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Abstract— We demonstrate, using Monte-Carlo simula-
tions, the robust performance of the adaptive control
methodology denoted by RMMAC/XI introduced and dis-
cussed in Refs. [1-3]. The RMMAC/XI architecture can
handle simultaneous time-variations in the plant uncertain
parameters as well as the disturbance intensity statistics. We
compare the RMMAC/XI performance vs that of the best
possible robust nonadaptive design using the same physical
example described in Refs. [1-4]. Whenever possible, we
also compare the RMMAC/XI performance with that of
the (unrealizable) “Perfect Model Identification (PM.ID)”
introduced in [4].

Index Terms— Robust adaptive control, multiple-model
adaptive control, time-varying uncertain plant parameters,
time-varying disturbance statistics

I. I NTRODUCTION

This paper evaluates the “Robust Multiple-Model
Adaptive Control (RMMAC/XI)” architecture, depicted in
Fig. 1, for a mass-spring-dashpot (MSD) test example
subject to simultaneous time-variation of the uncertain
spring stiffness and unknown disturbance intensity – see
Fig. 2. This architecture was introduced in Refs. [1-4].
The interested reader is referred to Refs. [1-4] for more
detail.

The performance of the MSD system subject to time-
varying uncertain parameters but constant disturbance
intensity was evaluated in our previous work ([4]), for
which the RMMAC could perform a perfect performance.
The main difference between this paper and [4] relies on
having a disturbance with time-varying intensity, which
requires the use of an extension of the RMMAC method-
ology, referred to as RMMAC/XI. In this architecture,
we may consider different disturbance intensities. For
instance, we can assume that plants with spring stiffness
within a certain interval can either be described by model
#P or model #P+N, depending on the disturbance inten-
sity, say Ξ1 or Ξ2, respectively. Note that in Refs. [1-
4] model #Pwas designedconsidering the disturbance
intensityΞ1, and consideringΞ2 for model #P+N.
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Fig. 1. RMMAC/XI architecture with N dynamic models
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Fig. 2. MSD system with uncertain spring constant,k1, and distur-
bances denoted byd(t). u(t) is the control input andz(t) is the system
output.τ is an uncertain time-delay bounded by0 < τ < 0.05s, as in
[1-2].

In this paper, the RMMAC/XI identification subsystem
consists of 2N Kalman filters (KFs) followed by a “Pos-
terior Probability Evaluator (PPE)”. It was not clear, from
Refs. [1-4], what the posterior probabilities were when the
disturbance intensity was unknown during design stage or
when it was changing in time (fast or slowly). In order to
evaluate the performance of the RMMAC/XI architecture,
we compare it, whenever possible, to that associated
with “Perfect Model Identification (PM.ID.)” with local
nonadaptive robust controllers (LNARCs). Also, a com-
parison to the performance of thebestglobal nonadaptive
robust controller (GNARC) is presented in this paper. As
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in [4], two different cases are analyzed in this paper:
the first, for a low frequency control bandwidth case
(previously designed in [1]); the second, which is a much
harder control problem, for a higher control bandwidth
(previously designed in [2]).

Each dynamic model and covariance matrix,
cov [ξ(t); ξ(τ)] = E{ξ(t)ξ′(τ)} = Ξδ(t − τ), of
the continuous-time zero-mean plant white noiseξ(t),
have associated one KF, whereΞ is the plant-noise
intensity matrix.

The disturbance forced(t) shown in Fig. 2 is a station-
ary colored stochastic process that results from the output
of a first order low-pass filter. This transfer function,
Wd(s), has a pole ats = α and is driven driven with
continuous-time white noiseξ(t), with zero mean and
intensityΞ.

II. L OW-FREQUENCYDESIGN (LFD) SIMULATIONS

In this section a set of 4 simulations are presented for
the LFD design case. We considerα = 0.1 rad/s, and
RMMAC/XI controller design choices and performance
requirements are as presented in [1-3]. The simulation
results were obtained from 5 Monte-Carlo runs.

Table I shows the respective spring constant interval
and disturbance intensity for each design case. The re-
gions for the spring constant are chosen according to [3],
so the performance of the RMMAC/XI is not below 70%
of the fixed nonadaptive robust controller (FNARC), as
explained in detail in [1-3]. Eight models are obtained,
four associated to disturbance intensity,Ξ = 1, and four
associated to disturbance intensityΞ = 100.

