
Detecting Luggage Related Behaviors Using a New Temporal Boost Algorithm∗

Pedro Canotilho Ribeiro Plinio Moreno
Instituto Superior T́ecnico

Instituto de Sistemas e Robótica
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Jośe Santos-Victor

Abstract

In this paper we propose an approach to recognize lug-
gage related behaviors in public spaces. We model be-
haviors in a multiclass learning framework, defining four
classes: (i) walking, (ii) not moving, (iii) picking up/leaving
bag, and (iv) abandoned bag.

We rely on the output of a tracking algorithm to gener-
ate targets in each image. Then, we analyze each target
separately, by computing three features: (i) optic flow, (ii)
motion energy, and (iii) bounding box area. The features
are fed into a novel boosting algorithm that adds temporal
consistency in a short-term way. This temporal boosting
algorithm considers time explicitly in the weak classifiers,
leading to an improvement in noise robustness and perfor-
mance.

We show that our approach, with very simple features
and a time-based boosting algorithm, is able to generate
properly alarms on suspicious behaviors in a sequence of
PETS 2007 database.

1 Introduction

The protection of critical transportation places and in-
frastructure is a very important topic these days. Many of
these facilities exist in areas of high pedestrian traffic, mak-
ing them accessible to attack, while not well suited for mon-
itoring by humans, as it requires careful concentration over
long periods of time.

Surveillance systems able to detect some potentially sus-
picious situations are crucial to people safety [3]. In this
paper we present such a system, that is able to track pedes-
trians and detect their behaviors at critical transportation
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places (e.g. airports). Suspicious behaviors are viewed as
low-level detections, using up to one second (25 frames) of
video, and are essential to perform higher level reasoning
about more complex situations over longer periods of time.

We propose an approach that models the behavior of peo-
ple and luggage in an airport scenario. In every frame of
the video we model the behavior of the targets provided by
a tracking algorithm. The targets detected can be of three
types: (i) people, (ii) luggage, and (iii) people with luggage.
Using the evolution of target position along time, we de-
fine four behaviors: (i) person walking, (ii) person not mov-
ing, (iii) person picking up/leaving bag, and (iv) abandoned
bag. To learn those behaviors, we propose a new multi-
class learning algorithm with two main characteristics: (i)
learns the optimal temporal window for classification, and
(ii) shares features among classes and groups of classes.

We present a new learning algorithm that considers the
temporal evolution of the features. Our proposal models
temporal consistency in boosting, by parameterizing time in
weak classifiers. As the basis of our work, we consider Gen-
tleBoost algorithm, using regression stumps as weak classi-
fiers. A regression stump is similar to a single node binary
tree, that selects a branch for a given feature according to a
threshold using a binary decision function.

Alternatively, we propose to compute a new decision
function, by averaging the decision value in the learned tem-
poral window. This procedure transforms the binary deci-
sion into a fuzzy one, according to the temporal window
size. This new weak classifier based on a fuzzy decision
function provides two main advantageous properties in re-
lation to other boosting algorithms: (i) improved noise ro-
bustness, and (ii) better performance.

The temporal boost algorithm is further extended to cope
with multi-class problems, following the approach by Tor-
ralba et. al. in the JointBoosting [5]. We can thus (i) learn
the parameters for all classes at once, and (ii) share features
among classes and groups of classes.

Along with this temporal boosting algorithm, we pick
a very simple and adequate set of features to model the
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1. Given: (x1, y1), . . . , (xN , yN ) where xi ∈ X, yi ∈ Y =
{−1, +1}, set H(xi) := 0, initialize the observation weights
wi = 1/N , i = 1, 2, . . . , N

2. Repeat form = 1, . . . , M

(a) Find the optimal weak classifierhm over(xi, yi, wi).

(b) Update strong classifierH(xi) := H(xi) + h∗m(xi)

(c) Update weights for examplesi = 1, 2, . . . , N , wi :=
wie

−yih∗m(xi)

Figure 1. GentleBoost algorithm.

human-luggage interaction: (i) optic flow, (ii) motion en-
ergy, and (iii) bounding box area.

