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Abstract— We present a developmental perspective of robot
learning that uses affordances as the link between sensory-motor
coordination and imitation. The key concept is a general model
for affordances able to learn the statistical relations between
actions, object properties and the effects of actions on objects.
Based on the learned affordances, it is possible to perform simple
imitation games providing both task interpretation and planning
capabilities. To evaluate the approach, we provide results of
affordance learning with a real robot and simple imitation games
with people.

Index Terms—robotic development, affordances, imitation

I. INTRODUCTION

Humans have an unrivaled ability to solve many different
tasks in a routine and very efficient way, by selecting the
appropriate action or tool to obtain a desired effect. This
capability is the result of a sophisticated ontogenetic devel-
opment from conception to adulthood. Skills are acquired
incrementally according to a genetic program conditioned to
the surrounding environment, i.e. through the interaction with
the world and other people. Once a set of basic initial capabil-
ities is ready, many human skills are acquired through social
interaction such as imitation or other humans observation [1].

In its different forms, learning has become a common
approach to develop (humanoid) robots able to act in un-
constrained environments, perform complex tasks and learn in
an open-ended way. Inspired by biology [2], Developmental
Robotics [3]-[5] appears as a natural framework to cope with
this complexity.

Within this framework, the robot acquires new skills in-
crementally and uses them to learn more complex ones. In
this paper we investigate which are the appropriate structures
to represent knowledge about robot-object interaction. Many
works have used learned sensory-motor representations of the
robot motion as prior requirements to start body imitation
[6], [7]. These maps have been extended to include object
interactions [8]-[10]. Alternatively, it is possible to develop
within a developmental perspective a new layer to represent
knowledge about objects. The rationale behind this approach
is that the robot develops its sensory-motor maps before being
able to interact with the environment. Then, it uses them to
explore the world around it, acquire more information and
develop further its skills. What are the correct knowledge
representations required at this developmental stage to obtain
appropriate behaviors in real unpredictable environments?
How can the robot re-use its own experience in new situations?
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Fig. 1. Developmental architecture. The affordances are the link between

basic motor and perception capabilities and higher level cognition tasks such
as interaction and imitation.

To answer these questions, we resort again to a biological
concept: affordances [11]. Affordances define the relation
between an agent and its environment through its motor and
sensing capabilities (e.g. graspable, movable or eatable). We
propose affordances as the natural link between low level rep-
resentations such as sensory-motor maps and higher cognitive
skills like imitation, understanding the actions of others and
social interaction (see Fig. 1).

Affordances are extremely powerful since they capture the
essential world and object properties, in terms of the actions
the agent is able to perform. They can be used to predict the
effects of an action, to plan actions to achieve a specific goal
or to select the appropriate object to produce a certain effect.
Affordances describe the world and objects properties using
the motor and perceptual capabilities of the agent. Therefore,
the ability to learn an affordance model establishes maps
between observed actions, objects, effects and the agent motor
representations. It thus addresses important issues in imitation
such as body correspondence [8], [10], imitation metrics [12],
view-point correspondence [13] and task representation [14].

Several authors have already studied the problem of learning
and using affordances in a robotic system [8], [9], [15]-[19].
However, in most cases the affordance model is task-specific,
hindering its applicability to other contexts. In addition to this,
affordances rarely appear integrated within a developmental
approach.

The main contribution of this paper is to exploit a general



affordance model within a developmental approach to: (7)
learn affordances through self interaction with objects; and
(7i) show how they provide the link between sensory-motor
representations and imitation behaviors.

A. Our Approach

We follow the developmental roadmap proposed in [8] and
extend it to include the learning and usage of a general affor-
dance model in the world interaction phase. This framework
considers three main stages in a possible developmental archi-
tecture for humanoid robots: (i) sensory-motor coordination;
(i1) world interaction; and (iii) imitation, (Fig. 1).

In the sensory-motor coordination stage, the robot learns
how to use its motor degrees of freedom and the coupling
between motor actions and perception (kinematics, dynamics)
[20], [21]. This level gives the robot perceptual skills such as
recognizing object features and object motion. It also equips
the system with basic actions to interact with the world. For
instance, in our case the system developed grasp and tap action
capabilities.

