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1049-001 Lisboa - Portugal

Abstract. We present a novel boosting algorithm where temporal consistency is
addressed in a short-term way. Although temporal correlation of observed data
may be an important cue for classification (e.g. of human activities) it is sel-
dom used in boosting techniques. The recently proposed Temporal AdaBoost ad-
dresses the same problem but in a heuristic manner, first optimizing the weak
learners without temporal integration. The classifier responses for past frames
are then averaged together, as long as the total classification error decreases.
We extend the GentleBoost algorithm by modeling time in an explicit form, as a
new parameter during the weak learner training and in each optimization round.
The time consistency model induces a fuzzy decision function, dependent on the
temporal support of a feature or data point, with added robustness to noise. Our
temporal boost algorithm is further extended to cope with multi class problems,
following the JointBoost approach introduced by Torralbaet. al.We can thus (i)
learn the parameters for all classes at once, and (ii) share features among classes
and groups of classes, both in a temporal and fully consistent manner.
Finally, the superiority of our proposed framework is demonstrated comparing
it to state of the art, temporal and non-temporal boosting algorithms. Testsare
performed both on synthetic and 2 real challenging datasets used to recognize a
total of 12 different human activities.

1 Introduction

Although short-term temporal information may convey critical information for several
classification problems, it is ignored by many classifiers. Nowadays, data for video
applications are acquired at high frame rates in such a way that information changes
smoothly in most of the cases. Human motion follows this behavior, thus generate sim-
ilar motion data during several consecutive frames. An adequate model of this type
of data consistency inside the classifier will improve the performance of any non-
sequential classifier, that can be used, for instance, to recognize human activities in
several different applications, e.g. surveillance, intelligent environments, human/robot
interaction or interface.
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When the temporal evolution of the features is essential likein human activity
recognition, there are usually two types of classifiers used: (i) non-sequential, and (ii)
sequential. Non-sequential classifiers aim to maximize thenumber of individual labels
predicted correctly, encompassing the temporal dynamics in a short-term manner, usu-
ally in the feature computation step. On the other hand, sequential classifiers predict
jointly the entire sequence of labels with the highest probability. An example of a non-
sequential classifier is the Adaboost cascade for pedestrian detection using pairs of im-
ages to compute motion features [1]. In the case of sequential classifiers, a recent work
[2] proposes a Conditional Random Field classifier trained with gradient tree boosting.
Another approach is the correlation of data volumes to matchactivities in video, such
as the spatio-temporal descriptor based on optical flow, proposed by Efros et.al. [3].

Opposed to most of the works, including the ones referred above, that use a tempo-
ral window fixed by hand, we derive a non-sequential classifier that learns the optimal
temporal window. We rely on the GentleBoost algorithm [4], that can be defined as a
forward stagewise approximate optimization of the exponential loss. We propose to in-
clude explicitly short-time consistency in GentleBoost, considering the non-sequential
weak classifiers. The recently proposed TemporalBoost [5] also introduced temporal
consistency in a boosting procedure, by averaging previousAdaBoost weak classifiers
sequentially, while the classification error decreases. However, temporal support is con-
sidered in a heuristic procedure only after training the weak classifiers, and the Tempo-
ralBoost averaged output is mapped to a binary value. This allows to use the standard
AdaBoost procedure [6], but discards the advantages of a fuzzy output.

In this paper we propose to model time directly during the weak classifiers train-
ing. As the basis of our work, we consider the gentleBoost algorithm using regression
stumps as weak learners. A regression stump is similar to a single node binary tree, that
selects a branch for a given feature according to a thresholdusing a binary decision
function. Alternatively, we propose to compute a new decision function, by averaging
the decision value in the learned temporal window. This procedure transforms the bi-
nary decision into a fuzzy one, according to the temporal window size. This new weak
classifier based on a fuzzy decision function provides two main advantageous properties
to boosting algorithms: (i) added noise robustness, and (ii) better performance.