TABLE I

LFD RMMAC/XI M ODEL DEFINITIONS

Model # Model # Spring Constant

for Ξ = 1 for Ξ = 100 Interval

#1 #5 Ω1 = [1.02 1.75]

#2 #6 Ω2 = [0.64 1.02]

#3 #7 Ω3 = [0.4 0.64]

#4 #8 Ω4 = [0.25 0.4]

Case 1 (LFD):k1 Waveform A,Ξ = {1, 100} (Waveform
AX)

Next, we consider a case where the disturbance inten-
sities take one of two predefined values, as in [3] and as it
can be seen in Fig. 4. We also consider the spring stiffness
with step changes, depicted in Fig. 3. The probability
transients are shown in Fig. 5, from which it can be
concluded that the transitions are not as fast as in the
case where the disturbance intensities are constant (see,
for instance, [3] or [4]). Nonetheless, this identification
problem does not avoid the improved performance of the
RMMAC/XI when compared with the GNARC. This can
be concluded from Fig. 6 and Table II.

The last two columns of Table II show the following
percentage comparisons:

0 100 200 300 400 500 600 700
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(#1, #5)

(#2, #6)

(#3, #7)

(#4, #8)

Time (s)

k1
 (

N
/m

)

Fig. 3. Waveform A: Time-varying spring constant,k1
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Fig. 4. Waveform AX: Disturbances power,Ξ
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Fig. 5. Probability transients,Pk(t), for k1 waveform A andΞ
waveform AX

%E = RMMAC/XIvalue−PM.ID.value
PM.ID.value

%F = GNARCvalue−RMMAC/XIvalue
RMMAC/XIvalue

(1)

Although the RMMAC/XI RMS performance is lower
than the one achieved by the PM.ID. scheme, it is still
remarkably above the one obtained with a nonadaptive
controller. In the second part of the simulation (high
disturbance intensity), there is an improvement in terms
of RMS performance. This is mainly due to the fact
that higher intensity disturbances help the identification
procedure resulting in faster probability transients and in
control laws closer to those selected in the PM.ID case.
Case 2 (LFD):k1 = 0.28, Ξ Waveform BX
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Fig. 6. Mass position,z(t), for k1 waveform A andΞ waveform AX

TABLE II

CASE 1 (LFD) RMSAND MEAN VALUES OF z(t)

Time Interval [0 350] [350 700]

Mean RMMAC/XI 6.22e-5 -8.56e-5

Mean PM.ID. 5.84e-5 -5.32e-5

Mean GNARC 1.34e-3 -2.34e-3

RMS RMMAC/XI 1.26e-4 5.39e-3

RMS PM.ID. 5.20e-5 2.87e-3

RMS GNARC 6.34e-4 2.68e-2

%E Mean 6.4 % 60.8 %

%F Mean 2052.8 % 2633.1 %

%E RMS 143.2 % 87.7 %

%F RMS 401.6 % 397.9 %

Next, the spring constant is fixed tok1 = 0.28 and the
disturbance intensity is defined as depicted in Fig. 7. This
sinusoidal time-varyingΞ will help to show which one of
the two models is selected by the identification process
when the disturbance intensity differs from the predefined
values.
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Fig. 7. Waveform BX: Sinusoidal time-varying disturbancespower,Ξ

Figure 8 shows that only ifΞ is roughly below 10,
the identification procedure considers the correct model
to be in the first KF set (Ξ = 1). Table III presents
the performance improvement of using adaptive control.
From the table it can be readily seen that indeed we have
a RMS performance gain of about 24. As explained in [3],
the LNARCs used in the RMMAC/XI controller do not
depend on the disturbance intensity. Hence, the LNARC
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Fig. 8. Probability transients,Pk(t), for k1 = 0.28 andΞ waveform
BX

used for model#1 is the same used for model#5, the one
used for model#2 is the same used for model#6, and so
on. Therefore, it is not important, for control purposes, if
the identification procedure picks model#4 or #8 as far
as one of them is selected. This justifies the overall quality
of the results obtained. However, it is very worthwhile to
mention that to guarantee a certain level of performance
the transition between these two models should occur
in such way that the remaining models present always
negligible posterior probabilities.