We selected some of the PETS 2007 benchmark videos
to train the parameters of the boosting algorithm. In the test-
ing stage we use a different sequence to classify behaviors
of the targets detected in each frame. The results suggest
that the classification output can be used to generate alarms,
for instance, related to (i) attended luggage removal, and (ii)
unattended luggage.

2 Boosting with temporal consistent learners

In this paper we propose a new classifier that considers
explicitly short-time consistency, based on boosting tech-
niques. Boosting builds a strong classifier by summing sev-
eral weak classifiers trained on various distributions over
the training data, and became extremely popular in com-
puter vision due to the ability to perform feature selection
and classification.

2.1 GentleBoost algorithm

The Boosting algorithm provides a framework to sequen-
tially fit additive models in order to build a final strong clas-
sifier, outputting the log-odd of the class given a feature
point xi. The boosting algorithm of Figure1 uses adap-
tive Newton steps, resulting in minimizing, at each round, a
weighted squared error

J =

NX
i=1

wi(yi − hm(xi))
2, (1)

wherewi = e−yiH(xi) are the weights andN the number of
training samples. The optimal weak classifier is then added
to the strong learner and the data weights adapted. Finally,
the algorithm increases the weight of the misclassified sam-
ples and decreases correctly classified ones.

The choice of the weak learnerhm depends on the ap-
plication, but in the case of GentleBoost it is common to
use simple functions such as regression stumps. They have

the formhm(xi) = aδ
[
xf

i > θ
]
+ bδ

[
xf

i ≤ θ
]
, wheref is

the number of the feature andδ is an indicator function (i.e.
δ[cond] is one if cond is true and zero otherwise). Regres-
sion stumps can be viewed as decision trees with only one
node, where the indicator function sharply chooses branch
a or b depending on thresholdθ and featurexf

i .
To optimize the stump one must find the set of parame-

ters{a, b, f, θ} that minimizesJ w.r.t. hm. A closed form
for a andb are obtained and the value of pair{f, θ} is found
using an exhaustive search [5].

Next section shows how to modify the regression stumps
in the boosting procedure, including temporal consistency
in the classification decision.

2.2 Weak learners with temporal consis-
tency

GentleBoost algorithm allows to fit any weak learner
function,hm, in order to obtain a final strong classifier. In
this work we add temporal consistency to the learner re-
sponse using a set ofT consecutive data points to perform
the classification. The rationale is to use as much as pos-
sible of the information available in order to improve clas-
sifier output, instead of using a single point. Although the
temporal window size is problem dependent, in most of the
works the window size remains constant.

We propose to include the temporal window sizeT as an
additional parameter of the regression stump. In this way
the regression stump will only use advantageous informa-
tion at each round, by choosing how many points to use
depending on the feature values. Thus, consistency is in-
cluded by defining the new Temporal Stumps as the mean
classification output of the regression stump, in a temporal
window of sizeT ,

h∗m(xi) =
1

T

T−1X
t=0

�
aδ
h
xf

i−t > θ
i

+ bδ
h
xf

i−t ≤ θ
i�

. (2)

The particular information extracted within the temporal
window become clear if we puta andb in evidence,

h∗m(xi) = a

 
1

T

T−1X
t=0

δ
h
xf

i−t > θ
i!

+ b

 
1

T

T−1X
t=0

δ
h
xf

i−t ≤ θ
i!

.

(3)

The new temporal weak learner of Eq.3 can be viewed as
the classic regression stump with a different “indicator func-
tion”. If T = 1 it becomes the original regression stump,
and forT > 1 the weak learner changes the indicator func-
tions. The new indicator functions compute the percentage
of points above the thresholdθ

∆T
+(f, θ, T ) =

1

T

T−1X
t

δ
h
xf

i−t > θ
i

, (4)

and below the thresholdθ

∆T
−(f, θ, T ) =

1

T

T−1X
t

δ
h
xf

i−t ≤ θ
i

, (5)
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in the considered temporal windowT and for the feature
numberf . The indicator functions with temporal consis-
tency in Eqs.4/5, can take any value in the interval[0 1],
depending on the length of the temporal window used. For
example, ifT = 2 the functions can take3 different val-
ues,∆T

+ ∈ {0, 1/2, 1}, if T = 3 can take four values,
∆T

+ ∈ {0, 1/3, 2/3, 1} and so on.
The fuzzy output of the new “indicator function” ,∆, rep-

resents the confidence of threshold choice to use the data
with temporal supportT . Thus, at each boosting round,
we use a weighted confidence of both branches, instead of
choosing only one branch. We will show that optimizing
this fuzzy regression stump brings additional resistance to
noise, thus increasing the generalization capabilities.