In order to extend the binary classification framework to multiclass problems, we
adapt JointBoosting [7] algorithm to fit our framework. JointBoost proposes to share
weak classifiers among classes by selecting the group of classes which are going to
share a feature, allowing to: (i) learn the strong classifiers of each class jointly, and (ii)
reduce the number of weak learners needed to attain good performance.

2 GentleBoost with temporal consistent learners

The Boosting algorithm provides a framework to sequentially fit additive models in
order to build a final strong classifier,H(xi). This is done minimizing, at each round,
the weighted squared error,J =

∑N
i=1 wi(yi − hm(xi))

2, wherewi = e−yihm(xi) are
the weights andN the number of training samples. At each round, the optimal weak
classifier is then added to the strong classifier and the data weights adapted, increasing
the weight of the misclassified samples and decreasing correctly classified ones [7].



In the case of GentleBoost it is common to use simple functions such as regression

stumps. They have the formhm(xi) = aδ
[

xf
i > θ

]

+ bδ
[

xf
i ≤ θ

]

, wheref is the

number of the feature andδ is an indicator function (i.e.δ[condition] is one ifcondition
is true and zero otherwise). Regression stumps can be viewed as decision trees with
only one node, where the indicator function sharply choosesbrancha or b depending
on thresholdθ and featurexf

i . To optimize the stump one must find the set of para-
meters{a, b, f, θ} that minimizesJ w.r.t. hm. A closed form for the optimala andb
are obtained and the value of pair{f, θ} is found using an exhaustive search [7]. Next
section shows how to include temporal consistency in the regression stumps.

2.1 Weak learners with temporal consistency

In this work we add temporal consistency to the weak classifier response,hm, using a
set ofT consecutive data points to perform the classification. The rationale is to use as
much as possible of the information available in order to improve classifier output.

We propose to include the temporal window sizeT as an additional parameter of
the regression stump. In this way the regression stump will only use advantageous in-
formation at each round, by choosing how many points to use depending on the feature
values, opposed to the common approach of constant window length. Thus, consistency
is included by defining the new Temporal Stumps as the mean classification output of
the regression stump, in a temporal window of sizeT ,

h∗
m(xi) =

1

T

T−1
∑

t=0
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aδ
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]

+ bδ
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. (1)

The particular information extracted within the temporal window become clear if we
puta andb in evidence,
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The new temporal weak classifier of Eq. 2 can be viewed as the classic regression stump
with a different “indicator function”. IfT = 1 it becomes the original regression stump,
and forT > 1 the indicator function changes. The new indicator functions

∆T
+(f, θ, T ) =

1

T

T−1
∑

t

δ
[
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]

, ∆T
−(f, θ, T ) =

1

T
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t

δ
[

xf
i−t ≤ θ

]

, (3)

compute the percentage of points above and below the threshold θ, in the temporal
windowT and for the feature numberf . The indicator functions with temporal consis-
tency in Eq. 3, can take any value in the interval[0 1], depending on the length of the
temporal window used. For example, ifT = 2 the functions can take3 different values,
∆T

+ ∈ {0, 1/2, 1}, if T = 3 can take four values,∆T
+ ∈ {0, 1/3, 2/3, 1} and so on.

The fuzzy output of the new “indicator function”,∆, represents the confidence of
threshold choice to use the data with temporal supportT . Thus, at each boosting round,



we use a weighted confidence of both branches, instead of choosing only one branch.
We present experimental results that show that optimizing this fuzzy regression stump
brings additional resistance to noise, thus increasing thegeneralization capabilities.

During classification of unseen data, the algorithm has the possibility to decrease
the confidence measure,∆, for instance if the new data is noisy when compared to the
training data. This differs from the usual boosting binary decision and can be compared
to what fuzzy trees brought to decision trees.

