[54] Anthony R. Cassandra, Michael L. Littman, and Nevin L. Zhang. Incremental prun-
ing: A simple, fast, exact method for partially observable Markov decision processes.
In Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI-99), pages 54–61, Providence, Rhode Island, 1997. Morgan Kaufmann
Publishers.

[55] Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete-Event Sys-
tems. The Kluwer International Series on Discrete-Event Dynamic Systems. Kluwer
Academic Publishers, 1999.

[56] Georgios Chalkiadakis and Craig Boutilier. Coordination in multiagent reinforcement
learning: A Bayesian approach. In Proceedings of the 2nd International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS’03), pages 709–716,
New York, NY, 2003. ACM Press.

[57] Howie Choset and Keiji Nagatani. Topological simultaneous localization and map-
ping (SLAM): Toward exact localization without explicit localization. IEEE Trans-
actions on Robotics and Automation, 17(2):125–137, April 2001.

[58] Kai Lai Chung. A Course in Probability Theory. Mathematics and Statistics. Aca-
demic Press, third edition, 2001.

[59] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in co-
operative multiagent systems. In Proceedings of the 15th National Conference on
Artificial Intelligence (AAAI’98), pages 746–752, 1998.

[60] Monica-Gabriela Cojocaru. Projected dynamical systems on Hilbert spaces. PhD
thesis, Queen’s University, 2002.

[61] Vincent Conitzer and Tuomas Sandholm. AWESOME: A general multiagent learning
algorithm that converges in self-play and learns a best response against stationary
opponents. In Proceedings of the 20th International Conference on Machine Learning
(ICML’03), pages 83–90, 2003.

[62] Robert H. Crites and Andrew G. Barto. Elevator group control using multiple rein-
forcement learning agents. Machine Learning, 33(2-3):235–262, 1998.

[63] Michael Csorba. Simultaneous localisation and map building. PhD thesis, Robotics
Research Group, University of Oxford, 1997.

[64] Valdinei Freire da Silva, Anna Helena Reali Costa, and Pedro Lima. Inverse reinforce-
ment learning with evaluation. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA’06), pages 4246– 4251, 2006.

342 BIBLIOGRAPHY

[65] Richard Dearden, Nir Friedman, and Stuart Russell. BayesianQ-learning. In Proceed-
ings of the 15th National Conference on Artificial Intelligence (AAAI’98) and 10th
Conference on Innovative Applications of Artificial Intelligence (IAAI’98), pages
761–768, Menlo Park, California, USA, 1998. AAAI Press.

[66] Bernard Delyon. General results on the convergence of stochastic algorithms. IEEE
Transactions on Automatic Control, AC-41(9):1245–1256, 1996.

[67] Bernard Delyon. Stochastic approximation with decreasing gain: Conver-
gence and asymptotic theory. Available at the URL http://name.math.univ-
rennes1.fr/bernard.delyon/as_cours.ps, June 2000.

[68] Marco Dorigo and Hugues Bersini. A comparison of Q-learning and classifier systems.
In Proceedings of the Third International Conference on Simulation of Adaptive Be-
havior: From Animals to Animats 3, pages 248–255, Cambridge, MA, USA, 1994.
MIT Press.

[69] Prashant Doshi. Optimal sequential planning in partially observable multiagent set-
tings. PhD thesis, University of Illinois at Chicago, 2005.

[70] Prashant Doshi and Piotr Gmytrasiewicz. Subjective equilibrium in interactive
POMDPs: Theory and computational limitations. 19th International Joint Confer-
ence on Artificial Intelligence (IJCAI’05), Game Theoretic and Decision Theoretic
Agents Workshop, 2005.

[71] Prashant Doshi and Piotr Gmytrasiewicz. On the difficulty of achieving equilibria
in interactive POMDPs. Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI’06) (to appear), 2006.

[72] Prashant Doshi and Piotr J. Gmytrasiewicz. Approximating state estimation in
multiagent settings using particle filters. In Proceedings of the 4th International Joint
Conference on Autonomous agents and Multiagent Systems (AAMAS’05), pages 320–
327, New York, NY, 2005. ACM Press.

[73] Christophe Druet, Damien Ernst, and Louis Wehenkel. Application of reinforcement
learning to electrical power system closed-loop emergency control, volume 1910 of
Lecture Notes In Computer Science, pages 86–95. Springer-Verlag, 2000.

[74] Michael Duff. Optimal learning: Computational procedures for Bayes-adaptive
Markov decision processes. PhD thesis, Department of Computer Science, University
of Massachusetts Amherst, February 2002.

[75] Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Coherent cooperation
among communicating problem solvers. IEEE Transactions on Computers, 36(11):
1275–1291, 1987.

[76] Sašo Džeroski. Relational reinforcement learning for agents in worlds with objects.
Adaptive Agents and Multi-Agent Systems, pages 306–321, 2003.

[77] Magnus Egerstedt. Motion planning and control of mobile robots. PhD thesis, Royal
Institute of Technology, Stockholm, Switzerland, 2000.

BIBLIOGRAPHY 343

[78] Alberto Elfes. Using occupancy grids for mobile robot perception and navigation.
Computer, 22(6):46–57, 1989.

[79] Rosemary Emery-Montemerlo. Game-theoretic control for robot teams. PhD thesis,
The Robotics Institute, Carnegie Mellon University, August 2005.

[80] Rosemary Emery-Montemerlo, Geoff Gordon, Jeff Schneider, and Sebastian Thrun.
Approximate solutions for partially observable stochastic games with common pay-
offs. In Proceedings of the 3rd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS’04), volume 1, pages 136–143, New York, NY,
2004. ACM Press.

[81] Rosemary Emery-Montemerlo, Geoff Gordon, Jeff Schneider, and Sebastian Thrun.
Game-theoretic control for robot teams. In Proceedings of the 2005 IEEE Interna-
tional Conference on Robotics and Automation (ICRA’05), pages 1175–1181, 2004.

[82] Eyal Even-Dar and Yishay Mansour. Learning rates for Q-learning. Journal of
Machine Learning Research, 5:1–25, 2003.

[83] Elisabetta Fabrizi and Alessandro Saffiotti. Augmenting topology-based maps with
geometric information. Robotics and Autonomous Systems, 40:91–97, 2002.

[84] Nicholas V. Findler and Raphael M. Malyankar. Social structures and the problem
of coordination in intelligent agent societies. Invited talk at the special session on
"Agent-Based Simulation, Planning and Control", IMACS World Congress (2000),
2000. CD Paper 122-12.

[85] Arlington M. Fink. Equilibrium in a stochastic n-person game. Journal of Science
in Hiroshima University, Series A-I, 28:89–93, 1969.

[86] Jeffrey R. Forbes. Reinforcement learning for autonomous vehicles. PhD thesis,
University of California, Berkeley, 2002.

[87] Dieter Fox. Markov localization: A probabilistic framework for mobile robot localiza-
tion and navigation. PhD thesis, University of Bonn, Germany, 1998.

[88] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Markov localization for reli-
able robot navigation and people detection. In Selected Papers from the International
Workshop on Sensor Based Intelligent Robots, volume 1724 of Lecture Notes In Com-
puter Science, pages 1–20, London, UK, 1998. Springer-Verlag.

[89] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Markov localization for mobile
robots in dynamic environments. Journal of Artificial Intelligence Research, 11:391–
427, 1999.

[90] Matthias O. Franz and Hanspeter A. Mallot. Biomimetic robot navigation. Robotics
and Autonomous Systems, 30:133–153, 2000.

[91] Holger Friedrich, Michael Kaiser, Oliver Rogalla, and Rüdiger Dillmann. Learning
and communication in multi-agent systems, volume 1221 of Lecture Notes in Aarti-
ficial Intelligence, chapter III, pages 259–275. Springer-Verlag, May 1997.

344 BIBLIOGRAPHY

[92] Les Gasser. Social conceptions of knowledge and action: Distributed artificial intel-
ligence and open systems semantics. Artificial Intelligence, 47(1-3):107–138, 1991.

[93] Hector Geffner and Blai Bonet. Solving large POMDPs by real time dynamic pro-
gramming. Fall AAAI Symposium on POMDPS (Working Notes), 1998.

[94] Robert Givan, Sonia Leach, and Thomas Dean. Bounded parameter Markov decision
processes. Technical Report CS-97-05, Department of Computer Science, Brown
University, May 1997.

[95] Georg Glaeser and Ernst Strouhal. Von Kempelen’s chess-playing pseudo-automaton
and Zu Racknitz’s explanation of its controls. In Proceedings of the International
Symposium on History of Machines - HMM’2000, pages 351–360. Kluwer Academic
Publishers, 2000.

[96] Robert Glaubius and William D. Smart. Manifold representations for value-function
approximation in reinforcement learning. Technical Report 05-19, Department of
Computer Science and Engineering, Washington University in St. Louis, 2005.

[97] Peter W. Glynn. A GSMP formalism for discrete event systems. In Proceedings of
the IEEE, volume 77, No. 1, pages 14–23, 1989.

[98] Piotr Gmytrasiewicz and Prashant Doshi. A framework for sequential planning in
multiagent settings. Journal of Artificial Intelligence Research, 24:49–79, 2005.

[99] Claudia V. Goldman and Jeffrey S. Rosenschein. Emergent coordination through
the use of cooperative state-changing rules. In Proceedings of the 12th International
Workshop on Distributed Artificial Intelligence, pages 171–185, Hidden Valley, Penn-
sylvania, 1993.

[100] Judy Goldsmith and M. Mundhenk. Complexity issues in Markov decision processes.
In Proceedings of the 13th Annual IEEE Conference on Computational Complexity,
pages 272–280, 1998.

[101] Geoffrey J. Gordon. Reinforcement learning with function approximation converges
to a region. In Proceedings of the Neural Information Processing Systems, pages
1040–1046, 2000.

[102] Geoffrey J. Gordon. Chattering in SARSA(λ). CMU Learning Lab Internal Report,
CMU Learning Lab, Carnegie Mellon University, 1996.

