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Abstract. We present a novel boosting algorithm where temporal consistency is
addressed in a short-term way. Although temporal correlation of ebdetata
may be an important cue for classification (e.g. of human activities) ielis s
dom used in boosting techniques. The recently proposed TemporBoadbad-
dresses the same problem but in a heuristic manner, first optimizing thle we
learners without temporal integration. The classifier responses &irffzanes

are then averaged together, as long as the total classification erreasesr

We extend the GentleBoost algorithm by modeling time in an explicit form, as a
new parameter during the weak learner training and in each optimization.rou
The time consistency model induces a fuzzy decision function, depeadéhe
temporal support of a feature or data point, with added robustnesss®. @ur
temporal boost algorithm is further extended to cope with multi class prahle
following the JointBoost approach introduced by Torradbaal. We can thus (i)
learn the parameters for all classes at once, and (ii) share featnoeg lasses
and groups of classes, both in a temporal and fully consistent manner.

Finally, the superiority of our proposed framework is demonstratedpeimg

it to state of the art, temporal and non-temporal boosting algorithms. @ests
performed both on synthetic and 2 real challenging datasets used thizea
total of 12 different human activities.

1 Introduction

Although short-term temporal information may convey catiinformation for several

classification problems, it is ignored by many classifierewbdays, data for video
applications are acquired at high frame rates in such a watyinformation changes

smoothly in most of the cases. Human motion follows this beiathus generate sim-
ilar motion data during several consecutive frames. An adexymodel of this type

of data consistency inside the classifier will improve thefgenance of any non-

sequential classifier, that can be used, for instance, tmgréze human activities in

several different applications, e.g. surveillance, ligeht environments, human/robot
interaction or interface.
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FEDER funds) and EU Project URUS (IST-045062). Pedro Ribeiro atknowledges the
PhD grant SFRH/BD/18936/2004



When the temporal evolution of the features is essential ilkbuman activity
recognition, there are usually two types of classifiers uégdon-sequential, and (ii)
sequential. Non-sequential classifiers aim to maximizentiraber of individual labels
predicted correctly, encompassing the temporal dynamiasshort-term manner, usu-
ally in the feature computation step. On the other hand, esgtipl classifiers predict
jointly the entire sequence of labels with the highest pbillig An example of a non-
sequential classifier is the Adaboost cascade for pedestei@ction using pairs of im-
ages to compute motion features [1]. In the case of seqlefdssifiers, a recent work
[2] proposes a Conditional Random Field classifier trainét gradient tree boosting.
Another approach is the correlation of data volumes to mattivities in video, such
as the spatio-temporal descriptor based on optical flovpgeed by Efros et.al. [3].

Opposed to most of the works, including the ones referredelibat use a tempo-
ral window fixed by hand, we derive a non-sequential clasdtfiat learns the optimal
temporal window. We rely on the GentleBoost algorithm [#kttcan be defined as a
forward stagewise approximate optimization of the exptiakloss. We propose to in-
clude explicitly short-time consistency in GentleBoostsidering the non-sequential
weak classifiers. The recently proposed TemporalBoostIfs] mtroduced temporal
consistency in a boosting procedure, by averaging prevAaiadBoost weak classifiers
sequentially, while the classification error decreasesvéver, temporal support is con-
sidered in a heuristic procedure only after training thekv@assifiers, and the Tempo-
ralBoost averaged output is mapped to a binary value. Thigialto use the standard
AdaBoost procedure [6], but discards the advantages ofzy foiztput.

In this paper we propose to model time directly during the kneassifiers train-
ing. As the basis of our work, we consider the gentleBoostritlym using regression
stumps as weak learners. A regression stump is similar togéesnode binary tree, that
selects a branch for a given feature according to a thresisiidy a binary decision
function. Alternatively, we propose to compute a new decisunction, by averaging
the decision value in the learned temporal window. This @doce transforms the bi-
nary decision into a fuzzy one, according to the temporatiain size. This new weak
classifier based on a fuzzy decision function provides twimrmdvantageous properties
to boosting algorithms: (i) added noise robustness, ahbdtier performance.