Replacing the weak classifier with temporal consistency of Eq. 2 in the cost func-
tion, we compute the optimal temporal stump parametersa andb,

a =
ν̄+ω̄− − ν̄−ω̄±

ω̄+ω̄− − (ω̄±)
2 , b =

ν̄−ω̄+ − ν̄+ω̄±

ω̄+ω̄− − (ω̄±)
2 , (4)

with
ν̄+ =

∑N
i wiyi∆

T
+, ν̄− =

∑N
i wiyi∆

T
−,

ω̄+ =
∑N

i wi∆
T
+, ω̄− =

∑N
i wi∆

T
−, ω̄± =

∑N
i wi∆

T
−∆T

+.
Note that all the above variables are functions of{f, θ, T} that we dropped for

notation simplicity. To find the optimalf ,θ andT we use exhaustive search.
Comparing the temporal weak learner with the original GentleBoost weak learner,

we have an additional parameterT to optimize. The algorithm is similar to Gentleboost,
now optimizing the presented temporal stump,h∗

m.
It is important to remark that the proposed framework is, as the classic boosting

approaches, a non-sequential single-frame classifier. It should be used to classify data
at one time instant with the internal difference that it “looks” back a few points in time,
adding consistency to the decision. The data used does not need to have any special
characteristic despite the fact of having some temporal sequence.

2.2 Results on Synthetic data

We perform tests with synthetic data in order to illustrate the advantages of our algo-
rithm over other boosting approaches: (i) improved noise robustness, and (ii) improved
performance in data with large overlapping in the feature space. We create synthetic
data and apply three boosting algorithms: (i) GentleBoost [4], (ii) TemporalBoost [5]
and (iii) our optimal temporal boosting.

The aim is to learn two elliptic trajectories using point location as features, and then
classify new points as belonging to one of the trajectories.The input features (x1

i , x
2
i )

are noisy observations of the actual ellipses, generated accordingly to:x1
i = a cos t +

N (0, σ) andx2
i = b sin t + N (0, σ), wherea andb are the major and minor axis,t

represents time, andN (µ, σ) is Gaussian noise. In Figure 1(a) we observe examples of
trajectories withσ = 0, andσ = 0.15.

Figure 1(b) plots the evolution of the recognition rate along rounds for the test set.
The experiment corresponds to trajectories corrupted by noise with σ = 0.15. Our
boosting proposal clearly outperforms TemporalBoost and GentleBoost.

Noise robustness: We perform 15 experiments for each boosting algorithm, chang-
ing the noise variance linearly from0 to 0.3. For each experiment, we compute recog-
nition rate along 100 rounds and then pick the maximum value.In Figure 1(d) we plot
the recognition performance maximavs noise variance, showing experimentally that



our boosting algorithm is more robust to noise than GentleBoost and TemporalBoost.
The reason for this behavior is the fuzzy output of the classifiers, that takes into account
uncertainty in decisions at each boosting round.

(a) (b)

(c) (d)

Fig. 1. Comparison of the recognition rate evolution for: GentleBoost, TemporalBoost and our
OptimalTemporalBoost. The two class elliptical trajectories in (a) are used to compute the evolu-
tion along rounds, in (b), for the three algorithms. Picking the maximum of the evolution along
rounds for each experiment we vary: the problem complexity presented in (c), and the varying
the features noise in (d).

Class overlap: In this experiment we increase gradually the amount of overlap
among classes, keeping noise constant. Like in the previousexperiment, we pick the
best recognition rate in all rounds. In Figure 1(c) we see that our algorithm surpasses
GentleBoost and TemporalBoost. The explicit inclusion of temporal parameters in the
regression stump, and consequently joint optimization with the remaining ones can ex-
plain the improvement of our algorithm over TemporalBoost.

2.3 Comments

We show experimentally that our temporal GentleBoost algorithm increases noise ro-
bustness up to 20%, and is able to handle class overlapping inaverage with 10% better
results than TemporalBoost. These results clearly indicate the advantage of using this



new framework instead of other boosting approaches when working with temporal data.
Additionally, the explicit time formulation in the regression stumps allow us to extend,
in a straightforward manner, the temporal GentleBoost to multi-class problems.