TABLE III

CASE 2 (LFD) RMSAND MEAN VALUES OF z(t)

RMMAC/XI GNARC %F

Mean 8.41e-5 9.05e-4 975.8 %

RMS 1.93e-3 4.92e-2 2443.6 %

Case 3 (LFD):k1 Waveform C andΞ Waveform BX
Now we discuss a much harder problem. The spring

stiffness is assumed to be sinusoidal as shown in Fig. 9
and Ξ(t) is the same as in Case 2. The behavior of the
RMMAC/XI can be judged from the results illustrated
in Fig. 10 and Table IV. The probabilities convergence
is slower than in the previous tests, as expected, since
we are changing not only a system parameter but also
the disturbance intensity, turning out a much difficult task
for the estimation algorithm. Due to the misbehavior of
the identification technique, we do not have the same
performance improvement as before, when comparing the
RMMAC/XI results with those of the GNARC. Nonethe-
less, the gain of about 6 is obtained for the overall RMS
performance.

TABLE IV

CASE 3 (LFD) RMSAND MEAN VALUES OF z(t)

RMMAC/XI GNARC %F

Mean 6.74e-5 7.15e-4 961.1 %

RMS 2.60e-3 1.99e-2 667.4 %

Case 4 (LFD):k1 Waveform C andΞ Waveform CX
Finally, an even harder case is analyzed. In the pre-

vious case, we had the disturbance intensity within the
predefined values,Ξ ∈ [1, 100]. Here we assume that
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Fig. 9. Waveform C: Sinusoidal time-varying spring constant, k1
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Fig. 10. Probability transients,Pk(t), for k1 waveform C andΞ
waveform BX

Ξ exceeds these boundaries, as shown in Fig. 11. This
should be more difficult for the probabilistic estimation
algorithm to identify the correct model. However, this
may not necessarily result in a loss of performance. In
fact, when relating the results regarding the comparison
between the RMMAC/XI and the GNARC and previous
tests, we have a slight improvement in terms of RMS gain,
as presented in Table V. Figure 12 shows the misbehavior
of identification process which does not degradate the
performance of the closed loop system.
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Fig. 11. Waveform CX: Sinusoidal disturbances power,Ξ

III. H IGH-FREQUENCY DESIGN SIMULATIONS

In this section, a more challenging control problem is
discussed. Although we use the same MSD system for the
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Fig. 12. Probability transients,Pk(t), for k1 waveform C andΞ
waveform CX

TABLE V

CASE 4 (LFD) RMSAND MEAN VALUES OF z(t)

RMMAC/XI GNARC %F

Mean 6.73e-5 6.75e-4 903.7 %

RMS 2.97e-3 2.38e-2 701.4 %

performance evaluation of the RMMAC/XI methodology,
we now consider a higher frequency range withα = 3
rad/s. Thus, the disturbance forced(t) has significant
power over a larger frequency range, leading to the
excitation of all the lightly-damped modes of the MSD
system. In order to compensate for the disturbances with
the new extended frequency range, a controller with wider
bandwidth is required.

The details of the HFD RMMAC/XI methodology for
this case are given in [2]. This problem reveals several
difficulties when it comes to the identification of the
correct model, as will be seen in the sequel. In order
to achieve the same performance specifications as in [2],
we use 14 models (2N=14), corresponding to 7 models
for eachΞ, as described in Table VI.

TABLE VI

HFD RMMAC/XI M ODEL DEFINITIONS

Model # Model # Spring Constant

for Ξ = 1 for Ξ = 100 Interval

#1 #8 Ω1 = [1.4 1.75]

#2 #9 Ω2 = [1.11 1.4]

#3 #10 Ω3 = [0.85 1.11]

#4 #11 Ω4 = [0.65 0.85]

#5 #12 Ω5 = [0.49 0.65]

#6 #13 Ω6 = [0.35 0.49]

#7 #14 Ω7 = [0.25 0.35]

Simulation results for the different situations are pre-
sented next, using 5 Monte-Carlo runs for each case.
Case 5 (HFD):k1 Waveform D,Ξ = {1, 100} (Waveform
DX)

Similarly to Case 1,k1 has step changes, but with
waveform D, illustrated in Fig. 13. The waveform ofΞ
is also similar to the one of Case 1, as shown in Fig. 14,
but now the step occurs at a different time.