In order to extend the binary classification framework to tiolzlss problems, we
adapt JointBoosting [7] algorithm to fit our framework. J&@oost proposes to share
weak classifiers among classes by selecting the group adedashich are going to
share a feature, allowing to: (i) learn the strong classifiéreach class jointly, and (ii)
reduce the number of weak learners needed to attain gooorpenfice.

2 GentleBoost with temporal consistent learners

The Boosting algorithm provides a framework to sequentifitl additive models in
order to build a final strong classifief] (x;). This is done minimizing, at each round,
the weighted squared errof,= S | w;(y; — hu(2:))2, wherew; = e~ ¥ih= (@) are
the weights andV the number of training samples. At each round, the optimalkwe
classifier is then added to the strong classifier and the deights adapted, increasing
the weight of the misclassified samples and decreasingathyrigtassified ones [7].



In the case of GentleBoost it is common to use simple funstguth as regression
stumps. They have the fortn,, (xz;) = ad {rf > 9} + b [xf < 9], where f is the
number of the feature anidis an indicator function (i.e¥[conditior] is one if condition
is true and zero otherwise). Regression stumps can be viewed asiafetiees with
only one node, where the indicator function sharply chodsascha or b depending
on thresholdd and featurex-f. To optimize the stump one must find the set of para-
meters{a, b, f, 0} that minimizesJ w.r.t. h,,,. A closed form for the optimat andb
are obtained and the value of pdif, #} is found using an exhaustive search [7]. Next
section shows how to include temporal consistency in theessipn stumps.

2.1 Weak learnerswith temporal consistency

In this work we add temporal consistency to the weak class#igponsel,,,, using a
set of T consecutive data points to perform the classification. Btiemale is to use as
much as possible of the information available in order torimp classifier output.

We propose to include the temporal window siZeas an additional parameter of
the regression stump. In this way the regression stump wijl ose advantageous in-
formation at each round, by choosing how many points to upertding on the feature
values, opposed to the common approach of constant windaythieThus, consistency
is included by defining the new Temporal Stumps as the measifitaation output of
the regression stump, in a temporal window of size

e = 13 (o0 [oL > ] w00t <)) (1)

The particular information extracted within the temporahaow become clear if we
puta andb in evidence,

B (s —a< Za[”w]) (;gé[x{tgem. ®)

The new temporal weak classifier of Eq. 2 can be viewed as #issiclregression stump
with a different “indicator function”. Ifl’ = 1 it becomes the original regression stump,
and forT > 1 the indicator function changes. The new indicator function
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compute the percentage of points above and below the tHdeghio the temporal
window T" and for the feature numbet The indicator functions with temporal consis-
tency in Eq. 3, can take any value in the interféal], depending on the length of the
temporal window used. For examplefif= 2 the functions can tak&different values,
AT €{0, 1/2, 1}, if T = 3 can take four values)? € {0, 1/3, 2/3, 1} and so on.

The fuzzy output of the new “indicator function2y, represents the confidence of
threshold choice to use the data with temporal supporfthus, at each boosting round,



we use a weighted confidence of both branches, instead oifgponly one branch.
We present experimental results that show that optimiigftizzy regression stump
brings additional resistance to noise, thus increasingdmeralization capabilities.

During classification of unseen data, the algorithm has trssipility to decrease
the confidence measurd, for instance if the new data is noisy when compared to the
training data. This differs from the usual boosting binaggidion and can be compared
to what fuzzy trees brought to decision trees.

Replacing the weak classifier with temporal consistencyafZin the cost func-
tion, we compute the optimal temporal stump parametensdb,
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with 7+ = Z%\[sz'yiAJTr- 7o =30 wiy AT,
oy =Y NwAT, o =N w AT, oy =N w,ATAT.