During classification of unseen data, the algorithm has
the possibility to decrease the confidence measure,∆, for
instance if the new data is noisy when compared to the train-
ing data. This differs from the usual boosting binary deci-
sion and can be compared to what fuzzy trees brought to
decision trees.

Replacing the weak learner with temporal consistency of
Eq. 3, in the cost function of Eq.1, we compute the optimal
temporal stump parametersa andb,

a =
ν̄+ω̄− − ν̄−ω̄±

ω̄+ω̄− − (ω̄±)2
, b =

ν̄−ω̄+ − ν̄+ω̄±

ω̄+ω̄− − (ω̄±)2
, (6)

with
ν̄+ =

∑N
i wiyi∆T

+, ν̄− =
∑N

i wiyi∆T
−,

ω̄+ =
∑N

i wi∆T
+, ω̄− =

∑N
i wi∆T

−,
and

ω̄± =
∑N

i wi∆T
−∆T

+.

Note that all the above variables are functions of
{f, θ, T} that we dropped for notation simplicity. To find
the optimalf ,θ andT we use exhaustive search. Compar-
ing the temporal weak learner with the original GentleBoost
weak learner, we have an additional parameterT to opti-
mize. The algorithm is summarized in figure1 similarly to
GentleBoost, but optimizing the new temporal stump,h∗m.

2.3 Going to the multi class problem

A multi-class categorization problem is usually solved as
a set of multi-binary problems where separate classifiers are
trained and applied independently. As pointed by Torralba
et al [5], for the object detection problem, this is a waste of
resources because many of the features used can be shared
among several classes.

There are some datasets where computational complex-
ity issues and amount of training data are even more criti-
cal; for instance, when working with video (temporal data)
instead of single frames. In the case of boosting, sharing
helps to: i) reduce computational complexity by sharing
weak classifiers among classes and ii) reduce the amount

of training data needed in order to attain the same classifi-
cation performance.

In the same manner as Torralbaet al extended Gentle-
Boost to multi-class problems, we generalize temporal Gen-
tleBoost to the multi-class problem.

2.3.1 The Temporal-JointBoosting algorithm

The idea behind JointBoosting [5] is to share weak classi-
fiers (and features) across classes. At each round the algo-
rithm chooses a weak classifier that share a feature among
the subset of classes. The optimal subset of classes is cho-
sen by minimizing the error cost function for all possible
combinations.

The optimization to be solved has now one more
variable, the classes, thus one must solve the following
weighted least squares problem in each iteration:

J =

CX
c=1

NX
i=1

wc
i (y

c
i − hm(c, xi))

2, (7)

where wc
i = e−yc

i hm(c,xi) are the new class-specific
weights. Note that each training sample has nowC weights,
one for each class, and the weights are a probability distrib-
ution only over theC ×N space.

Shared stumps uses the data that belongs to the optimal
subset of classes as positive samples, and remaining data
as negative samples. In the case of classes that belongs to
the optimal subsetS(n), the stump function is similar to
the binary case. For classes outside the optimal subset, the
stump function is a class-specific constant,kc. This ensures
that adding the class to the subset improves the classifica-
tion more than just using a constant classifier (see [5] for
details). The shared temporal stump has the following form:

hm(c, x) =

(
aS∆T

+ + bS∆T
− if c ∈ S(n)

kc
S if c /∈ S(n),

(8)

where∆T
+/− are the temporal consistency function defined

in Eqs. 4 and5. The minimization of the cost function in
Eq. 7, using the shared temporal stumps at each iteration
provides the optimal parameters,