[103] Geoffrey J. Gordon. Stable function approximation in dynamic programming. Tech-
nical Report CMU-CS-95-103, School of Computer Science, Carnegie Mellon Univer-
sity, 1995.

[104] Amy Greenwald and Keith Hall. Correlated Q-learning. In Proceedings of the 20th
International Conference on Machine Learning (ICML’03), pages 242–249, 2003.

[105] Geoffrey Grimmet and David Stirzaker. Probability and Random Processes. Oxford
University Press, third edition, 2001.

[106] Thomas Hakon Grönwall. Note on the derivative with respect to a parameter of the
solutions of a system of differential equations. Annals of Mathematics, 20:292–296,
1919.

BIBLIOGRAPHY 345

[107] Lars Grüne and Willi Semmler. Using dynamic programming with adaptive grid
scheme for optimal control problems in economics. Journal of Economic Dynamics
and Control, 28:2427–2456, 2004.

[108] Lars Grüne and Fabian Wirth. On linear convergence of discounted optimal control
problems with vanishing discount rate. In Proceedings of the Mathematical Theory
of Networks and Systems, MTNS98, pages 185–188, Padova, 1998.

[109] Carlos Guestrin, Daphne Koller, and Ronald Parr. Solving factored POMDPs with
linear value functions. In IJCAI-01 Workshop on Planning under Uncertainty and
Incomplete Information, pages 67–75, August 2001.

[110] Carlos Guestrin, Michail G. Lagoudakis, and Ronald Parr. Coordinated reinforce-
ment learning. In Proceedings of the 19th International Conference on Machine
Learning (ICML’02), pages 227–234, 2002.

[111] José Guivant and Eduardo Nebot. Optimization of the simultaneous localization and
map building algorithm for real time implementation. IEEE Transaction of Robotic
and Automation, 17(3):242–257, 2991.

[112] José Guivant, Juan Nieto, Favio Masson, and Eduardo Nebot. Navigation and map-
ping in large unstructured environments. International Journal of Robotics Research,
23(4/5):449–472, 2003.

[113] Vijaykumar Gullapalli and Andrew G. Barto. Convergence of indirect adaptive asyn-
chronous value iteration algorithms. In J. D. Cowan, G. Tesauro, and J Alspector,
editors, Advances in Neural Processing Information Systems, volume 6, pages 695–
702, San Francisco, CA, 1994. Morgan Kaufmann Publishers.

[114] AnYuan Guo and Victor Lesser. Planning for weakly-coupled partially observable
stochastic games. In Proceedings of the 19th International Joint Conference on Ar-
tificial Intelligence (IJCAI’05), pages 1715–1716, Edinburgh, Scotland, 2005.

[115] Kamran H-Sedighi, Kaveh Ashenayi, Theordore W. Manikas, Roger L. Wainwright,
and Heng-Ming Tai. Autonomous local path planning for a mobile robot using
a genetic algorithm. In Proceedings of the 2004 IEEE Congress on Evolutionary
Computation (CEC’2004), pages 1338–1345, 2004.

[116] Rodney D. Hale, Mohd Rokonuzzaman, and Raymond G. Gosine. Control of mobile
robots in unstructured environments using discrete event modeling. In Douglas W.
Gage and Howie M. Choset, editors, Proceedings of SPIE: Mobile Robots XIV, volume
3838, pages 275–282, 1999.

[117] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a
distributed environment. Journal of the ACM, 37(3):549–587, 1990.

[118] Eric A. Hansen. An improved policy iteration algorithm for partially observable
MDPs. In Proceedings of the 1997 Conference on Advances in Neural Information
Processing Systems (NIPS’97), volume 10, pages 1015–1021, Cambridge, MA, USA,
1998. MIT Press.

346 BIBLIOGRAPHY

[119] Eric A. Hansen. Solving POMDPs by searching in policy space. In Gregory F. Cooper
and Serafin Moral, editors, Proceedings of the 14th Conference on Uncertainty in
Artificial Intelligence (UAI’98), pages 211–219. Morgan Kaufmann, 1998.

[120] Samuel W. Hasinoff. Reinforcement learning for problems with hidden state. Tech-
nical report, University of Toronto, Department of Computer Science, 2002.

[121] Milos Hauskrecht. Value-function approximations for partially observable Markov
decision processes. Journal of Artificial Intelligence Research, 13:33–94, 2000.

[122] Qiming He and Mark A. Shayman. Solving POMDPs by on-policy linear approximate
learning algorithm. In Proceedings of the Conference on Information Sciences and
Systems. Princeton University, 2000.

[123] Aditia Hermanu, Theodore W. Manikas, Kaveh Ashenayi, and Roger L. Wainwright.
Autonomous robot navigation using a genetic algorithm with an efficient genotype
structure. In C. H. Dagli et al., editor, Intelligent Engineering Systems Through
Artificial Neural Networks: Smart Engineering Systems Design: Neural Networks,
Fuzzy Logic, Evolutionary Programming, Complex Systems and Artificial Life, pages
319–324, New York, 2004. ASME Press.

[124] Morris W. Hirsch. Convergent activation dynamics in continuous time networks.
Neural Networks, 2:331–349, 1989.

[125] Josef Hofbauer and William H. Sandholm. On the global convergence of stochastic
fictitious play. Econometrica, 70(6):2265–2294, November 2002.

[126] Ralph Howard. The Gronwall inequality. Class Notes, 1998.

[127] Junling Hu and Michael P. Wellman. Multiagent reinforcement learning: Theoretical
framework and an algorithm. In Proceedings of the 15th International Conference on
Machine Learning (ICML’98), pages 242–250, 1998.

[128] Junling Hu and Michael P. Wellman. Multiagent reinforcement learning in stochastic
games. Available online at http://citeseer.ist.psu.edu/hu99multiagent.html, 1999.

[129] Junling Hu and Michael P. Wellman. Nash Q-learning for general sum stochastic
games. Journal of Machine Learning Research, 4:1039–1069, 2003.

[130] Hideaki Itoh and Kiyohiko Nakamura. Partially observable Markov decision processes
with imprecise parameters. Artificial Intelligence, 171(8-9):453–490, 2007.

[131] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of
stochastic iterative dynamic programming algorithms. Neural Computation, 6(6):
1185–1201, 1994.

[132] Tommi Jaakkola, Satinder Singh, and Michael Jordan. Reinforcement learning al-
gorithm for partially observable Markov decision problems. In Advances in Neural
Information Processing Systems, volume 7, pages 345–352, Cambridge, MA, 1995.
The MIT Press.

[133] Leslie P. Kaelbling. Learning in Embedded Systems. The MIT Press, 1993.

BIBLIOGRAPHY 347

[134] Leslie P. Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[135] Thomas Kaijser. A limit theorem for partially observed Markov chains. Annals of
Probability, 3(4):677–696, 1975.

[136] Spiros Kapetanakis and Daniel Kudenko. Improving on the reinforcement learning
of coordination in cooperative multi-agent systems. In Proceedings of the 2nd Sym-
posium on Adaptive Agents and Multi-agent Systems, pages 89–94. The Society for
the Study of Artificial Intelligence and Simulation of Behaviour, 2002.

[137] Michael Kearns and Satinder Singh. Finite-sample convergence rates for Q-learning
and indirect algorithms. In M. J. Kearns, S. A. Solla, and D. A. Cohn, editors,
Advances in Neural Information Processing Systems, volume 11, pages 996–1002,
1999.

[138] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polyno-
mial time. In Proceedings of the 15th International Conference on Machine Learning
(ICML’98), pages 260–268, San Francisco, CA, 1998. Morgan Kaufmann Publishers.

[139] Philipp W. Keller, Shie Mannor, and Doina Precup. Automatic basis function con-
struction for approximate dynamic programming and reinforcement learning. In
Proceedings of the 23rd International Conference on Machine Learning (ICML’06),
pages 449–456, New York, NY, 2006. ACM Press.

[140] Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regres-
sion function. Annals of Mathematical Statistics, 23:462–466, 1952.

[141] Masaaki Kijima. Markov Processes for Stochastic Modelling. Stochastic Modelling
Series. Chapman & Hall, Boundary Row, London, 1997.

[142] Sven Koenig and Reid Simmons. Unsupervised learning of probabilistic models for
robot navigation. In Proceedings of the 1996 IEEE International Conference on
Robotics and Automation (ICRA’96), pages 2301–2308, 1996.

[143] Jelle R. Kok, Matthijs T. J. Spaan, and Nikos Vlassis. An approach to noncommu-
nicative multiagent coordination in continuous domains. In Marco Wiering, editor,
Benelearn 2002: Proceedings of the Twelfth Belgian-Dutch Conference on Machine
Learning, pages 46–52, Utrecht, The Netherlands, 2002.

[144] Andrei Nikolaevich Kolmogorov. Zur theorie der Markoffschen ketten. Mathe-
matzsche Annalen, 112:155–160, 1936.

[145] Vijay R. Konda and John N. Tsitsiklis. On actor-critic algorithms. SIAM Journal
on Control and Optimization, 42(4):1143–1166, 2003.

[146] R. Mathew Kretchmar and Charles W. Anderson. Comparison of CMACs and ra-
dial basis functions for local function approximators in reinforcement learning. In
Proceedings of the 1997 IEEE International Conference on Neural Networks, pages
834–837, 1997.

348 BIBLIOGRAPHY

[147] Vijay Krishna and Tomas Sjöström. On the convergence of fictitious play. Har-
vard Institute of Economic Research Working Papers 1717, Institute of Economic
Research, Harvard University, 1995.

[148] Sanjeev R. Kulkarni and C. S. Horn. An alternative proof for convergence of stochas-
tic approximation algorithms. IEEE Transactions on Automatic Control, AC-41(3):
419–424, 1996.

[149] Sanjeev Kumar and Philip R. Cohen. Towards a fault-tolerant multi-agent system
architecture. In Proceedings of the 4th International Conference on Autonomous
Agents (Agents - 00), pages 459–466, Barcelona, Spain, 2000. ACM Press.