Note that all the above variables are functions{¢fd, T} that we dropped for
notation simplicity. To find the optimaf,6 andT" we use exhaustive search.

Comparing the temporal weak learner with the original GeBrlost weak learner,
we have an additional paramef&to optimize. The algorithm is similar to Gentleboost,
now optimizing the presented temporal sturhyf),.

It is important to remark that the proposed framework is,hesdlassic boosting
approaches, a non-sequential single-frame classifidnolild be used to classify data
at one time instant with the internal difference that it ‘fsbback a few points in time,
adding consistency to the decision. The data used does Bdttoehave any special
characteristic despite the fact of having some temporalesace.

2.2 Resultson Synthetic data

We perform tests with synthetic data in order to illustrdte advantages of our algo-
rithm over other boosting approaches: (i) improved noigeistness, and (ii) improved
performance in data with large overlapping in the featur@cep We create synthetic
data and apply three boosting algorithms: (i) GentleBoékt([i) TemporalBoost [5]
and (iii) our optimal temporal boosting.

The aim is to learn two elliptic trajectories using pointdtion as features, and then
classify new points as belonging to one of the trajectoiié® input featuresa(, 22
are noisy observations of the actual ellipses, generateatdiogly to:x} = acost +
N(0,0) andz? = bsint + N(0,0), wherea andb are the major and minor axis,
represents time, antl'(, o) is Gaussian noise. In Figure 1(a) we observe examples of
trajectories witho = 0, ando = 0.15.

Figure 1(b) plots the evolution of the recognition rate gloounds for the test set.
The experiment corresponds to trajectories corrupted ligenwith o = 0.15. Our
boosting proposal clearly outperforms TemporalBoost aadttéBoost.

Noiserobustness: We perform 15 experiments for each boosting algorithm, ghan
ing the noise variance linearly frotto 0.3. For each experiment, we compute recog-
nition rate along 100 rounds and then pick the maximum vaftu€igure 1(d) we plot
the recognition performance maxina noise variance, showing experimentally that



our boosting algorithm is more robust to noise than GenttesBand TemporalBoost.
The reason for this behavior is the fuzzy output of the cfeessi that takes into account
uncertainty in decisions at each boosting round.
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Fig. 1. Comparison of the recognition rate evolution for: GentleBoost, TempocaBand our
OptimalTemporalBoost. The two class elliptical trajectories in (a) are usezhtpute the evolu-
tion along rounds, in (b), for the three algorithms. Picking the maximumegtiolution along
rounds for each experiment we vary: the problem complexity predenté), and the varying
the features noise in (d).

Class overlap: In this experiment we increase gradually the amount of agerl
among classes, keeping noise constant. Like in the predgpsriment, we pick the
best recognition rate in all rounds. In Figure 1(c) we se¢ dla algorithm surpasses
GentleBoost and TemporalBoost. The explicit inclusionesfiporal parameters in the
regression stump, and consequently joint optimizatioh t¥ie remaining ones can ex-
plain the improvement of our algorithm over TemporalBoost.

2.3 Comments

We show experimentally that our temporal GentleBoost d@lgar increases noise ro-
bustness up to 20%, and is able to handle class overlappengiage with 10% better
results than TemporalBoost. These results clearly inditdz advantage of using this



new framework instead of other boosting approaches whekingwith temporal data.
Additionally, the explicit time formulation in the regrésa stumps allow us to extend,
in a straightforward manner, the temporal GentleBoost thiralass problems.

3 Goingtothe multi class problem

A Multi-class categorization problem is usually solved astof multi-binary problems
where separate classifiers are trained and applied indep#ndAs pointed by Torralba
et al[7], for the object detection problem, this is a waste of teses because many of
the features used can be shared among several classescaséhef boosting, sharing
helps to: i) reduce computational complexity by sharingkweassifiers among classes
and ii) reduce the amount of training data needed in ordettéinathe same classifica-
tion performance. We generalize the temporal GentleBaote multi-class problem
likewise Torralbeet al extended GentleBoost to multi-class problems.