These skills enable a second level of development, the world
interaction phase, where the robot interacts with surrounding
objects. Based on its own action on different objects, the
system learns a Bayesian network that represents affordances
in terms of statistical dependencies between actions, object
features and the resulting effects.

Affordances are used as the link between sensory-motor
coordination and higher social skills. The learned affordance
model allows to predict the effects of actions, to recognize
actions performed by a human and to play simple imitation
games. These imitation games are driven by the observed
effects of the human action [8], [10], [17], and exploit knowlI-
edge contained in the affordance network to obtain the same
effects. In this sense, imitation is not limited to mimicking the
detailed human actions. Rather, it is used in a goal directed
manner, as the robot may choose a very different action
(when compared to that of the demonstrator) provided that
its experience indicates that the desired effect can be met.

So as to validate our approach, we used the humanoid
robot Baltazar [22]. We conducted several experiments to
illustrate the capability of the system to discover affordances
associated to manipulation actions (e.g. grasp and tap) applied
to different types of objects with different shapes, colors and
sizes. The effects of these actions were the changes perceived
in the sensor measurements, e.g. object and hand velocities
and hand-object distances in the image. Although simple, the
playground is rich enough to illustrate how affordances capture
the structural dependencies between actions, object features
and action effects and discard irrelevant information. Later,
this knowledge is used in simple imitation games where the
robot performed different behaviors according to predefined
reward functions.

B. Structure of the paper

The rest of the paper is organized as follows. Section II
describes our approach for modeling and learning affordances.
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Fig. 2. Learned Bayesian network model to represent the affordances. The
nodes represent the available actions, the object features (color, shape and
size) and the perceived effects (hand velocity, object velocity and object hand
distance). The arrows encode the dependencies among the nodes.

Section III shows how several imitation-like behaviors appear
from the learned affordance model. Section IV presents the
experimental results with a humanoid platform. Section V
draws the conclusions.

II. AFFORDANCE MODELING AND LEARNING

This section describes how to learn affordances on top of
a set of basic motor and perceptual skills. Before introducing
our model, there are two important issues to take into account.
First, affordances appear from the (ecological) interaction of
the robot with the environment. Therefore, they should be
learned through a set of experiences performed by the robot
itself. Second, they require the existence of a certain number
of elementary skills (developed during previous phases of
our development framework). In particular, we assume the
robot is equipped with a set of actions to interact with the
world. It is also able to detect objects and extract information
about them in the form of object characteristics (features)
or their variations (effects). Affordance learning is placed at
this level of abstraction where the main entities are actions,
objects features and effects. Again, this abstraction is possible
because the previous level processes the perceptual data and
gives access to motor primitives, freeing the system from
the need to process raw sensory data and to deal with all
complexity of motor control.

More formally, let the discrete random variable A = {a;}
represent the execution of a certain robot action. The object
properties and effects are also modeled as discrete random
variables. Each variable corresponds to the classification of a
feature extractor done by the robot in an unsupervised manner.
We denote F' = {Fy,...,Fy,, } the object features and E =
{E1, ..., E,_} the effects perceived after the action. The set of
discrete variables A, F and F is X = {A, F, E'}.

We use a probabilistic graphical model known as Bayesian
Networks [23] to encode the dependencies between the ac-
tions, object features and the effects of those actions (see Fig.
2). A BN is a probabilistic directed graphical model where
nodes represent random variables X = {X1,..., X,,} and (the
lack of) arcs represent conditional independence assumptions.



The network also has a set of parameters © to describe
the conditional probabilities among the variables in X. This
representation has several advantages. First, BNs are able to
represent causal models since an arc from X; — X; can be
interpreted as X; causes X; (see [24]). Second, they take into
account the uncertainty of the real world and provide a unified
framework for learning and using affordances.

Given a set of actions, object features and effects, affor-
dances are represented by the dependencies of the graph and
the parameters © of the conditional probability distributions.
As mentioned before, the learning is accomplished from a set
of experiences D = X"V where the robot acts on an object
and observes the resulting effects.

In a Bayesian framework, this can be formalized as esti-
mating the distribution (or the maximum a posteriori) over
the possible network structures G € G given the data. Using
the Bayes rule, we can express this distribution as the product
of the marginal likelihood and the prior over graphs,

p(G|D) = np(D|G)p(G) )

where 7 = p(D)~"' is a normalization constant. The term
p(D | G) is the likelihood of the experiences given structure
G. The prior term p(G) allows to incorporate prior knowledge
on possible structures!.