aS =

P
c∈S(n) ν̄c

+

P
c∈S(n) ω̄c

− −
P

c∈S(n) ν̄c
−
P

c∈S(n) ω̄c
±P

c∈S(n) ω̄c
+

P
c∈S(n) ω̄c

− −
�P

c∈S(n) ω̄c
±

�2
,

(9)

bS =

P
c∈S(n) ν̄c

−
P

c∈S(n) ω̄c
+ −

P
c∈S(n) ν̄c

+

P
c∈S(n) ω̄c

±P
c∈S(n) ω̄c

+

P
c∈S(n) ω̄c

− −
�P

c∈S(n) ω̄c
±

�2
,

(10)

and

kc =
∑

i wc
i y

c
i∑

i wc
i

, c /∈ S(n). (11)

To obtain the optimalθ, f , T and class subset,S(n), ex-
haustive search is performed. The final algorithm is de-
scribed in figure2.
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1. Given: (x1, y1), . . . , (xN , yN ) where xi ∈ X, yc
i ∈ Y =

{−1, +1}, setH(c, xi) := 0, initialize the observation weights
wc

i = 1/(N × C), i = 1, 2, . . . , N , c = 1, 2, . . . , C

2. Repeat form = 1, 2, . . . , M

(a) Repeat forn = 1, 2, . . . , 2C − 1

i. Find the optimal joint temporal weak classifier:

hn
m(c, x) =

(
aS∆T

+ + bS∆T
− if c ∈ S(n)

kc
S if c /∈ S(n)

ii. Evaluate the error:

J =

CX
c=1

NX
i=1

wc
i (yc

i − hm(c, xi))
2

(b) Find the subset of classes with less error,n∗.

(c) Update strong classifier

H(c, xi) := H(c, xi) + hn∗
m (c, xi)

(d) Update weights for examplesi = 1, 2, . . . , N , wc
i =

e−yc
i hn∗

m (c,xi)

Figure 2. Temporal-JointBoost algorithm.

2.3.2 Efficient computation of temporal shared stumps

As mentioned in the previous section, the optimal subset
of classes is provided by exhaustive search. This becomes
a slow computation since it involves scanning over all fea-
tures and allN thresholds (whereN is, in general, the num-
ber of training samples) and all temporal windowsT . How-
ever, if one look carefully to this process, it can be easily
verified that the computations used for the subsets with only
one class (eachc ∈ C) can be reused for all the remaining
subsets (with more than one class).

At each boosting round the process is the following:

1) For the one class subsets:Compute the parametersac

andbc so as to minimize the weighted square error:

ac(f, θ, T ) =
ν̄c
+ω̄c

− − ν̄c
−ω̄c

±

ω̄c
+ω̄c

− −
�

ω̄c
±

�2 , bc(f, θ, T ) =
ν̄c
−ω̄c

+ − ν̄c
+ω̄c

±

ω̄c
+ω̄c

− −
�

ω̄c
±

�2 .

(12)

Keep each one of the terms{ν̄c
+, ν̄c

−, ω̄c
+, ω̄c

−, ω̄c
±},

and computēωc =
∑N

i wc andγ̄c =
∑N

i wcyc
i .

2) For the remaining subsets: The optimal aS and bS

can be computed as a combination of each one of the
ac andbc terms that belong to the subsetS using equa-
tions9 and10.

2) Weighted least square error: The weighted regres-
sion error, for each triplet{f, θ, T} and for the set of
classesS(n), can also be computed from the previous

equations using:

J =
X

c

ω̄
c

+ a
2
s

X
c∈S(n)

ω̄
c
+ + b

2
s

X
c∈S(n)

ω̄
c
−

+2asbs

X
c∈S(n)

ω̄
c
± − 2as

X
c∈S(n)

ν̄
c
+ − 2bs

X
c∈S(n)

ν̄
c
−

+
X

c/∈S(n)

k
c2

ω̄
c − 2

X
c/∈S(n)

k
c
γ̄

c
.