3 Going to the multi class problem

A Multi-class categorization problem is usually solved as aset of multi-binary problems
where separate classifiers are trained and applied independently. As pointed by Torralba
et al [7], for the object detection problem, this is a waste of resources because many of
the features used can be shared among several classes. In thecase of boosting, sharing
helps to: i) reduce computational complexity by sharing weak classifiers among classes
and ii) reduce the amount of training data needed in order to attain the same classifica-
tion performance. We generalize the temporal GentleBoost to the multi-class problem
likewise Torralbaet al extended GentleBoost to multi-class problems.

3.1 The Temporal-JointBoosting algorithm

The idea behind JointBoosting [7] is to share weak classifiers (and features) across
classes. At each round the algorithm chooses a weak classifier that shares a feature
among the subset of classes. The optimal subset of classes ischosen by minimizing the
error cost function for all possible combinations.

The optimization to be solved has now one more variable, the classes, thus one must
solve,J =

∑C
c=1

∑N
i=1 wc

i (y
c
i − hm(c, xi))

2, the new weighted least squares problem
in each iteration, wherewc

i = e−yc

i
hm(c,xi) are the new class-specific weights. Shared

stumps use the data that belongs to the optimal subset of classes as positive samples,
and the remaining data as negative samples. For classes in the optimal subsetS(n), the
stump function is similar to the binary case. For classes outside the optimal subset, the
stump function is a class-specific constant,kc. (see [7] for details). The shared temporal
stump has the following form:

hm(c, x) =

{

aS∆T
+ + bS∆T

− if c ∈ S(n)

kc
S if c /∈ S(n),

(5)

where∆T
+/− are the temporal consistency function defined in Eq. 3. The optimal para-

meters of the shared stump are:
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−
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i wc
i y

c
i

∑

i wc
i

, c /∈ S(n), (8)

and obtainθ, f , T andS(n), exhaustive search is performed [7].



3.2 Results on Synthetic data

We apply multiclass versions of the previously used three boosting algorithms: (i) One
against all version of the TemporalBoost, (ii) JointBoost,and (iii) JointBoost version
of optimal temporal boost. In this case we aim to model several classes, and perform
similar tests to the class overlap tests in the binary problem.

Five elliptical trajectories were generated for 10 levels of overlapping between
classes, each one corresponding to 5 class classification problem. We vary the prob-
lem complexity, starting from the simplest case (easily separable), and increasing the
proximity among classes toward a more complex problem. In Figure 2 we see that

Fig. 2. Recognition rate in multi-class synthetic datasets, using 10 levels of increasing overlap
among classes.

multi-class boosting algorithms have a very similar behavior to the two-class boosting.
In this case the classification rate improvement is larger than the binary counterpart,
with our temporal version of JointBoost performing almost 20% better than Temporal-
Boost, and 30% better than the original JointBoost. Our JointBoost version of optimal
temporal boost further improves the advantages over current state of the art methods
when working with the intuitively more complex multiclass problem. The following
step is to test our temporal JointBoost in real and very challenging datasets.

4 Human activity recognition

For the real datasets tests we consider the problem of human activity recognition using 2
different scenarios. Firstly we present results on the CAVIAR [8] scenario, a very chal-
lenging dataset due to: i) perspective distortion, ii) radial distortion and iii) the presence
of a vanishing point in the image that makes human images varying from top view to
side view. Using the CAVIAR dataset we aim to classify five general and basic human
activities,{Active, Inactive, Walking, Running, Fighting}. The Active class considers
movement of body parts that do not originate translation in the image.

The second dataset contains body specific movements that canbe viewed as a de-
tailed interpretation of the Active class. The movements considered are related to 2 body



parts: i) the trunk and ii) the arms. For the trunk we recognize the movements of bend-
ing down/stand up and turning right/left. The arms movements comprise rising/putting
down both right and left arms. We consider a total of 8 movements.