[150] Philippe Künzle. Building topological maps for robot navigation using neural net-
works. PhD thesis, McGill University, Montréal, 2005.

[151] Harold J. Kushner and Dean S. Clark. Stochastic Approximation for Constrained
and Unconstrained Systems. Springer-Verlag, New York, 1978.

[152] Harold J. Kushner and S. Lakshmivarahan. Numerical studies of stochastic ap-
proximation procedures for constrained problems. IEEE Transactions on Automatic
Control, AC-22(3):428–439, 1977.

[153] Harold J. Kushner and G. George Yin. Stochastic Approximation and Recursive
Algorithms and Applications, volume 35 of Applications of Mathematics. Springer-
Verlag New York, Inc., second edition, 2003.

[154] Michail G. Lagoudakis and Ronald Parr. Value function approximation in zero-
sum Markov games. In Adnan Darwiche and Nir Friedman, editors, Proceedings of
the 18th International Conference on Uncertainty in Artificial Intelligence (UAI’02),
pages 283–292, 2002.

[155] Dimitrios Lambrinos, Ralph Möller, Thomas Labhart, Rolf Pfeifer, and Rudiger
Wehner. A mobile robot employing insect strategies for navigation. Robotics and
Autonomous Systems, 30:39–64, 2000.

[156] Martin Lauer and Martin Riedmiller. An algorithm for distributed reinforcement
learning in cooperative multi-agent systems. In Proceedings of the 17th International
Conference on Machine Learning (ICML’00), pages 535–542, San Francisco, CA,
2000. Morgan Kaufmann.

[157] Martin Lauer and Martin Riedmiller. Reinforcement learning for stochastic coopera-
tive multi-agent-systems. In Proceedings of the 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’04), pages 1516–1517, New
York, NY, 2004. ACM Press.

[158] Steven M. LaValle. A game-theoretic framework for robot motion planning. PhD
thesis, Department of Electrical and Computer Engineering, University of Illinois at
Urbana, 1995.

[159] François Le Gland and Laurent Mevel. Geometric ergodicity in hidden Markov
models. Technical Report 2991, Institut National de Recherche en Informatique et
en Automatique (INRIA), September 1996.

BIBLIOGRAPHY 349

[160] David LeRoux and Michael L. Littman. Friend-or-foe Q-learning in general-sum
games. International Workshop on Learning Classifier Systems (extended abstract),
2001.

[161] David S. Leslie and E. J. Collins. Generalised weakened fictitious play. Games and
Economic Behavior, 56:285–298, 2006.

[162] David S. Leslie and E. J. Collins. Individual Q-learning in normal form games. SIAM
Journal on Control and Optimization, 44(2):495–514, 2005.

[163] Michael L. Littman. The Witness algorithm: Solving partially observable Markov
decision processes. Technical Report CS-94-40, Department of Computer Sciences,
Brown University, December 1994.

[164] Michael L. Littman. Memoryless policies: Theoretical limitations and practical re-
sults. In From Animals to Animats 3: Proceedings of the Third International Confer-
ence on Simulation of Adaptive Behavior, pages 1023–1028, Cambridge, MA, 1994.
The MIT Press.

[165] Michael L. Littman. Markov games as a framework for multi-agent reinforcement
learning. In Ramon López de Mántaras and David Poole, editors, Proceedings of the
11th International Conference on Machine Learning (ICML’94), pages 157–163, San
Francisco, CA, 1994. Morgan Kaufmann Publishers.

[166] Michael L. Littman. Value-function reinforcement learning in Markov games. Journal
of Cognitive Systems Research, 2(1):55–66, 2001.

[167] Michael L. Littman. Friend-or-foeQ-learning in general-sum games. In Proceedings of
the 18th International Conference on Machine Learning (ICML’01), pages 322–328,
San Francisco, CA, 2001. Morgan Kaufmann Publishers.

[168] Michael L. Littman and Csaba Szepesvári. A generalized reinforcement learning
model: Convergence and applications. In Proceedings of the 13th International Con-
ference on Machine Learning (ICML’96), pages 310–318, San Francisco, CA, 1996.
Morgan Kaufmann Publishers.

[169] Michael L. Littman, Anthony R. Cassandra, and Leslie P. Kaelbling. Learning poli-
cies for partially observable environments: Scaling up. In Armand Prieditis and
Stuart Russell, editors, Proceedings of the 12th International Conference on Machine
Learning (ICML’95), pages 362–370, San Francisco, CA, 1995. Morgan Kaufmann
Publishers.

[170] Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling. On the complex-
ity of solving Markov decision problems. In Proceedings of the 11th Conference on
Uncertainty in Artificial Intelligence (UAI-95), pages 394–402, New York, NY, 1995.
Elsevier Science Publishing Company, Inc.

[171] Lennart Ljung. Analysis of recursive stochastic algorithms. IEEE Transactions on
Automatic Control, AC-22(4):551–575, August 1977.

[172] Lennart Ljung and Torsten Söderström. Theory and Practice of Recursive Identifi-
cation. Signal Processing, Optimization and Control. The MIT Press, 1987.

350 BIBLIOGRAPHY

[173] John Loch and Satinder Singh. Using eligibility traces to find the best memoryless
policy in partially observable Markov decision processes. In Jude W. Shavlik, editor,
Proceedings of the 15th International Conference on Machine Learning (ICML’98),
pages 323 – 331, San Francisco, CA, 1998. Morgan Kaufmann.

[174] Elena López, Luis M. Bergasa, Rafael Barea, and Maria S. Escudero. Topological
robot navigation using multisensorial event-based POMDPs. In Proceedings of the
11th International Conference on Advanced Robotics (ICAR’2003), pages 216–221,
2003.

[175] Christopher Lusena, Judy Goldsmith, and Martin Mundhenk. Nonapproximabil-
ity results for partially observable Markov decision processes. Journal of Artificial
Intelligence Research, 14:83–103, 2001.

[176] Xiaowei Ma, Xiaoli Li, and Hong Qiao. Fuzzy neural network-based real-time self-
reaction of mobile robot in unknown environments. Mechatronics, 11:1039–1052,
2001.

[177] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of proba-
bilistic planning and infinite-horizon partially observable Markov decision problems.
In Proceedings of the 16th National Conference on Artificial intelligence (AAAI’99),
pages 541–548, Menlo Park, CA, USA, 1999. AAAI Press.

[178] Sridhar Mahadevan. Average reward reinforcement learning: Foundations, algo-
rithms, and empirical results. Machine Learning, 22:159–196, 1996.

[179] Shie Mannor, Reuven Rubinstein, and Yohai Gat. The cross entropy method for
fast policy search. In Proceedings of the 20th International Conference on Machine
Learning (ICML’03), pages 512–519, San Francisco, CA, 2003. Morgan Kaufmann
Publishers.

[180] Andrey Andreyevich Markov. Rasprostranenie zakona bol’shih chisel na velichiny,
zavisyaschie drug ot druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazan-
skom universitete, 2(15):135–156, 1906.

[181] Andrey Andreyevich Markov. Extension of the limit theorems of probability theory to
a sum of variables connected in a chain. In R. Howard, editor, Dynamic Probabilistic
Systems, volume 1, chapter B (App.). John Wiley and Sons, 1971. Reprinted.

[182] Bhaskara Marthi. Automatic shaping and decomposition of reward functions. In
Zoubin Ghahramani, editor, Proceedings of the 24th International Conference on
Machine Learning (ICML’07). Omni Press, 2007.

[183] Richard J. Martin, Lena Valavani, and Michael Athans. Multivariable control of a
submersible using the LQG/LTE design methodology. Technical Report LIDS-P-
1548, Laboratory for Information and Decision Systems, Massachussets Institute of
Technology, March 1986.

[184] Mario Mata, José M. Armingol, Arturo de la Escalera, and Miguel A. Salichs. A
visual landmark recognition system for topological navigation of mobile robots. In
Proceedings of the 2001 IEEE International Conference on Robotics and Automation
(ICRA’01), pages 1124–1129, 2001.

BIBLIOGRAPHY 351

[185] Maja J. Matarić. Using communication to reduce locality in distributed multi-agent
learning. Journal of Experimental and Theoretical Artificial Intelligence, 10(3):357–
369, 1998.

[186] Maja J. Matarić. Interaction and intelligent behavior. PhD thesis, Massachusetts
Institute of Technology, 1994. Also available as MIT AI Lab Tech. Report AITR-
1495.

[187] David A. McAllester and Satinder Singh. Approximate planning for factored
POMDPs using belief state simplification. In Kathryn B. Laskey and Henri Prade,
editors, Proceedings of the 15th Annual Conference on Uncertainty in Artificial In-
telligence (UAI’99), pages 409–416, San Francisco, CA, 1999. Morgan Kaufmann
Publishers.

[188] Francisco S. Melo and M. Isabel Ribeiro. Convergence of classical reinforcement
learning algorithms and partial observability. Technical Report RT-601-06, Institute
for Systems and Robotics, January 2006.

[189] Francisco S. Melo and M. Isabel Ribeiro. Rational and convergent model-free adap-
tive learning for team Markov games. Technical Report RT-601-07, Institute for
Systems and Robotics, February 2007.

[190] Francisco S. Melo and M. Isabel Ribeiro. Q-learning with linear function approx-
imation. Technical Report RT-602-07, Institute for Systems and Robotics, March
2007.

[191] Francisco S. Melo and M. Isabel Ribeiro. Transition entropy in partially observable
Markov decision processes. In T. Balch T. Arai, R. Pfeifer and H. Yokoi, editors,
Proceedings of the 9th International Conference on Intelligent Autonomous Systems
(IAS-9), pages 282–289. IOS Press, 2005.

[192] Francisco S. Melo and M. Isabel Ribeiro. Q-learning with linear function approxi-
mation. In Learning Theory: Proceedings of the 20th Annual Conference on Learn-
ing Theory, volume 4539 of Lecture Notes in Artificial Intelligence, pages 308–322.
Springer-Verlag, 2007.