2.4 Results on Synthetic data

We perform tests with synthetic data in order to illus-
trate the advantages of our algorithm over other boosting ap-
proaches: (i) improved noise robustness, and (ii) improved
performance in data with large overlapping in the feature
space. The aim is to learn five elliptic trajectories using
point location as features, and then classify new points as
belonging to one of the trajectories. We create synthetic
data and apply three boosting algorithms: (i) GentleBoost
[2], (ii) TemporalBoost [4] and (iii) our optimal temporal
boosting. The recently proposed TemporalBoost [4] also in-
troduced temporal consistency in a boosting procedure, by
averaging previous AdaBoost weak classifiers sequentially,
while the classification error decreases. However, tempo-
ral support is considered in a heuristic procedure only after
training the weak classifiers, and the TemporalBoost aver-
aged output is mapped to a binary value.

The data for the learning algorithms comprise five ellip-
tical trajectories were generated for 10 levels of overlapping
between classes, each one corresponding to 5 class classifi-
cation problem . The input features (x1

i , x
2
i ) are noisy ob-

servations of the actual ellipses, generated accordingly to:
x1

i = a cos t +N (0, σ) andx2
i = b sin t +N (0, σ), where

a andb are the major and minor axis,t represents time, and
N (µ, σ) is Gaussian noise. We vary the problem complex-
ity, starting from the simplest case (easily separable, e.g.
at the left side of Figure3), and increasing the proximity
among classes towards a more complex problem (e.g. at the
right side of Figure3). In Figure3 we see that our tem-
poral version of JointBoost performing almost 20% better
than TemporalBoost, and 30% better than the original Joint-
Boost. The following step is to select adequate features for
detecting behaviors included in the PETS 2007 dataset.

3 Behaviors and Feature computation

In human environments with surveillance cameras, it can
be defined a wide range of possible human behaviors. In
this paper we focus on behaviors present in environments
like transport networks, town centers and public facilities
such as schools, hospitals and sport grounds. We consider
four activities potentially interesting to identify suspicious
behaviors:1 - walking, 2 - not moving, 3 - picking up or
leaving bagand4 - abandoned bag. The idea is to detect
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Figure 3. Recognition rate in multi-class syn-
thetic datasets, using 10 levels of increasing
overlap among classes

these behaviors from less than one second of input video
and using information only from the detected target optical
flow (displacement between frames of the detected pixels)
and target size.

From the optical flow measurements we compute two
features: i) the vertical component of the mean optical flow
and ii) the motion energy (averaged over 25 frames). To
model the target size we use the detected bounding box area.
These three features are fed into the optimal Temporal-
JointBoost that will jointly train all the four classes, choos-
ing the optimal temporal window to use.

In the next section we will show the results on the PETS
2007 dataset, recorded in an airport hall.

4 Human activity recognition

To demonstrate the performance of the proposed algo-
rithm for detecting the four behaviors we used the PETS
2007 datasets. To perform the tests we selected three se-
quences and used only the third view in each one:left lug-
gage 1andtheft 3for training andleft luggage 2for testing.

For each sequence we track the interesting targets using
the LOTS tracker [1] and then compute the features in the
targets bounding box. To train the algorithm we generate a
label for all the targets with the desired behaviors. Training
features of four targets were computed in the sequencesleft
luggage 1and theft 3, using a total of 814 frames. The
testing stage was done in 1340 frames, from four targets
present in the sequenceleft luggage 2.

Figure4 illustrates the test scenario,left luggage 2, and
the tracker output for the frames 1785, 1870 and 1920.
Tracker output along frames was used to compute the fea-
tures and, jointly with the label, fed them to the optimal
Temporal-JointBoost algorithm.

(a)

(b)

(c)

Figure 4. Example images of one scenario
from PETS 2007 dataset used to test the al-
gorithm. The images represent frames 1785
4(a), 1870 4(b) and 1920 4(c), with the de-
tected bounding boxes and correspond to
the left luggage 2scenario.
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Figure 5 shows sample images and the corresponding
classification results (1 - walking, 2 - not moving, 3 - picking
up or leaving bagand4 - abandoned bag). Figure5(a)cor-
responds to an individual that enters into the scene carrying
a large bag which is then placed on the ground. Example
5(b) corresponds to an individual that picks up an aban-
doned bag walking away with it. In the last example5(c)
and individual enters into the scene talking on his cellular
phone, either walking or not moving.