The number of BNs is super exponential with the number
of nodes [26]. Thus, it is unfeasible to explore all the possible
graphs and one has to approximate the full solution. We use
Markov Chain Monte Carlo (MCMC) to approximate the dis-
tribution p(G | D) [27]. Once the structure of the network has
been established, the parameters O are estimated using [28].
The estimated parameters can still be sequentially updated on-
line allowing to incorporate the information provided by new
experiences.

Once the network has been learned, one can compute the
distribution of a group of variables given the values of some
others. The most common way to do this is to apply the junc-
tion tree algorithm [29]. Based on these probabilistic queries,
we are now able to use the affordance knowledge to answer
the relations between actions, objects and effects depicted
in Fig. 1 simply by computing the appropriate distributions.
For instance, the prediction of the effects when observing
an action a;, given the observed object features f;, is just
p(E | A=a;, F = f;). It is important to note that the query
can combine features, actions and effects both as observed
information or as the desired output.
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III. IMITATION GAMES

In this section, we show how to use affordances for imi-
tation. When an agent imitates another it can copy the exact
behavior or try to infer the important parts of the task. The
former is not usually considered true imitation [1], [30] and
only the latter is accepted as the most complex cognitive skill.

'Due to space constraints we cannot provide a full description of the
learning algorithm and related issues such as interventional data or equivalent
classes. We refer the reader to [25] for further details.

Inferring the important parts of the task is an ambiguous con-
cept, but the resulting behavior must abstract among different
viewpoints, different body kinematics and action repertoires.

We use affordances to abstract the particular action per-
formed by the human by mapping the observed effects to the
agent’s internal representation. As a result, different kinematics
and body capabilities do not restrict the replication of actions.
We describe next a set of imitation games between a human
and a robot. In an imitation game, the robot observes a human
acting upon objects. Then the robot is presented with another
object or objects and replies with a compatible action. This
behavior is a fundamental capability that lies at the core of
any general framework for imitation.

More formally, let a¢ be the action performed by the
demonstrator; f¢ the features of the object and e? the resulting
action effect. The robot is then presented with a set of objects
O and must select an action a € A and an object 0 € O
that matches a given criteria. We pose the imitation problem
as a one step Bayesian decision problem [31] where a reward
function R defining the imitation metric sets the objective of
the imitation task. The function to optimize is

< a*, 0" >=argmazxE [R(ad,fd,ed,a,fo,eo)} 2)
R/—/
acA,0cO

where f° and e° represent the object features for object o and
the resulting effects of action a. The maximization is over
the set of available robot actions A and the possible objects
O the robot can select as an answer to the demonstration.
Since the knowledge about the action, objects and effects is
not deterministic we need to take the expectation E[] over the
reward function. In particular, the probability of the effects
of a particular action-object pair, p(E | A, O), is encoded
by the affordance network presented in Section II. For the
sake of simplicity, in the remainder of the section f? of e?
are deterministic values corresponding to the maximum likely
object features and action effects perceived by the robot during
the demonstration.

The imitation metric can be defined to achieve different
behaviors in the imitation game:

a) Effect imitation: The goal of this behavior is to
achieve the same effect as the observed one, by acting on a
particular object. Since there is no object selection, the reward
function depends only on the observed and expected effects
e? and e°. Since effects classes result from a discretization
of continuous values, we use the continuous distance between
classes descriptors to define a generic similarity measure h.
The reward function for the imitation behaviors becomes:

R(e%el) = h(d(e’, e?)) 3)
where e? and e° are the most likely effect detected by the
robot and the resulting effect on object o respectively. In the
simplest case where one is just interested in obtaining exactly
the same effect, the reward reduces to:

0 __ od
R(e?, e°) = { Lo ffer=e

0, otherwise
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Since the reward does not depend on the object or the features
and is zero for effects not equal to the observed ones, the
general expression simplifies to

a* = argmaz,R(e?, e?)p(E° = ¢%a, f°)

&)

where f¢ are the object features and e° the resulting action
effects.