[193] Francisco S. Melo and M. Isabel Ribeiro. Convergence of Q-learning with linear
function approximation. In Proceedings of the 2007 European Control Conference
(ECC’07), pages 2671–2678, 2007.

[194] Francisco S. Melo, Pedro A. Lima, and M. Isabel Ribeiro. Event-driven modelling
and control of a mobile robot population. In Proceedings of the 8th International
Conference on Intelligent Autonomous Systems (IAS-8), pages 227–234. IOS Press,
2004.

[195] Francisco S. Melo, M. Isabel Ribeiro, and Pedro A. Lima. Blocking controllability of
a mobile robot population. Technical Report RT-601-04, Institute for Systems and
Robotics, May 2004.

[196] Francisco S. Melo, M. Isabel Ribeiro, and Pedro A. Lima. Navigation controllability
of a mobile robot population. In RoboCup 2004: Robot Soccer World Cup VIII,
volume 3276 of Lecture Notes in Computer Science, pages 499–506. Springer-Verlag,
2005.

352 BIBLIOGRAPHY

[197] Ishai Menache, Shie Mannor, and Nahum Shimkin. Basis function adaptation in
temporal difference reinforcement learning. Annals of Operations Research, 134(1):
215–238, February 2005.

[198] Michel Metivier and Pierre Priouret. Applications of a Kushner and Clark lemma to
general classes of stochastic algorithms. IEEE Transactions on Information Theory,
IT-30(2):140–151, 1984.

[199] Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and Leslie P. Kaelbling. Learning
finite-state controllers for partially observable environments. In Proceedings of the
15th International Conference on Uncertainty in Artificial Intelligence (UAI’99),
pages 427–436, 1999.

[200] Jean-Arcady Meyer and David Filliat. Map-based navigation in mobile robots: II.
A review of map-learning and path-planning strategies. Cognitive Systems Research,
4:283–317, 2003.

[201] Sean P. Meyn and Richard L. Tweedie. Markov Chains and Stochastic Stability.
Communications and Control Engineering Series. Springer-Verlag, New York, 1993.

[202] Don Monderer and Lloyd S. Shapley. Fictitious play property for games with identical
interests. Journal of Economic Theory, 68:258–265, 1996.

[203] Andrew W. Moore and Christopher G. Atkeson. Memory-based reinforcement learn-
ing: Efficient computation with prioritized sweeping. In S. J. Hanson, J. D. Cowan,
and C. L. Giles, editors, Advances in Neural Information Processing Systems, vol-
ume 5, pages 263–270, San Francisco, CA, 1993. Morgan Kaufmann Publishers.

[204] Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less time. Machine Learning, 13:103–130, 1993.

[205] David E. Moriarty, Alan C. Schultz, and John J. Grefenstette. Evolutionary algo-
rithms for reinforcement learning. Journal of Artificial Intelligence Research, 11:
241–276, 1999.

[206] Martin Mundhenk, Judy Goldsmith, and Eric Allender. The complexity of pol-
icy evaluation for finite-horizon partially observable Markov decision processes. In
Proceedings of the 22nd International Symposium on Mathematical Foundations of
Computer Science, pages 129–138, 1997.

[207] Rémi Munos. Performance bounds in Lp-norm for approximate value iteration. SIAM
Journal on Control and Optimization, (to appear), 2007.

[208] Rémi Munos and Csaba Szepesvári. Finite-time bounds for sampling-based fitted
value iteration. Journal of Machine Learning Research, page (submitted), 2007.

[209] Kevin P. Murphy. A survey of POMDP solution techniques. Technical report, De-
partment of Computer Science, University of California, 2000.

[210] Wasif Naeem, Robert Sutton, and S. M. Ahmad. LQG/LTR control of an au-
tonomous underwater vehicle using a hybrid guidance law. In Proceedings of
GCUV’03 Conference, pages 35–40, 2003.

BIBLIOGRAPHY 353

[211] Ranjit Nair, David Pynadath, Makoto Yokoo, Milind Tambe, and Stacy Marsella.
Taming decentralized POMDPs: Towards efficient policy computation for multiagent
settings. In Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI’03), pages 705–711, 2003.

[212] Ranjit Nair, Maayan Roth, Makoto Yokoo, and Milind Tambe. Communication
for improving policy computation in distributed POMDPs. In Proceedings of the
3rd International Joint Conference on Agents and Multiagent Systems (AAMAS’04),
pages 1098–1105, New York, NY, 2004. ACM Press.

[213] Jae Ho Nam, Seung Min Baek, and Tae-Yong Kuc. A robust nonlinear optimal
controller for autonomous mobile robots. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, volume 2, pages 1453–1458, 1996.

[214] John F. Nash. Two-person cooperative games. Econometrica, 21(1):128–140, 1953.

[215] John F. Nash. The bargaining problem. Econometrica, 18(2):155–162, 1950.

[216] John F. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences, 36:48–49, 1950.

[217] Gonçalo Neto, Hugo Costelha, and Pedro U. Lima. Topological navigation in config-
uration space applied to soccer robots. In RoboCup 2003: Robot Soccer World Cup
VII, pages 551–558. Springer, 2003.

[218] Paul M. Newman. On the structure and solution of the simultaneous localisation and
map building problem. PhD thesis, Australian Centre for Field Robotics, University
of Sydney, 1999.

[219] Andrew Y. Ng and Michael I. Jordan. PEGASUS: A policy search method for large
MDPs and POMDPs. In Craig Boutilier and Moisés Goldszmidt, editors, Proceedings
of the 16th Conference Uncertainty in Artificial Intelligence (UAI’00), pages 406–415.
Morgan Kaufmann, 2000.

[220] Andrew Y. Ng and Stuart J. Russel. Algorithms for inverse reinforcement learning. In
Proceedings of the 17th International Conference on Machine Learning (ICML’00),
pages 663–670, San Francisco, CA, 2000. Morgan Kaufmann Publishers.

[221] Andrew Y. Ng, Daishi Harada, and Stuart Russel. Policy invariance under reward
transformations: Theory and application to reward shaping. In Proceedings of the
16th International Conference on Machine Learning (ICML’99), pages 278–287, San
Francisco, CA, 1999. Morgan Kaufmann.

[222] Illah R. Nourbakhsh, Rob Powers, and Stanley T. Birchfield. Dervish: An office
navigating robot. AI Magazine, 16(2):53–60, 1995.

[223] Andrzej S. Novak and Eitan Altman. ε-equilibria for stochastic games with uncount-
able state-space and unbounded costs. SIAM Journal of Control and Optimization,
40(6):1821–1839, 2002.

[224] Takuya Ohko, Kazuo Hiraki, and Yuichiro Anzai. Adressee learning and message
interception for communication load reduction in multiple robot environments, volume
1221 of Lecture Notes in Artificial Intelligence, chapter III, pages 242–258. Springer-
Verlag, May 1997.

354 BIBLIOGRAPHY

[225] Dirk Ormoneit and Śaunak Sen. Kernel-based reinforcement learning. Machine
Learning, 49:161–178, 2002.

[226] Martin J. Osborne. An Introduction to Game Theory. Oxford University Press, 2004.

[227] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT
Press, 1994.

[228] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov chain
decision processes. Mathematics of Operations Research, 12(3):441–450, 1987.

[229] Il-Pyung Park and John R. Kender. Topological direction-giving and visual naviga-
tion in large environments. Artificial Intelligence, 78:355–395, 1995.

[230] K. H. Park, S. B. Cho, and Y. W. Lee. Optimal tracking control of a nonholonomic
mobile robot. In Proceedings of the IEEE International Symposium on Industrial
Electronics, 2001 (ISIE’01), volume 3, pages 2073–2076, 2001.

[231] Ronald Parr and Stuart Russell. Approximating optimal policies for partially ob-
servable stochastic domains. In Proceedings of the International Joint Conference on
Artificial Intelligence, pages 1088–1094, 1995.

[232] Ronald Parr, Christopher Painter-Wakefield, Lihong Li, and Michael Littman. An-
alyzing feature generation for value-function approximation. In Zoubin Ghahra-
mani, editor, Proceedings of the 24th International Conference on Machine Learning
(ICML’07), pages 737–744. Omni Press, 2007.

[233] Stephen D. Patek and Michael Athans. Optimal robust H∞ control. Technical Re-
port LIDS-P-2235, Laboratory for Information and Decision Systems, Massachussets
Institute of Technology, March 1994.

[234] Mariane Pelletier. On the almost sure asymptotic behaviour of stochastic algorithms.
Stochastic Processes and their Applications, 78:217–244, 1998.

[235] Jing Peng and Ronald J. Williams. Incremental multi-step Q-learning. Machine
Learning, 22(1-3):283–290, 1996.

[236] Jing Peng and Ronald J. Williams. Efficient learning and planning within the DYNA
framework. Adaptive Behavior, 1(4):437–454, 1993.

[237] Theodore J. Perkins. Reinforcement learning for POMDPs based on action values
and stochastic optimization. In 199-204, editor, Proceedings of the 18th National
Conference on Artificial Intelligence (AAAI’02), page AAAI Press/MIT Press, Menlo
Park, CA 2002.

[238] Theodore J. Perkins and Doina Precup. A convergent form of approximate policy
iteration. In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural
Information Processing Systems, volume 15, pages 1595–1602, Cambridge, MA, 2003.
MIT Press.

[239] Jan Peters, Sethu Vijayakumar, and Stefan Schaal:. Natural Actor-Critic. In
P. Brazdil A. Jorge L. Torgo J. Gama, R. Camacho, editor, Proceedings of the
16th European Conference on Machine Learning (ECML’05), volume 3720 of Lecture
Notes on Computer Science, pages 280–291. Springer, 2005.

BIBLIOGRAPHY 355

[240] Alberto Poncela, Eduardo J. Perez, Antonio Bandera, Cristina Urdiales, and Fran-
cisco Sandoval. Efficient integration of metric and topological maps for directed
exploration of unknown environments. Robotics and Autonomous Systems, 41:21–39,
2002.