3.1 The Temporal-JointBoosting algorithm

The idea behind JointBoosting [7] is to share weak classifiand features) across
classes. At each round the algorithm chooses a weak clagbifieshares a feature
among the subset of classes. The optimal subset of class@sssn by minimizing the
error cost function for all possible combinations.

The optimization to be solved has now one more variable,ltsses, thus one must
solve,J = Zle Zi]il wi(ys — hm(c, x;))?, the new weighted least squares problem
in each iteration, where§ = e~vi"n (%) are the new class-specific weights. Shared
stumps use the data that belongs to the optimal subset aleslas positive samples,
and the remaining data as negative samples. For classesaptiimal subse$(n), the
stump function is similar to the binary case. For classesidethe optimal subset, the
stump function is a class-specific constatit,(see [7] for details). The shared temporal
stump has the following form:

T T
ho(e,2) = {a54+ +bsAT if c € S(n)

kg if ¢ ¢ S(n), ®)

whereAi/_ are the temporal consistency function defined in Eq. 3. Thienap para-
meters of the shared stump are:
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and obtaird, f, T andS(n), exhaustive search is performed [7].



3.2 Resultson Synthetic data

We apply multiclass versions of the previously used thramsbiog algorithms: (i) One
against all version of the TemporalBoost, (ii) JointBoastd (iii) JointBoost version
of optimal temporal boost. In this case we aim to model séwdagses, and perform
similar tests to the class overlap tests in the binary proble

Five elliptical trajectories were generated for 10 levelsoeerlapping between
classes, each one corresponding to 5 class classificatidobepr. We vary the prob-
lem complexity, starting from the simplest case (easilyasaple), and increasing the
proximity among classes toward a more complex problem. gufé 2 we see that
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Fig. 2. Recognition rate in multi-class synthetic datasets, using 10 levels of inayeas#
among classes.

multi-class boosting algorithms have a very similar bebato the two-class boosting.
In this case the classification rate improvement is largan tthe binary counterpart,
with our temporal version of JointBoost performing almo8¥@2better than Temporal-
Boost, and 30% better than the original JointBoost. OurtBaiost version of optimal
temporal boost further improves the advantages over dustate of the art methods
when working with the intuitively more complex multiclassoplem. The following
step is to test our temporal JointBoost in real and very ehgihg datasets.

4 Human activity recognition

For the real datasets tests we consider the problem of huatigityarecognition using 2
different scenarios. Firstly we present results on the @¥¥/[8] scenario, a very chal-
lenging dataset due to: i) perspective distortion, ii) ahdistortion and iii) the presence
of a vanishing point in the image that makes human imagesngifyom top view to
side view. Using the CAVIAR dataset we aim to classify five giath and basic human
activities, {Active, Inactive, Walking, Running, Fightirjg The Active class considers
movement of body parts that do not originate translatiom@image.

The second dataset contains body specific movements théecaiewed as a de-
tailed interpretation of the Active class. The movementssitered are related to 2 body



parts: i) the trunk and ii) the arms. For the trunk we recogtiie movements of bend-
ing down/stand up and turning right/left. The arms movemmentnprise rising/putting
down both right and left arms. We consider a total of 8 movemen

4.1 General activitiesrecognition

The problem is to recognize five human activities from videguences{Active, In-
active, Walking, Running, Fighting A total of about 16,000 images with ground truth
were used and are distributed according to table 3(a). €igdn) shows tree exam-
ples of each considered activity. Figure 3(c) shows an infiange the fighting scenario

|| id | # Frames | Activity

1 3,211 Inactive

2 1,974 Active

3 9.831 Walking

4 297 Running

5 594 Fighting
(a)

(d)