4.1 General activities recognition

The problem is to recognize five human activities from video sequences,{Active, In-
active, Walking, Running, Fighting}. A total of about 16,000 images with ground truth
were used and are distributed according to table 3(a). Figure 3(b) shows tree exam-
ples of each considered activity. Figure 3(c) shows an imagefrom the fighting scenario

(a) (b)

(c) (d)

Fig. 3. Considered activities and data distribution for the CAVIAR dataset (a) andexample im-
ages for each class (b). The test scenario is exemplified in (c) and (d)presents the two types of
information used to compute all the 29 features: the target velocity and the optical flow vectors
(the optical flow represented in the image was sampled from the all the computed vectors).

used to extract the examples from figure 3(b). Note the wide variability of this dataset,
for example the third column (in figure 3(b)) correspond to the walking activity and in
approximately one second the person changes from top to sideview.

The features used to perform classification were obtained from the detected mov-
ing blobs in the scene that correspond to people. Once the information regarding the
position of the target over time is provided, we compute 29 features based on 2 char-
acteristics: i) the instantaneous position and velocity ofthe tracked subject and ii) the
optic flowor instantaneous pixel motion inside the target’s boundingbox. An example
of subject’s velocity and optic flow is plotted in Figure 3(d). The rationale behind the 29
features is to model some important characteristics of people movements: i) speed, ii)



regularity of the trajectory, iii) motion energy and iv) regularity of motion. We also use
both instantaneous, averaged and second order moments of these quantities. A detailed
description of the features can be found in [9].

We perform a leave one out subset process to compute the recognition rate, dividing
the dataset into four different subsets (each one with similar number of frames). The
definitive recognition rate is the average of the four tests.We compare three algorithms:
(i) One against all TemporalBoost, (ii) JointBoost and (iii) optimal temporal JointBoost.
We show the average recognition rate for each boosting roundin Figure 4(a) and the
best recognition rate and correspondent standard deviation in table 4(b).

(a) (b)

Fig. 4. Recognition rate in multi-class synthetic datasets, using 10 levels of increasing overlap
among classes (a). Algorithms recognition rate comparison for the CAVIAR scenario(b) with
best recognition rate and standard deviation (c).

In this test, optimal temporal JointBoost outperforms one against all TemporalBoost
by 5%, and JointBoost by 8%.

4.2 Body parts movements recognition

This group of tests aim to recognize body movements that do not originate translation
of the target in the image. In Table 5(a) we see the data distribution for every type of
body movement, and in Figure 5(b) examples of them are plotted.

The activities considered here are based on the movement of 2body parts, the trunk
and the arms, and for each movement several sequences were recorded. Each movement
was performed in 2 different locations and/or performed in 2different ways. For exam-
ple, turning is always performed in the same manner but in 2 different locations, one
near the camera and one far from it. The opposite happens withthe arms movement,
they are performed in the same location but in two different sights. The bending move-
ments are performed in both locations and sights (e.g. side and front sight). See figure
6(b) for example images illustrating this differences and figure 6(a) for the working
scenario. In each case 4 different sequences where recorded, and the dataset contains a
total of 3147 frames.



(a) (b)

Fig. 5. Considered body part movements and data distribution in (a) and exampleimages for the
eight movements in (b).

As features we consider optic flow referred to the person centroid in order to obtain
only the relative motion of the different parts of the body. The idea is to have a quali-
tative measure of movements, without segmenting or identifying parts of the body, that
would be a difficult and sometimes an impossible problem due to recurrent occlusions.

We assume that the body parts are arranged around the body centroid, thus the opti-
cal flow vectors are averaged along angular directions with the origin at the centroid. A
detailed explanation of the feature extraction method can be found in [10]. The resultant
features are vectors along a discrete number of angular direction that aim to represent
the radial and normal movement of the person with respect to the correspondent angular
direction. In figure 6(c) are plotted the features used, with10 angular direction, for one
of the rising left arm example.