Figure 16 presents the output of the system for the three
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Fig. 13. Waveform D: Time-varying spring constant,k1
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Fig. 14. Waveform DX: Disturbances power,Ξ

controllers considered. From the Fig. 16 and Table VII,
one can see that there are significant RMS performance
improvements when comparing the RMMAC/XI to the
best nonadaptive controller. However, there is still a
substantial loss of RMS performance when comparing
with the PM.ID. This can again be explained by the
misbehavior of the identification process – see Fig. 15.
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Fig. 15. Probability transients,Pk(t), for k1 waveform D andΞ
waveform DX

Table VII also shows that, as in Case 1, a higher loss of
performance from the PM.ID to the RMMAC/XI occurs
when the disturbance intensity is smaller.
Case 6 (HFD):k1 = 0.57, Ξ Waveform EX

We now consider the HFD RMMAC/XI simulation
similar to the Case 2. We use the spring stiffnessk1 =
0.57 (the correct models are Model #5 whenΞ=1 or
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Fig. 16. Output,z(t), for k1 waveform D andΞ waveform DX

TABLE VII

CASE 5 (HFD) RMSAND MEAN VALUES OF z(t)

Time Interval [0 650] [650 1300]

Mean RMMAC/XI 6.67e-3 -3.69e-2

Mean PM.ID. 6.46e-3 -1.87e-2

Mean GNARC 7.19e-3 -6.25e-2

RMS RMMAC/XI 1.41e-2 1.09

RMS PM.ID. 1.02e-2 7.48e-1

RMS GNARC 6.07e-2 5.89

%E Mean 3.3 % 97.5 %

%F Mean 7.9 % 69.7 %

%E RMS 38.6 % 46.1 %

%F RMS 329.2 % 439.1 %

Model #12 whenΞ = 100) and waveform EX, as shown
in Fig. 17, for the disturbance intensity. As illustrated in
Fig. 18, the probability transients are not as well behaved
as in the LFD case. This means that the RMS performance
gain from the GNARC to the RMMAC/XI should be
smaller than for the LFD case, due to the misbehavior
of model identification procedure. This can be concluded
based upon Table VIII.
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Fig. 17. Waveform EX: Disturbances power,Ξ

Nonetheless, we attain a RMS performance gain of
about 3.4 resulting from the use of adaptive control,
despite the problems found during the estimation process.
Case 7 (HFD):k1 Waveform F andΞ Waveform EX

In this case, we use the same waveform forΞ(t) as
before, and waveform F for the spring stiffness,k1(t).
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Fig. 18. Probability transients,Pk(t), for k1 = 0.57 andΞ waveform
EX

TABLE VIII

CASE 6 (HFD) RMSAND MEAN VALUES OF z(t)

RMMAC/XI GNARC %F

Mean -2.26e-2 -1.03e-1 355.8 %

RMS 7.19e-1 3.20 345.3 %

Waveform F is a sinusoidal wave between 0.25 and
1.75 with frequency one third of that of the disturbance
intensity. The probability transients are depicted in Fig.
19. As expected, the identification process is somewhat
“confused”, since we have time-variations on both the
system parameter and the disturbance intensity. Table IX
shows a significant gain on the RMS performance due to
the adaptive control law exploited.
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Fig. 19. Probability transients,Pk(t), for k1 waveform F andΞ
waveform EX

TABLE IX

CASE 7 (HFD) RMSAND MEAN VALUES OF z(t)

RMMAC/XI GNARC %F

Mean -6.43e-3 -2.25e-2 249.2 %

RMS 5.00e-1 2.96 492.8 %

Case 8 (HFD):k1 Waveform F andΞ Waveform FX
Similar to previous case, we now use Waveform F for

the spring stiffness. However, for this case, the distur-
bance intensity varies between 0.5 and 120. The results
are shown in Fig. 20 and Table X.
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Fig. 20. Probability transients,Pk(t), k1 waveform F andΞ waveform
FX

TABLE X

CASE 8 (HFD) RMSAND MEAN VALUES OF z(t)

RMMAC/XI GNARC %F

Mean -7.91e-3 -2.46e-2 211.6 %

RMS 6.28e-1 3.53 463.1 %

Despite the violation of several theoretical assumptions
required for the design of the RMMAC/XI, we still obtain
RMS performance improvements of about 4.6. This is
remarkable since the intensity of the disturbance is time-
variant and assumes values different from the ones used
in the KFs design stage.

IV. CONCLUSIONS ANDFUTURE WORK

This work presented some results turning out that the
RMMAC/XI architecture can still have better performance
than the GNARC even when the uncertain parameter and
the disturbance intensity are simultaneously time-varying.
It should be noted that this happens even when the actual
disturbance intensity was not considered during design.
Hence, the performance of this controller does not depend
strictly on the correct model identification, since what
matters for control purposes is that the interval of the
parameter value is properly identified.

The results presented also show that the violation of
several design assumptions does not affect the stability
of the closed loop system. Furthermore, the performance
of the RMMAC/XI was always clearly above the one of
the GNARC demonstrating that significant improvements
arise from the use of this adaptive controller.
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