[241] Pascal Poupart and Craig Boutilier. Bounded finite state controllers. In Sebas-
tian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural
Information Processing Systems, volume 16, Cambridge, MA, 2004. MIT Press.

[242] Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An analytic solution
to discrete Bayesian reinforcement learning. In Proceedings of the 23rd International
Conference on Machine Learning (ICML’06), pages 697–704, New York, NY, 2006.
ACM Press.

[243] Rob Powers and Yoav Shoham. New criteria and a new algorithm for learning in
multi-agent systems. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors,
Advances in Neural Information Processing Systems, volume 17, pages 1089–1096,
Cambridge, MA, 2005. MIT Press.

[244] Doina Precup, Richard S. Sutton, and Sanjoy Dasgupta. Off-policy temporal-
difference learning with function approximation. In Proceedings of the 18th Interna-
tional Conference on Machine Learning (ICML’01), pages 417–424, San Francisco,
CA, 2001. Morgan Kaufmann.

[245] Suparerk Premvuti and Shin’ichi Yuta. Consideration on the cooperation of multiple
autonomous mobile robots. In Proceedings of the 1990 IEEE International Workshop
on Intelligent Robots and Systems (IROS’90), pages 59–63, 1990.

[246] David V. Pynadath and Milind Tambe. The communicative multiagent team decision
problem: Analyzing teamwork theories and models. Journal of Artficial Intelligence
Research, 16:389–423, 2002.

[247] David V. Pynadath and Milind Tambe. Multiagent teamwork: Analyzing the op-
timality and complexity of key theories and models. In Proceedings of the 1st In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’02), pages 873–880, New York, NY, 2002. ACM Press.

[248] L. R. Rabiner and B. Juang. An introduction to hidden Markov models. IEEE
Audio, Speech and Signal Processing (ASSP) Magazine, 3(1):4–16, 1986.

[249] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning.
In Proceedings of the 20th International Joint Conference on Artificial Intelligence,
pages 2586–2591, 2007.

[250] P. Ranganathan, Jean-Bernard Hayet, Michel Devy, Seth Hutchinson, and Fred-
eric Lerasle. Topological navigation and qualitative localization for indoor environ-
ment using multi-sensory perception. Robotics and Autonomous Systems, 41:137–144,
2002.

[251] Bharanee Rathnasabapathy, Prashant Doshi, and Piotr Gmytrasiewicz. Exact so-
lutions for interactive POMDPs using behavioral equivalence. In Proceedings of the
5th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’06), pages 1025–1032, New York, NY, 2006. ACM Press.

356 BIBLIOGRAPHY

[252] Carlos Ribeiro and Csaba Szepesvári. Q-learning combined with spreading: Con-
vergence and results. In Proceedings of the ISRF-IEE International Conference:
Intelligent and Cognitive Systems (Neural Networks Symposium), pages 32–36, 1996.

[253] Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of
Mathematical Statistics, 22:400–407, 1951.

[254] Julia Robinson. An iterative method of solving a game. Annals of Mathematics, 54:
296–301, 1951.

[255] Armando A. Rodriguez and Michael Athans. Multivariable control of a twin lift
helicopter system using the LQG/LTR design methodology. Technical Report LIDS-
P-1551, Laboratory for Information and Decision Systems, Massachussets Institute
of Technology, April 1986.

[256] Maayan Roth, Reid Simmons, and Manuela Veloso. Reasoning about joint beliefs
for execution-time communication decisions. In Proceedings of the 4th International
Joint Conferences on Autonomous Agents and Multi-Agent Systems (AAMAS’05),
pages 1098–1105, New York, NY, 2005. ACM Press.

[257] Maayan Roth, Reid Simmons, and Manuela Veloso. Decentralized communication
strategies for coordinated multi-agent policies. In Frank E. Schneider Lynne E. Parker
and Alan C. Shultz, editors, Multi-Robot Systems: From Swarms to Intelligent Au-
tomata, volume III, pages 93–106. Springer, 2005.

[258] Maayan Roth, Reid Simmons, and Manuela Veloso. What to communicate?
Execution-time decision in multi-agent POMDPs. In Proceedings of the 8th Interna-
tional Symposium on Distributed Autonomous Robotic Systems (DARS’06), 2006.

[259] Maayan Roth, Reid Simmons, and Manuela Veloso. Exploiting factored represen-
tations for decentralized execution in multi-agent teams. In Proceedings of the 6th
International Joint Conference on Autonomous Agents and Multiagent Systems (to
appear), New York, NY, 2007. ACM Press.

[260] Michael Rovatsos, Felix A. Fischer, and Gerhard Weiß. Hierarchical reinforcement
learning for communicating agents. In W. van der Hoek, editor, Proceedings of the
2nd European Workshop on Multiagent Systems (EUMAS’04), pages 593–604, 2004.

[261] Nicholas Roy and Sebastian Thrun. Coastal navigation with mobile robot. In Pro-
ceedings of 1999 Conference on Neural Information Processing Systems (NIPS’99),
pages 1043–1049, 1999.

[262] Nicholas Roy, Geoffrey Gordon, and Sebastian Thrun. Finding approximate POMDP
solutions through belief compression. Journal of Artificial Intelligence Research, 23:
1–40, 2005.

[263] Gavin A. Rummery and Mahesan Niranjan. On-line Q-learning using connection-
ist systems. Technical Report CUED/F-INFENG/TR 166, Cambridge University
Engineering Department, 1994.

[264] Paat Rusmevichientong and Benjamin Van Roy. A tractable POMDP for a class
of sequencing problems. In Proceedings of the 17th Conference in Uncertainty in
Artificial Intelligence (UAI’01), pages 480–487. Morgan Kaufmann, 2001.

BIBLIOGRAPHY 357

[265] John Rust. Numerical dynamic programming in Economics. In H. Amman,
D. Kendrick, and J. Rust, editors, Handbook of Computational Economics. Elsevier,
North Holland, 1996.

[266] John Rust. Using randomization to break the curse of dimensionality. Econometrica,
65(3):487–516, 1997.

[267] Byeong-Soon Ryu and Hyun S. Yang. An enhanced topological map for efficient and
reliable mobile robot navigation with imprecise sensors. Robotics and Computer-
Integrated Manufacturing, 14:185–197, 1998.

[268] Arthur L. Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3(3):210–229, 1959. Reprinted in IBM
J. Res. Devel. 44:1/2, pp. 206-226, 2000.

[269] Arthur L. Samuel. Some studies in machine learning using the game of checkers II:
Recent progress. IBM Journal of Research and Development, 11:601–617, 1967.

[270] José Santos-Victor, Raquel Vassallo, and Hans Schneebeli. Topological maps for
visual navigation. In Proceedings of the 1st International Conference on Computer
Vision Systems, pages 21–36, London, UK, 1999. Springer-Verlag.

[271] Jamieson Schulte and Sebastian Thrun. A heuristic search algorithm for acting
optimally in Markov decision processes with deterministic hidden state. Unpublished
Manuscript, 2001.

[272] Sandip Sen and Gerhard Weiß. Learning in multiagent systems, chapter 6, pages
259–298. The MIT Press, 1999.

[273] Lloyd S. Shapley. Stochastig games. Proceedings of the National Academy of Sciences,
39:1095–1100, 1953.

[274] Hagit Shatkay and Leslie Pack Kaelbling. Learning topological maps with weak local
odometric information. In Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI’97), pages 920–929, 1997.

[275] Li Sheng, Ma Guoliang, and Hu Weili. Stabilization and optimal control of nonholo-
nomic mobile robot. In Proceedings of the 8th International Conference on Control,
Automation, Robotics and Vision, pages 1427–1430, 2004.

[276] Yoav Shoham, Rob Powers, and Trond Grenager. On the agenda(s) of research
on multi-agent learning. In Proceedings of the AAAI Fall Symposium on Artificial
Multi-Agent Learning, pages 89–95, 2004.

[277] Reid Simmons and Sven Koenig. Probabilistic robot navigation in partially observ-
able environments. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI’95), pages 1080–1087, 1995.

[278] Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Learning without state
estimation in partially observable environments. In Proceedings of the 11th Interna-
tional Conference on Machine Learning (ICML’94), pages 284–292, 1994.

358 BIBLIOGRAPHY

[279] Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Reinforcement learning
with soft state aggregation. In Advances in Neural Information Processing Systems,
volume 7, pages 361–368, 1994.

[280] Satinder P. Singh, Tommi Jaakkola, Michael Littman, and Csaba Szepesvari. Con-
vergence results for single-step on-policy reinforcement-learning algorithms. Machine
Learning, 38(3):287–310, 2000.

[281] Satinder P. Singh, Michael Kearns, and Yishay Mansour. Nash convergence of gra-
dient dynamics in general-sum games. In Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence (UAI’00), pages 541–548, 2000.

[282] William D. Smart and Leslie P. Kaelbling. Effective reinforcement learning for mobile
robots. In Proceedings of the 2002 IEEE International Conference on Robotics and
Automation (ICRA’02), pages 3404–3410, 2002.

[283] Matthijs T. J. Spaan and Nikos Vlassis. Planning with continuous actions in partially
observable environments. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA’05), pages 3469–3474, 2005.

[284] Matthijs T. J. Spaan and Nikos Vlassis. Perseus: Randomized Point-based Value
Iteration for POMDPs. Journal of Artificial Intelligence Research, 24:195–220, 2005.

[285] Péter Stefán. Combined use of reinforcement learning and simulated annealing: Al-
gorithms and applications. PhD thesis, Department of Mechanical Engineering, Uni-
versity of Miskolc, 2003.

[286] Peter Stone and Richard S. Sutton. Scaling reinforcement learning toward RoboCup
Soccer. In Proceedings of the 18th International Conference on Machine Learning
(ICML’01), pages 537–544, 2001.

[287] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine
learning perspective. Autonomous Robots, 8(3):345–383, 2000.