A more complex situation arises when the robot has to select
among a set of available objects O. Since the goal is still to
replicate the action effects of the demonstrator, the choice of
the specific object to manipulate plays the role of an extra
parameter for the optimization:

< a*, 0" >= argmaz R(e?, e®)p(E° = e|a, f°)

———
a,0€0

(6)

b) Effect and object imitation: The last behavior adds
information about the object features in the cost function. This
allows to favor those objects similar to the one used by the
demonstrator, while trying to obtain similar action effects. For
instance, the following cost function requires to have the same
object features as in the demonstration

R(ed,fd,eo,f"):{ L ifeO:ed/\.fO:fd

0, otherwise

Notice that one could weigh the features with different
rewards according to different object features as in Eq. 3. For
instance, if the desired object is a big sphere, we could weigh
the object sizes as a function of their distance to the class
model, expressed in the measurements space. Since the current
observations of the robot are not deterministic, the expectation
of Eq. 2 is now also taken over the possible classes of each
of the available objects. Using the reward function of Eq. 7,
the expression to optimize simplifies to

@)

<a*, 0" > = arg max?'\’,(edjd,eo,fo) 8)
——

a,0€0
p(E® = ela, f)p(F° = f)
where p(F° = f%) represents the likelihood of the features
of o being equal to the features f?. Again this probability is

computed based on the distance to clusters in the metric space
of each feature.

IV. EXPERIMENTS

In this section we present a set of experimental results
obtained with a real robot that implements the proposed
methodology. First, we briefly describe the robot platform, the
experimental setup and the acquisition of the skills required
to learn the affordances. Then, we illustrate the acquisition of
the affordance model and its use for basic imitation games.

We used Baltazar, a 14 degrees of freedom humanoid torso
equipped with a binocular head and an arm. Table I shows the
current implementation of the developmental roadmap of Fig.
1.

As mentioned before, the sensory-motor maps are learned
following [20], [21]. Using these maps, Baltazar is able to

TABLE I
IMPLEMENTATION OF THE DEVELOPMENTAL APPROACH.

[ Sensory-Motor [ Step 1: Learn sensory-motor maps ]

Step 2: Cluster object features

Step 3: Cluster effects

Step 4: Learn object affordances
Step 5: Prediction and planning skills

World
Interaction

[ Imitation [ Step 6: Perform imitation games ]

perform two different actions A = {a; = grasp, as = tap}.
The robot applies its actions to a set of different objects with
two shapes (box and ball), four colors and three sizes.

We recorded a set of 300 experiences. At each experience,
the robot was presented with an object. Then, Baltazar ran-
domly selected an action and approximated its hand toward the
object. When the reaching phase was completed, it performed
the selected action (tap or grasp) before returning the hand
to the initial location.

The objects measured features and effects are clustered from
the sequence of images in an unsupervised manner using the
X-means algorithm [32]. Table II summarizes the clustering
results for the different variables and provides the notation
used in the remainder of this section®.

TABLE II
SUMMARY OF VARIABLES AND VALUES.

Symbol Description Values
A Action grasp, tap
C Color clustered in greeny,greena,
yellow, blue

Sh Shape clustered in ball, box

S Size clustered in small, medium, big
oV Object velocity clustered in small, medium, big
HV Hand velocity clustered in big, small
OHD Object Hand Distance || clustered in small, medium, big

It is important to note that the final objective is to learn
the affordance model, that is, create a plausible model of the
interactions with the world using the robot current perceptual
and motor capabilities; and use it for imitation. The focus is
not on making perfect object classification or selecting better
descriptors. Indeed, clustering errors occurred, for instance,
due to different illumination conditions. As a result, some
features were misclassified and the affordance learning process
had to cope with these errors.

A. Affordances

We now present the affordance model learned by the robot
using the MCMC algorithm and the experimental dataset. We
used 5000 samples with a burn-in period of 500, BDeu priors
for the graphs [33] and random initialization. Although, one
can use conditional independence tests to provide a rough
initialization for both algorithms, in our case we got similar
results using randomly generated networks.