Fig. 3. Considered activities and data distribution for the CAVIAR dataset (a)exathple im-
ages for each class (b). The test scenario is exemplified in (c) anquigs@nts the two types of
information used to compute all the 29 features: the target velocity andotieloflow vectors
(the optical flow represented in the image was sampled from the all theutechpectors).

used to extract the examples from figure 3(b). Note the widiabgity of this dataset,
for example the third column (in figure 3(b)) correspond ® Walking activity and in
approximately one second the person changes from top twiside

The features used to perform classification were obtainaud the detected mov-
ing blobs in the scene that correspond to people. Once tbeniation regarding the
position of the target over time is provided, we compute 28ures based on 2 char-
acteristics: i) the instantaneous position and velocityheftracked subject and ii) the
optic flowor instantaneous pixel motion inside the target’s boundiog An example
of subject’s velocity and optic flow is plotted in Figure 3(dhe rationale behind the 29
features is to model some important characteristics of lpampvements: i) speed, ii)



regularity of the trajectory, iii) motion energy and iv) tégrity of motion. We also use
both instantaneous, averaged and second order momengsefdhantities. A detailed
description of the features can be found in [9].

We perform a leave one out subset process to compute thenigoagate, dividing
the dataset into four different subsets (each one with ammimber of frames). The
definitive recognition rate is the average of the four taMscompare three algorithms:
(i) One against all TemporalBoost, (ii) JointBoost ang @iptimal temporal JointBoost.
We show the average recognition rate for each boosting rouRéhure 4(a) and the
best recognition rate and correspondent standard deviiati@ble 4(b).

Optimal TemporaBoost

TemporalBoost

JointBoost |

|| Algorithm | Mean | Std ||

OptBoost | 91% | +3.2%
TempBoost | 86% +2.8%
JointBoost | 83% +3.3%

Recognition Rate

30 &0 a0 an 100
Boosting Rounds

(@) (b)

Fig.4. Recognition rate in multi-class synthetic datasets, using 10 levels of inayeagnlap
among classes (a). Algorithms recognition rate comparison for the 8R\dcenario(b) with
best recognition rate and standard deviation (c).

In this test, optimal temporal JointBoost outperforms ogeirest all TemporalBoost
by 5%, and JointBoost by 8%.

4.2 Body parts movementsrecognition

This group of tests aim to recognize body movements that donginate translation
of the target in the image. In Table 5(a) we see the data hligioin for every type of
body movement, and in Figure 5(b) examples of them are plotte

The activities considered here are based on the movemertafy?parts, the trunk
and the arms, and for each movement several sequences e@mad Each movement
was performed in 2 different locations and/or performed dhfferent ways. For exam-
ple, turning is always performed in the same manner but irfférdint locations, one
near the camera and one far from it. The opposite happenstigthrms movement,
they are performed in the same location but in two differégttts. The bending move-
ments are performed in both locations and sights (e.g. siddrant sight). See figure
6(b) for example images illustrating this differences amuife 6(a) for the working
scenario. In each case 4 different sequences where recamidthe dataset contains a
total of 3147 frames.



Activity

||id|# Frames| Movement ||
1 429  |bend trunk down

243 right arm down
248 left arm down
224 right arm up
248 left arm up

459 bend trunk up
610 |rotate trunk right
686 | rotate trunk left

(@)

O | | | KW

Fig. 5. Considered body part movements and data distribution in (a) and examgges for the
eight movements in (b).

As features we consider optic flow referred to the persorroihin order to obtain
only the relative motion of the different parts of the bodieTidea is to have a quali-
tative measure of movements, without segmenting or idgngfparts of the body, that
would be a difficult and sometimes an impossible problem duecdurrent occlusions.

We assume that the body parts are arranged around the badgidethus the opti-
cal flow vectors are averaged along angular directions \witotigin at the centroid. A
detailed explanation of the feature extraction method ediobnd in [10]. The resultant
features are vectors along a discrete number of angulastidinethat aim to represent
the radial and normal movement of the person with respebetadrrespondent angular
direction. In figure 6(c) are plotted the features used, Witlangular direction, for one
of the rising left arm example.