[288] Malcolm Strens. Efficient hierarchical MCMC for policy search. In Proceedings of
the 21st International Conference on Machine Learning (ICML’04), volume 69, pages
97–104, New York, NY, 2004. ACM Press.

[289] Richard S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3:9–44, 1988.

[290] Richard S. Sutton. Generalization in reinforcement learning: Successful examples
using sparse coarse coding. Advances in Neural Information Processing Systems, 8:
1038–1044, 1996.

[291] Richard S. Sutton. DYNA, an integrated architecture for learning, planning, and
reacting. ACM SIGART Bulletin, 2(4):160–163, 1991.

[292] Richard S. Sutton. Planning by incremental dynamic programming. In Proceedings
of the 8th International Workshop on Machine Learning, pages 353–357. Morgan
Kaufmann, 1991.

BIBLIOGRAPHY 359

[293] Richard S. Sutton. Integrated architectures for learning, planning, and reacting based
on approximated dynamic programming. In Proceedings of the 7th International
Conference on Machine Learning, pages 216–224, San Francisco, CA, 1990. Morgan
Kaufmann Publishers.

[294] Richard S. Sutton. First results with DYNA: An integrated architecture for learning,
planning, and reacting. Neural Networks for Control, pages 179–189, 1990.

[295] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. Adaptive Computation and Machine Learning Series. MIT Press, Cambridge,
Massachusetts, third edition, 1998.

[296] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Pol-
icy gradient methods for reinforcement learning with function approximation. In
Advances in Neural Information Processing Systems, volume 12, pages 1057–1063,
Cambridge, Massachussets, 2000. MIT Press.

[297] Richard Szabo. Topological navigation of simulated robots using occupancy grid.
International Journal of Advanced Robotic Systems, 1(3):201 – 206, 2004.

[298] Csaba Szepesvári. The asymptotic convergence rates for Q-learning. In Proceedings
of Neural Information Processing Systems (NIPS’97), volume 10, pages 1064–1070,
1997.

[299] Csaba Szepesvári and Michael L. Littman. Generalized Markov decision processes:
Dynamic programming and reinforcement learning algorithms. Technical Report
CS-96-11, Brown University, Providence - RI, USA, 1996.

[300] Csaba Szepesvári and Michael L. Littman. A unified analysis of value-function-based
reinforcement learning algorithms. Neural Computation, 11(8):2017–2059, 1999.

[301] Csaba Szepesvári and Rémi Munos. Finite time bounds for sampling based fitted
value iteration. In Proceedings of the 22nd International Conference on Machine
Learning (ICML’05), volume 119 of ACM International Conference Proceeding Se-
ries, pages 880–887. ACM Press, 2005.

[302] Csaba Szepesvári and William D. Smart. Interpolation-based Q-learning. In Pro-
ceedings of the 21st International Conference on Machine learning (ICML’04), pages
100–107, New York, USA, July 2004. ACM Press.

[303] Daniel Szer, François Charpillet, and Shlomo Zilberstein. MAA*: A heuristic search
algorithm for solving decentralized POMDPs. In Proceedings of the 21st Confer-
ence on Uncertainty in Artificial Intelligence (UAI’05), pages 576–583, Arlington,
Virginia, 2005. AUAI Press.

[304] Vladislav B. Tadić and Arnaud Doucet. Exponential forgetting and geometric ergod-
icity in state-space models. In Proceedings of the 41st IEEE Conference on Decision
and Control (CDC’02), volume 2, pages 2231–2235, 2002.

[305] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents.
In Readings in Agents, pages 487–494, San Francisco, CA, USA, 1997. Morgan Kauf-
mann Publishers Inc.

360 BIBLIOGRAPHY

[306] Stephanus ten Hagen. Continuous state-space Q-learning for control of nonlinear
systems. PhD thesis, Universiteit van Amsterdam, February 2001.

[307] Gerald Tesauro. TD-Gammon, a self-teaching backgammon program, achieves
master-level play. Neural Computation, 6(2):215–219, 1994.

[308] Gerald Tesauro. Temporal difference learning and TD-Gammon. Communications
of the ACM, 38(3):58–68, 1995.

[309] Georgios Theocharous, Khashayar Rohanimanesh, and Sridhar Maharlevan. Learn-
ing hierarchical partially observable Markov decision process models for robot nav-
igation. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA’01), volume 1, pages 511–516, 2001.

[310] Sebastian B. Thrun. Learning occupancy grids with forward models. In Proceedings
of the Conference on Intelligent Robots and Systems (IROS’2001),, volume 3, pages
1676–1681, 2001.

[311] Sebastian B. Thrun. Monte-Carlo POMDPs. Advances in Neural Information Pro-
cessing Systems (NIPS’00), 12:1064–1070, 2000.

[312] Sebastian B. Thrun. The role of exploration in learning control. Handbook of Intel-
ligent Control: Neural, Fuzzy and Adaptive Approaches, 1992.

[313] Sebastian B. Thrun, Wolfram Burgard, and Dieter Fox. A probabilistic approach
to concurrent mapping and localization for mobile robots. Machine Learning and
Autonomous Robots (Joint Issue), 31(5):1–25, 1998.

[314] Franiois Tièche and Heinz Hügli. From topological knowledge to geometrical map.
Control Engineering Practice, 7:797–802, 1999.

[315] Nicola Tomatis. Hybrid, metric-topological, mobile robot navigation. PhD thesis,
École Polytechnique Fédérale de Lausanne, 2001.

[316] Hui Tong and Timothy X. Brown. Reinforcement learning for call admission control
and routing under quality of service constraints in multimedia networks. Machine
Learning, 49(2-3):111–139, 2000.

[317] Panos E. Trahanias, Savvas Velissaris, and Stelios C. Orphanoudakis. Visual recog-
nition of workspace landmarks for topological navigation. Autonomous Robots, 7:
143–158, 1999.

[318] Olivier Trullier and Jean-Arcady Meyer. Animat navigation using a cognitive graph.
Biological Cybernetics, 83:271–285, 2000.

[319] John N. Tsitsiklis and Michael Athans. On the complexity of decentralized decision
making and detection problems. IEEE Transactions on Automatic Control, AC-30
(5):440–446, 1985.

[320] John N. Tsitsiklis and Benjamin Van Roy. Feature-based methods for large scale
dynamic programming. Machine Learning, 22:59–94, 1996.

BIBLIOGRAPHY 361

[321] John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning
with function approximation. IEEE Transactions on Automatic Control, 42(5):674–
690, May 1996.

[322] John N. Tsitsiklis and Benjamin Van Roy. On average versus discounted reward
temporal-difference learning. Machine Learning, 49(2):179–191, 2002.

[323] William Uther and Manuela Veloso. Adversarial reinforcement learning. Technical
Report CMU-CS-03-107, School of Computer Science, Carnegie Mellon University,
January 2003.

[324] Alberto Vale. Mobile robot navigation in outdoor environments: A topological ap-
proach. PhD thesis, Instituto Superior Técnico, February 2005.

[325] Alberto Vale and Maria Isabel Ribeiro. Environment mapping as a topological repre-
sentation. In Proceedings of the 11th International Conference on Advanced Robotics,
pages 29–34, 2003.

[326] Benjamin Van Roy. Learning and value function approximation in complex decision
processes. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, June 1998.

[327] Nikos Vlassis and Matthijs T. J. Spaan. A fast point-based algorithm for POMDPs.
In Benelearn 2004: Proceedings of the Annual Machine Learning Conference of Bel-
gium and the Netherlands, pages 170–176, 2004.

[328] Petr Švestka and Mark H. Overmars. Motion planning for car-like robots using a
probabilistic learning approach. Technical Report UU-CS-1994-33, Department of
Computer Science, Utrecht University, August 1994.

[329] Marilyn A. Walker. An application of reinforcement learning to dialogue strategy
selection in a spoken dialogue system for e-mail. Journal of Artificial Intelligence
Research, 12:387–416, 2000.

[330] Xiaofeng Wang and Tuomas Sandholm. Reinforcement learning to play an optimal
Nash equilibrium in team Markov games. In S. Becker, S. Thrun, and K. Obermayer,
editors, Advances in Neural Information Processing Systems, volume 15, pages 1571–
1578. MIT Press, Cambridge, MA, 2003.

[331] Keigo Watanabe. Control of an omnidirectional mobile robot. In Proceedings of
the 2nd International Conferece on Knowledge-Based Intelligent Electronic Systems,
pages 51–60, 1998.

[332] Christopher Watkins and Peter Dayan. Technical note: Q-learning. Machine Learn-
ing, 8:279–292, 1992.

[333] Christopher J. C. H. Watkins. Learning from delayed rewards. PhD thesis, King’s
College, University of Cambridge, May 1989.

[334] Gerhard Weiß. A multiagent variant of DYNA-Q. In Proceedings of the 4th In-
ternational Conference on Multi-Agent Systems (ICMAS’00), pages 461–462. IEEE
Computer Society, 2000.

362 BIBLIOGRAPHY

[335] Gerhard Weiß. Achieving coordination through combining joint planning and joint
learning. In Proceedings of the 14th European Conference on Artificial Intelligence
(ECAI’00), pages 388–392. IEEE Computer Society, IOS Press, 2000.

[336] Gerhard Weiß. A multiagent perspective of parallel and distributed machine learning.
In Proceedings of the 2nd International Conference on Autonomous Agents (Agents
- 98), pages 226–230. ACM Press, 1998.

[337] Shimon Whiteson, Matthew E. Taylor, and Peter Stone. Adaptive tile coding for
value function approximation. Technical Report AI-TR-07-339, University of Texas
at Austin, 2007.

[338] Marco Wiering and Jürgen Schmidhuber. Efficient model-based exploration. In
J. A. Meyer R. Pfeiffer, B. Blumberg and S. W. Wilson, editors, Proceedings of the
5th International Conference on Simulation of Adaptive Behavior (SAB’98): From
Animals to Animats, volume 5, pages 223–228. MIT Press, 1998.