To compare the performance of all the boosting algorithms wepresent in figure
6(d) the evolution of the recognition rate where the classifiers are trained with half of
the sequences and tested with the remaining ones (performedtwice by exchanging the
test and training sets). In this experiment examples from the 2 locations and sights are
present in the training set.

In figure 6(e) we evaluate the ability of our algorithm to recognize activities per-
formed in different sights and image locations (scales). For this experiment we train
the algorithms with sequences recorded at one location and one sight and in the test
set we use sequences recorded at a different location and/orsight. Combining the two
locations and sights we perform a total of four tests.

The results clearly show the advantage of using our algorithm, performing more
than 11% better than TemporalBoost and 20% than JointBoost.In the more complicated
test (figure 6(e)) the differences between the methods are even greather (15% in relation
to TemporalBoost), with a 3% decreasing in the recognition rate of our method, when
compared with the previous and much simpler test. These results indicate that we are
able to recognise types of activities, even when performed differently, rather than exact
types of movements.



(a) (b) (c)

(d) (e)

Fig. 6. Examples of: the global scenario (a), bending, rotating and rising rightarm movements,
illustrating the location and sigh differences (b) and the features computedfor one rising left arm
example (c). The algorithms recognition rate are compared when: the classifiers are trained with
half of the sequences and tested with the remaining ones (d) and when trainand test are done in
different locations and sights (e).

4.3 Discussion

The single-frame overall recognition rate of 91%, in the general human activity, and
94%, in the specific body parts movements recognition tests are very good result, tak-
ing into acount the wide type of distortions present in the first scenario, that makes it
one of the most challenging scenarios for this kind of task, and that we do not used any
dynamic model of activity transitions. The inclusion of transitional dynamic models
depends on the desired application, but the results presented here can be straightfor-
ward used as a lower level for several applications, e.g. urban surveillance, intelligent
environments or human/robot interfaces and interaction. Furthermore, the inclusion of
such higher level models (restrictions) should increase the recognition rate making the
system very robust on real world aplpications.

5 Conclusions

We have proposed a methodology to handle temporal data consistency in non-sequential
single-frame classification problems. Although the temporal evolution of the data might
be crucial for certain classification problems (e.g. human activity), even when perform-
ing single-frame classification, it is rarely addressed at the level of the classifier.



We have adopted the boosting framework and propose a method whereby time is
taken into account in the boosting optimization steps. In our work, temporal consistency
is treated as part of the overall optimization procedure, contrasting with the heuristic
approach adopted in the recently proposed Temporal AdaBoost.

More specifically, we extend the GentleBoost algorithm by modeling time as an
explicit parameter to optimize. As a consequence of this time consistency model, we
obtain a fuzzy decision function, depending on the temporalsupport of the data, which
brings additional robustness to noise. Finally, we allow our temporal boosting algorithm
to cope with multi class problems, following the JointBoosting approach.

We have conducted extensive tests to demonstrate the superiority of our approach
when compared to the Temporal Boost and the GentleBoost algorithms. We use syn-
thetic datasets with increasing complexity as well as real video data recognizing human
activities. The results show that our method clearly outperform the Temporal Boosting
algorithm by5 − 10% and standard GentleBoost algorithm by as much as10 − 20%.

Using the real datasets we achieve performance always greater than 90% for a very
challenging scenario, due to large image distortions. In the classification of more spe-
cific body parts movements the recognition rate is superior to 94%. This are very good
results taking into acount that we perform single-frame classification without modeling
the activities dynamics.

We present results that clearly show the importance of temporal data consistency in
single-frame classification problems as well as the importance of as handling time in
an optimal, fully consistent manner. Additionally, this new framework can be used with
any type of sequential data, thus being applicable to a wide range of other problems,
rather than the ones discussed here.
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