From the examples plotted in Figure5, we see that our
algorithm is capable of generating meaningful alarms. In
these images only three frames were misclassified. For the
remaining frames of theleft luggage 2sequence we found
a similar behavior that is shown in Figure6. Most of the
frames misclassified correspond to an ambiguous and fal-
teringwalking, while the most critical behaviors,picking up
or leaving bagandabandoned bag, are classified correctly
in most of the frames, having a delay of less than a second.

Figure 6. Classification results of four targets
tracked and extracted from sequence left lug-
gage 2(PETS 2007 database). The numbers
on the left correspond to classes: 1 - walking,
2 - not moving, 3 - picking up or leaving bagand
4 - abandoned bag. The results correspond to
1340 frames and are plotted on blue behind
a red, hand generated, ground truth. Most of
the misclassified frames result from an am-
biguous and faltering walking (from frame 500
to frame 1100), for simplicity labeled as not
moving.

5 Conclusions

In this paper we have proposed a methodology to recog-
nize lugagge related behaviors. Our proposal has two main
components: (i) a novel learning algorithm, and (ii) a very
simple set of features.

The learning algorithm is able to handle with temporal
data consistency in non-sequential single-frame classifica-
tion problems. Although the temporal evolution of the data
might be crucial for certain classification problems (e.g. hu-
man activity recognition), even when performing single-
frame classification, it is rarely introduced at the level of

the classifier training. We extend the GentleBoost algorithm
by modeling time as an explicit parameter to optimize. As
a consequence of this time consistency model, we obtain
a fuzzy decision function, depending on the temporal sup-
port of the data, which brings additional robustness to noise.
Additionally, we allow our temporal boosting algorithm to
cope with multi class problems, following the JointBoosting
approach by Torralba et. al [5].

We consider four target activities related to the suspi-
cious behaviors:walking, not moving, picking up or leav-
ing bagandabandoned bag. We choose three features com-
puted in target’s bounding box to distinguish between these
behaviors: (i) the vertical component of the mean optic flow,
(ii) motion energy, and (iii) bounding box area. The results
suggest the suitability of our approach for detection of sus-
picious activities. We obtain very good results taking into
account that we perform single-frame classification without
modeling the activities dynamics.

As future work we aim to include spatially dependent
higher level models, like conditional random fields, that will
model the activities dynamics and will take into account
temporal dependencies at various levels. The sequential
models should act as contextual restrictions during the tran-
sition between activities that add long-term temporal con-
sistency to the recognition, rather than the short-term con-
sistency presented here.

In future applications, those systems with high level
models could alert authorities if a pedestrian displays suspi-
cious behavior, e. g. entering a secure area, dropping a bag
or loitering.
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(a)

(b)

(c)

Figure 5. Sample classification results for the test sequence left luggage 2correspond to: 1 - walking,
2 - not moving, 3 - pick up or left bagand 4 - abandoned bag. In 5(a) an individual enters into the scene
carrying a large bag which is then placed on the ground. It corresponds to the frames: 429, 465, 519,
771, 814, 844, 874, 889 and 906. In all plotted frames the activity was correctly classified, walking in
the first two, not movingin the following three, walkingagain for two frames and finally pick up or left bag
in the rightmost two. Example 5(b) corresponds to an individual that picks up an abandoned bag
walking away with it. Images correspond to frames: 705, 723, 795, 849, 889, 907, 925, 943 and 961.
In this case the two images on the left are misclassified as walking, the following two being correctly
classified as abandoned bag. The remaining frames are correctly classified as walking followed by pick
up or left bagand then walking again. In the last example 5(c) and individual enters into the scene
talking on his cellular phone, either walking or not moving. The frames presented are: 717, 735, 753,
771, 789, 807, 825, 843 and 861. In all plotted frames the activity was correctly classified.
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