[339] Stefan B. Williams. Efficient solutions to autonomous mapping and navigation prob-
lems. PhD thesis, Australian Centre for Field Robotics, University of Sydney, 2001.

[340] Niall Winters, José Gaspar, Gerard Lacey, and José Santos-Victor. Omni-directional
vision for robot navigation. In Proceedings of the IEEE Workshop on Omnidirectional
Vision, pages 21–28, 2000.

[341] Alex Yahja, Sanjiv Singh, and Anthony Stentz. Recent results in path planning for
mobile robots operating in vast outdoor environments. In Proceedings of the 1998
Symposium on Image, Speech, Signal Processing and Robotics, 1998.

[342] Alex Yahja, Anthony Stentz, Sanjiv Singh, and Barry L. Brumitt. Framed-quadtree
path planning for mobile robots operating in sparse environments. In Proceedings
of the IEEE Conference on Robotics and Automation (ICRA’98), volume 1, pages
650–655, 1998.

[343] Erfu Yang and Donbing Gu. Multiagent reinforcement learning for multi-robot sys-
tems: A survey. Technical Report CSM-404, Department of Computer Science,
University of Essex, 2004.

[344] Gary Yen and Travis Hickey. Reinforcement learning algorithms for robotic nav-
igation in dynamic environments. In Proceedings of the 2002 International Joint
Conference on Neural Networks (IJCNN’02), volume 2, pages 1444–1449, 2002.

[345] H. Peyton Young. The evolution of conventions. Econometrica, 61(1):57–84, January
1993.

[346] Nevin Zhang and Weihong Zhang. Speeding up the convergence of value iteration
in partially observable Markov decision processes. Journal of Artificial Intelligence
Research, 14:29–51, 2001.

[347] Uwe R. Zimmer. Robust world-modelling and navigation in a real world. Neurocom-
puting, 13:247–260, 1996.

BIBLIOGRAPHY 363

[348] Dominique Van Zwynsvoorde, Thierry Siméon, and Rachid Alami. Building topo-
logical models for navigation in large-scale environments. In Proceedings of the 2001
IEEE International Conference on Robotics and Automation (ICRA’01), pages 160–
165, 2001.

364

Notation

List of symbols

We now summarize the symbols used throughout the thesis. As there are quite a few
of them, we grouped them into different clusters, mainly according to the chapter
in which they are introduced.

General purpose

N Set of natural numbers (1, 2, . . .);
R Set of real numbers (−1, 0, 1/2, π, . . .);
> Transpose;
L (U) Linear span of U ;
〈·, ·〉 Inner product;
‖·‖2 Euclidean norm;
‖·‖∞ Sup-norm;
T Time (index) set;
t Time index;
ω General element of the probability space (Ω,F ,P [·]);
P [E] Probability of event E;
Pµ [E] Probability of event E w.r.t. the measure µ;
Px [E] Probability of event E w.r.t. the point-mass measure at x;
F General σ-field;
F(E) General σ-field generated by the event E;
Ft σ-field generated by the history Ht up to time t;
E [X] Expectation of the random variable X;
Eµ [X] Expectation of the random variable X w.r.t. the measure µ;
N General null-measured set;
N(0, 1) Normal (Gaussian) distribution;
I Identity operator;
IU Indicator function for the set U ;
Iu Indicator function for the set {u};
Ht History up to time instant t;
% Preference relation;
%k Preference relation for player k;

366 Notation

⊗
Generalized optimization operator;

B Best response function;
φ Similarity function;
U Lyapunov function;

Markov chains

P Transition probability kernel;
Pk k-step transition probability kernel;
Pθ Controlled transition probability kernel;
Ka Sampling chain with sampling distribution a;
ηU Number of visits to set U ;
τU First return time to set U ;
ϕ Irreducibility measure;
ψ Maximal irreducibility measure;
µ, µ∗ Invariant probability measure;
µθ, µθ Invariant probability measure w.r.t. the control parameter θ;
B(U) Countably generated σ-field on U/Borel σ-field on U ;
B+(U) Subset of B(U) consisting on all sets in B(U) with positive ψ-measure;
D d-cycle;
‖·‖ Total variation norm;
∆V Drift operator;
ν Solution of the Poisson equation;
νθ Solution of the Poisson equation w.r.t. the control parameter θ;
E(i) Equivalence class of state i under the equivalence relation ↔;

Chapter 2

G Graph;
E Graph edge set/event set;
V Graph vertex set;
{ve1 , . . . ,ven} Clock structure;
X ,Y State-spaces;
Xt Chain state at time t;
{Xt} Markov chain;
A Set of possible actions (action-space);
At Action at time t;
{At} Control sequence;
δ General stationary policy;
δt General non-stationary policy;
δ∗ Optimal policy;
Pe Event-driven transition probability kernel;
Pa Controlled transition probability kernel;
Pδ Transition probability kernel w.r.t. the policy δ;

Notation 367

Eδ [·] Expectation w.r.t. the policy δ;
r Reward function;
R Random reward function;
R Reward bound;
γ Discount factor;
V ∗ Optimal value function;
V δ Value function given the policy δ;
Q∗ Optimal Q-function;

Chapter 3

T,Tδ Dynamic programming operators for V ∗ and V δ;
H Dynamic programming operator for Q∗;
nt(i) Number of visits to state x up to time t;
nt(i, a) Number of visits to the state-action pair (i, a) up to time t;
P̂ Estimated transition probability kernel;
r̂ Estimated reward function;
αt Step-size;
∆t Temporal difference at time t;
δg Greedy policy;
δQg Greedy policy w.r.t. the function Q;

Chapter 4

Ĥ Approximate dynamic programming operator in kernel-based learn-
ing;

θ Parameter vector;
ξi Basis function;
Ξ Set of basis functions;
V Linear space of functions defined on X generated by a finite set Ξ of

linearly independent functions;
Q Linear space of functions defined on X ×A generated by a finite set

Ξ of linearly independent functions;
Qθ, Q(θ) Approximate Q-function for the parameter vector θ;
δθ θ-dependent stationary policy;
(δθ)t θ-dependent non-stationary policy;
µX , µY Invariant probability measure for the chain {Xt}/{Yt};
µθX , µ

θ
X Invariant probability measure for the chain {Xt}/{Yt} w.r.t. the con-

trol parameter θ;
EX [·] ,EY [·] Expectation w.r.t. the invariant measure for the chain {Xt}/{Yt};
Eθ [X] Expectation of the random variable X given the parameter θ;
Eθ
µ [X] Expectation of the random variable X w.r.t. measure µ and given

the parameter θ;
P Projection operator;
PQ Orthogonal projection into the space Q;
Σ Normalization matrix;
Σθt Normalization matrix w.r.t. the control parameter θt;

368 Notation

Z Observation space;
Zt Observation at time t;
{Zt} Observation sequence;
O Observation probability function;
Sn n− 1-dimensional probability simplex;
π Belief state;
{Πt} Fully observable Markov chain in belief space;
P̄ Transition probability kernel for the associated fully observable chain;
r̄ Reward function for the associated fully observable MDP;
x,y Generic points in Euclidean space (contrasting with x, y, which are generic

points in the set X);

Chapter 6

N Set of players N = {1, . . . , N};
A Set of possible joint actions (action-space);
Ak Set of possible individual actions for player k;
×Nk=1Ak Cartesian product of the sets of individual actions;
ak Individual action for player k;
a−k Reduced action profile;
σ Joint strategy;
σk Individual strategy for player k;
σ−k Reduced strategy profile;
P(k) Individual transition probability kernel for player k;
Pσ Transition probability kernel w.r.t. the strategy σ;
Eσ [·] Expectation w.r.t. the strategy σ;
r Joint payoff function;
rk Payoff function for player k;
(V σ)k Value function for player k given the strategy σ;
(V ∗)k Optimal value function for player k;

Chapter 7

Γ∗i State-game;
Γi Estimated state-game;
V G Virtual game;
V Gt Auxiliary virtual game at time t;
L(Γ) Maximum length of the shortest path between two vertices in the

best response graph of Γ (see Appendix C);
opt(x) Set of optimal actions at state x;
optε(x) Set of ε-optimal actions at x;
BRt Best response set for player k at time t;
EPt Expected payoff function for player k at time t;
rate Convergence rate function;

Notation 369

Commonly used tuples

(X ,P) Markov chain;
(X ,A,P) Controlled Markov chain;
(X,A,P, r, γ) Markov decision process;
(Sn,A, P̄, r̄, γ) Associated fully observable Markov decision

process;
(X ,Z,P,O) Partially observable Markov chain;
(X ,A,Z,P,O, r, γ) Partially observable Markov decision process;
(N,X , (Ak), (Zk),P, (Ok), (rk), γ) Partially observable stochastic game;
(N,X , (Ak), (Zk),P, (Ok), r, γ) Partially observable team stochastic game;(
N, (Ak), (%k)

)
,
(
N, (Ak), (rk)) Strategic game;({1, 2} , (Ak), (rk)) Zero-sum strategic game;(

N, (Ak), r) Team strategic game;(
N,X , (Ak),P, (rk), γ) Markov game;(
N,X , (Ak),P, r, γ) Team Markov game;(
N, (Ak), Q∗(x, ·)) State-game for a team Markov game;

Acronyms

ABAP Approximate biased adaptive play;
AI Artificial intelligence;
ARTDP Adaptive real-time dynamic programming;
ARTQI Adaptive real-time Q-iteration;
ARTVI Adaptive real-time value-iteration;
BaGA Bayesian game approximation;
BAP Biased adaptive play;
CMAC Cerebellar model articulation controller;
DEC-POMDP Decentralized partially observable Markov decision process;
DP Dynamic programming;
FF-Q Friend-or-foe Q-learning;
GLIE Greedy in the limit with infinite exploration;
GMDP Generalized Markov decision process;
I-POMDP Interactive partially observable Markov decision process;
JAL Joint-action learners;
LP Linear program;
LSTD Least-squares temporal differencing;
MAS Multi-agent systems;
MDP Markov decision process;
MG Markov game;
POMDP Partially observable Markov decision process;
POSG Partially observable stochastic game;
POTMG Partially observable team Markov game;
RBF Radial basis function;
RL Reinforcement learning;

370 Notation

RTDP Real-time dynamic programming;
SARSA State-action-reward-state-action (on-policy learning algorithm);
SG Stochastic game;
TD Temporal difference;
TMG Team Markov game;

Basis functions for function approximation

In the representation below, x denotes an element of X ; X is a compact subset
of Rn; {Ui, i = 1, . . . ,M} is a partition of X ; {yi, i = 1, . . . ,M} is a set of points
(random or not) in X ; Φ is a univariate, non-negative kernel (e.g., the Gaussian
kernel); b is an adjustable parameter.