To compare the performance of all the boosting algorithmspvesent in figure
6(d) the evolution of the recognition rate where the classifare trained with half of
the sequences and tested with the remaining ones (perfdmeslby exchanging the
test and training sets). In this experiment examples fragtlocations and sights are
present in the training set.

In figure 6(e) we evaluate the ability of our algorithm to rgoize activities per-
formed in different sights and image locations (scales).tRis experiment we train
the algorithms with sequences recorded at one location aadsight and in the test
set we use sequences recorded at a different location agsighdir Combining the two
locations and sights we perform a total of four tests.

The results clearly show the advantage of using our algutitherforming more
than 11% better than TemporalBoost and 20% than JointBlma$te more complicated
test (figure 6(e)) the differences between the methods aregreather (15% in relation
to TemporalBoost), with a 3% decreasing in the recognitaie of our method, when
compared with the previous and much simpler test. Thesdtsaadicate that we are
able to recognise types of activities, even when perforniféerently, rather than exact
types of movements.
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Fig. 6. Examples of: the global scenario (a), bending, rotating and rising aightmovements,
illustrating the location and sigh differences (b) and the features comfartede rising left arm

example (c). The algorithms recognition rate are compared when: tsfides are trained with
half of the sequences and tested with the remaining ones (d) and wheartcaiast are done in
different locations and sights (e).

4.3 Discussion

The single-frame overall recognition rate of 91%, in theggahhuman activity, and
949%, in the specific body parts movements recognition testsery good result, tak-
ing into acount the wide type of distortions present in thst ficenario, that makes it
one of the most challenging scenarios for this kind of task, that we do not used any
dynamic model of activity transitions. The inclusion ofrsitional dynamic models
depends on the desired application, but the results pebémrdre can be straightfor-
ward used as a lower level for several applications, e.carugurveillance, intelligent
environments or human/robot interfaces and interactionthermore, the inclusion of
such higher level models (restrictions) should increase¢lsognition rate making the
system very robust on real world aplpications.

5 Conclusions

We have proposed a methodology to handle temporal datastensy in non-sequential
single-frame classification problems. Although the terapevolution of the data might
be crucial for certain classification problems (e.g. hun@ividy), even when perform-
ing single-frame classification, it is rarely addressedhatével of the classifier.



We have adopted the boosting framework and propose a methetely time is
taken into account in the boosting optimization steps. innrk, temporal consistency
is treated as part of the overall optimization proceduretrasting with the heuristic
approach adopted in the recently proposed Temporal AddBoos

More specifically, we extend the GentleBoost algorithm bydelmg time as an
explicit parameter to optimize. As a consequence of thig thonsistency model, we
obtain a fuzzy decision function, depending on the tempgupport of the data, which
brings additional robustness to noise. Finally, we allowtemporal boosting algorithm
to cope with multi class problems, following the JointBangtapproach.

We have conducted extensive tests to demonstrate the arifyeof our approach
when compared to the Temporal Boost and the GentleBoostillgs. We use syn-
thetic datasets with increasing complexity as well as rislEdovdata recognizing human
activities. The results show that our method clearly odtper the Temporal Boosting
algorithm by5 — 10% and standard GentleBoost algorithm by as muchOas 20%.

Using the real datasets we achieve performance alwaysgtéan 90% for a very
challenging scenario, due to large image distortions. éndhassification of more spe-
cific body parts movements the recognition rate is supeoi®d®6. This are very good
results taking into acount that we perform single-framssiféication without modeling
the activities dynamics.

We present results that clearly show the importance of teahpata consistency in
single-frame classification problems as well as the impagaof as handling time in
an optimal, fully consistent manner. Additionally, thissmamework can be used with
any type of sequential data, thus being applicable to a wvadge of other problems,
rather than the ones discussed here.
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