Figure 2 shows the resulting most likely network. Although
there is not a ground truth network, we can check that it

ZNote that big, small at different features/effects do not have any common
scale.
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Fig. 3. Different imitation behaviors. Top: demonstration, Middle: set of potential objects, Bottom: imitation. Situation a-d represent imitation of action (a),

effect (b), effect (c), effect with object shape (d) and effect with weighted features combination (e-f).

captures the type of knowledge one expects. First, color
has been detected as irrelevant when performing any action.
Second, shape and size influence the successful execution of
tap and grasp actions (squares do not roll and too big objects
cannot be grasped). Thus, these object features have an impact
on observed object velocity, and distance between the hand
and the object. Finally, the hand velocity only depends on the
action since our robot does not change its trajectory after the
action. Recall that the actual dependencies are encoded in the
multinomial conditional distributions of each variable. In the
next section, the robot uses these distributions to perform basic
imitation what, at the same time, validates the learned model.

B. Affordances and imitation

We next describe the imitation behaviors obtained resulting
from the formulation of Section III and the most probable
affordance model learned using the MCMC algorithm.

The experimental procedure was as follows. The robot
observed a person performing an action on a given object.
Then, the robot selected an action and an object to act upon
reacted according to one of the functions described in Section
III. We present the results for different reward functions using
three demonstrations (see Fig. 3). Table III shows for each
experiment the action performed by the human, the features
and the objects detected by the robot.

TABLE III
DEMONSTRATION

The objective of the robot is to obtain the same observed
effects (see Egs. 5 and 6). In the first case, (Fig. 3(a)), there
is only one object and, therefore, the robot simply selects the
appropriate action. Given the affordance model, this is trivial
as a fap is the action that maximizes velocity. In Fig. 3(b),
the robot has to choose between a square and a box. Table
IV shows the probabilities for the desired effects given the
four possible combinations of actions and objects. The robot
selected the action with highest probability and taps the ball.

TABLE IV
PROBABILITY OF ACHIEVING THE DESIRED EFFECTS FOR TWO ACTIONS
AND TWO OBJECTS.

obj \ action | grasp | tap
Blue, big, ball 0.00 | 0.20
Yellow, small box 0.00 0.06

Object features (f7) Effects (e?)
# Dem | Action | Color Size Shape oV HV OHD
1 Tap blue small ball big small big
2 Grasp blue small | square | small big small
3 Grasp | greenp med ball med big small

Figures 3(c) and (d) illustrate how including the object
features in the reward function produce different behaviors. In
this case, we used the reward function of Eq. 8. The robot had
to select among three objects: big yellow ball, small yellow
ball, small blue box. In the first case, the objective was just to
obtain the same effects. The probability for each of the objects
is 0.88, 0.92 and 0.52 respectively and the robot grasped the
small yellow ball even if the same object is also on the table
(Fig. 3). This is because, according to the robot experience,
it is easier to grasp a small ball than a box. As described
in Section III, we can include object information within the
reward function of the robot. When the reward was modified
to include a similar shape, the robot selected the blue box
instead.

In the last experience, we illustrate how to combine feature
descriptors in the reward function,



Zi aiexp(—d( id7 fzo))7 if (EO = ed)
0, otherwise

R = { ©

where d(f¢, f¢) is a distance between the observed feature
f& during the demonstration and the feature f? of object o.
The parameters «; balance the importance of each feature
descriptor in the imitation. Figures 3 (e-f) show the results
of this imitation metric in two situations where there is not a
perfect match between the features of the object used in the
demonstration and the options presented to the robot. In the
first case, the robot selects the objects with the most similar
color, since the size and shape are equal for the three objects.
In the second case, the robot grasps a blue yellow ball instead
of the small yellow one or the pink big square. These behaviors
come out from the combination of the «; weights of each
feature and the conditional probabilities of achieving the same
effects given the object features. Notice that action selection
is still done based on the observed effects and the robot action
repertoire.

V. CONCLUSIONS

In this paper we have proposed a developmental architecture
where affordances act as the link between sensory-motor
representations and imitation. The proposed affordance model
allows to encode the dependencies between the robot actions,
the object features and the resulting effects. This information
plays a crucial role in imitation learning since it provides much
of the knowledge required to imitate. The experimental results
suggest that this approach leads to goal directed imitation
behaviors. As future work, we are exploring how to use the
affordance knowledge to learn the reward functions and the
corresponding optimal policies from a set of demonstrations.
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