Function Approximators

Grid-based ξi(x) = IUi(x);

Plane-based ξ2i(x) = x(i); ξ2i−1 = 1− x(i);

Exp-based ξ2i(x) = e−x(i); ξ2i−1 = 1− e−x(i);

Kernel-based ξi(x) =
Φ(‖x− yi‖ /b)∑M
j=1 Φ(‖x− yj‖ /b)

;

All functions ξi are normalized to yield
∑

i ξi(x) = 1.

Index

Accessible state, 261
Action

ε-optimal, 150
Individual, 130
Joint, 130, 264
Profile, see Action, Joint
Reduced, 130, 264
Space, 27

Adapt. real-time dynamic prog.,
see ARTDP

Adaptive play, 277
Biased, 149, 280
Approximate, 175

Archytas of Tarentum, 2
ARTDP, 41
ARTQI, 44

Convergence, 45
ARTVI, 43

Convergence, 45
Automaton

Finite-state, 21
Navigation, 22
Stochastic, 24
Timed, 23

BaGA, 190
Bandwidth parameter, 65
Bayesian game approximation, see BaGA
Belief

Consistent, 187
Consistent initial, 187
State, 86, 187
Vector, see Belief, State

Bellman optimality equation, 31, 62
Best response, 132, 267

Graph, 278

Boltzmann exploration, 45

CAQL, 179
Central limit theorem, 238, 259
Centralized observations, see Observation,

Centralized
cit environment, 105
Clock structure, 23
cmu environment, 105
Cognitive autonomy, 185
Communicating state, 261
Contraction, 32
Convergence, 157

In behavior, 44, 147, 177
Coordinated approx. Q-learning,

see CAQL
Coordinated Q-learning, see CQL
Coordination problem, 137
CQL, 154
Ctesibius of Alexandria, 2

d-cycle, 249
DEC-POMDP, 189
Decentralized POMDP, see DEC-POMDP
Direct methods, see Model-free methods
Distinctive place, 20
Drift operator, 253

Equilibrium selection, see Coordination
problem

Fictitious play, 276
Property, 277

First return time, 246
Fixed point, 40
Fixed-point, 32
Frame, 190

371

372 INDEX

Game
Bayesian, 268
Fully cooperative, 134, 272
Markov, 129, 274
State-game, 149
Stochastic, see Game, Markov
Strategic, 264
Strictly competitive, 271
Team, see Game, Fully cooperative
Virtual, 149, 150, 281
Weakly acyclic, 279
Weakly acyclic w.r.t. a bias set, 281

Gronwall inequality, 237

H operator, 40
Hölder inequality, 237
Hidden Markov model, 84

I-POMDP, 190
Indirect methods, see Model-based meth-

ods
Interactive POMDP, see I-POMDP
isr environment, 104

Jacques de Vaucanson, 2

K-sample, 149, 277
Kernel-based RL, 65

Law of large numbers, 238, 259
Law of the iterated logarithm, 178, 238,

259
Learning

Coordination, 148, 174
Direct, see Model-free methods
Game, 145, 171
Indirect, see Model-based methods
Model-based, see Model-based meth-

ods
Model-free, see Model-free methods
Off-policy, see Off-policy methods
On-policy, see On-policy methods
Policy, see Policy, Learning
Q-learning, see Q-learning

Leonardo da Vinci, 2

Markov chain
Aperiodic, 249

Controlled, 27
Ergodic, 255
Feller, 250
Geometrically ergodic, 256
Harris, 254
Irreducible, 261
m-skeleton, 245
Partially observable, 84
Periodic, 249
Positive, 252, 261
ψ-irreducible, 247
Recurrent, 253
Resolvent chain, 245
Sampled chain, 245
Time-homogeneous, 26, 244
Transient, 253
Uniformly ergodic, 256

Markov decision process, 30
Partially observable, 88

Markov game, see Game, Markov
Markov property, 26
Martingale, 235

Convergence, 236
Increment, 236

Matching pennies, 265
Maxminimizer, 271
Measure

Initial, 244
Invariant, 251
Irreducibility, 246
Maximal irreducibility, 247

mit environment, 104
Model-based methods, 41, 65, 146
Model-free methods, 41, 46, 66, 147

Nash equilibrium, 266
Bayesian game, 269
Coordinated, 134, 273
Mixed strategy, 270
Stochastic game, 132, 275

OAL, 152
Observation

Centralized, 185
Individual, 185
Joint, 185
Probability, 186

INDEX 373

Profile, see Observation, Joint
Off-policy methods, 46
On-policy methods, 46, 163
On-strategy method,

see On-policy methods
Optimal adaptive learning, see OAL

pentagon environment, 104
Perceptual aliasing, 111
Pierre Jaquet-Droz, 2
Poisson equation, 258
Policy, 31, 131

Deterministic, 32, 62
GLIE, 45
Greedy, 44
Learning, 44
Optimal, 31, 62
Stationary, 32, 62
Stochastic, 31, 62

Preference relation, 264
Prisoner’s dilemma, 265, 267, 279
Probability kernel, 244

k-step transition, 245
Transition, 62, 244

Probability matrix, 26
k-step transition, 27
Observation, 84
Transition, 26

Projection operator, 67

Q-function, see Q-values
Q-learning, 49

Approximate, 69, 172
Convergence, 50, 70, 147, 173, 180
Linear-Q, 110
Multi-agent, 147

Q-values, 31
Optimal, 31, 62

Quad-tree, 19

Random variable
Measurable, 235
Sequence
Adapted, 235
Previsible, 235

Rationality, 157
Reinforcement, see Reward

Reward, 29, 30

σ-field, 235
Increasing, 235

Sampling distribution, 245
SARSA, 49

Approximate, 69
Convergence, 50, 71

Set
Absorbing, 247
Full, 247
Petite, 248
Recurrent, 253
Harris, 254

Small, 248
Transient, 253
Uniform, 253

Similarity function, 176
State-game, see Game, State-game
State-space, 26
Stochastic game, see Game, Markov
Stochastic process, 243
Strategy, 131, 269

Evaluation, 162
Individual, 131
Joint, 131, 270
Mixed, 131, 270
Profile, 270, see Strategy, Joint
Pure, 131, 270
Reduced, 131, 270
Stationary, 131
Support, 270

suny environment, 105

Tδ operator, 40
TD(0), 48

Approximate, 67
Convergence, 50, 67

Temporal difference, 48
Topological map, 20
Type, 190

Value function
For player k, 132
Optimal, 31, 62

Value iteration, 32
Virtual game, see Game, Virtual

374 INDEX

Wolfgang Von Kempelen, 3

	Resumo
	Abstract
	Acknowledgements
	Introduction
	The world of robotics and intelligent machines
	Problem statement
	Structure of the thesis
	Contributions
	Basic nomenclature

	I Single-Robot Navigation and Learning
	Topological Navigation and Markov Processes
	Mobile robot navigation
	Topological maps
	Topological localization
	Topological navigation
	Concluding remarks

	Reinforcement Learning in Finite State-Spaces
	Reinforcement learning
	Learning and fixed-point computations
	Model-based learning
	Model-free learning
	An illustrative example
	Concluding remarks

	Generalized Reinforcement Learning
	Learning and function approximation
	Infinite state-space Markov processes
	Related work
	Model-based learning
	Model-free learning
	Two illustrative examples
	Partial observability
	An illustrative example
	Concluding remarks

	Results on Single Robot Navigation
	Introductory remarks
	The experimental setup
	Experimental results
	Concluding remarks

	II Multi-Robot Navigation and Learning
	Cooperative Navigation and Markov Games
	Multi-robot systems
	Topological navigation with multiple robots
	Optimality and equilibria
	Coordination and equilibrium selection
	Concluding remarks

	Reinforcement Learning in Finite Markov Games
	Learning in multi-agent systems
	Learning the game
	Learning to coordinate
	An illustrative example
	Concluding remarks

	Reinforcement Learning in Infinite Markov Games
	Introduction
	Infinite state-space Markov games
	Learning the game
	Learning to coordinate
	An illustrative example
	Partial observability
	An illustrative example
	Concluding remarks

	Results in Multi-Robot Navigation
	Introductory remarks
	The experimental setup
	Experimental results
	Concluding remarks

	General Conclusions
	Overview of the thesis
	General discussion
	Future work

	III Appendices
	Some Mathematical Background
	Martingale sequences
	Several useful inequalities
	The law of the iterated logarithm
	Some notes on measure spaces and norms

	Markov Chains and Stochastic Stability
	Markov chains and transition probabilities
	Irreducibility
	Minorization properties
	Periodicity
	Topology in Markov chains
	Invariant measures
	Recurrence and drift
	Ergodicity
	Limit theorems and the Poisson equation
	Discrete state-spaces

	Game Theory and Markov Games
	Strategic games
	Mixed equilibria
	Strictly competitive games
	Fully cooperative games
	Stochastic games
	Fictitious play
	Adaptive play

	Stochastic Approximation
	Convergence of stochastic approximation algorithms
	Asymptotic behavior

	Q-learning using sample-based approximation
	Sample-based approximation
	Main result
	Proof of Theorem E.2.1
	Discussion

	Proofs
	Proofs for Chapter 3
	Proofs for Chapter 4
	Proofs for Chapter 7
	Proofs for Chapter 8

	Bibliography
	Notation
	Index

