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Abstract— We demonstrate, using Monte-Carlo simula-

tions, the robust performance of the adaptive control u®) '
methodology denoted by RMMAC/XI introduced and dis- Unknown Plant yO
cussed in Refs. [1-3]. The RMMAC/XI architecture can
handle simultaneous time-variations in the plant uncertan r O
parameters as well as the disturbance intensity statisticdVe uf S
compare the RMMAC/XI performance vs that of the best < R u(®
possible robust nonadaptive design using the same physical & . 7 u0)
example described in Refs. [1-4]. Whenever possible, we 2 : @]
also compare the RMMAC/XI performance with that of A r\<t>
the (unrealizable) “Perfect Model Identification (PM.ID)” -
introduced in [4]. e r\ © .
Index Terms— Robust adaptive control, multiple-model B r\,,@ —>|LNARC#r}i
adaptive control, time-varying uncertain plant parameters, B 65
time-varying disturbance statistics F :
/A NG
| D ke
I. INTRODUCTION " P
. . > —¥ Posterior RG]
This paper evaluates the “Robust Multiple-Model : " [Probability P
. . . . S (€ _, NG
Adaptive Control (RMMAC/XI)” architecture, depicted in OB o

Flg'. 1, for a mass-sprlng_—dashpc_)t .(MSD) test examp.l%ig. 1. RMMAC/XI architecture with N dynamic models
subject to simultaneous time-variation of the uncertain
spring stiffness and unknown disturbance intensity — see
Fig. 2. This architecture was introduced in Refs. [1-4].
The interested reader is referred to Refs. [1-4] for more
detail.

The performance of the MSD system subject to time-
varying uncertain parameters but constant disturbance
intensity was evaluated in our previous work ([4]), for
which the RMMAC could perform a perfect performance.rig. 2. MSD system with uncertain spring constahi, and distur-
The main difference between this paper and [4] relies omances denoted hy(t). u(t) is the control input and(t) is the system
having a disturbance with time-varying intensity, which E)lL{th]ut.r is an uncertain time-delay bounded by 7 < 0.05s, as in
requires the use of an extension of the RMMAC method-"
ology, referred to as RMMAC/XI. In this architecture, In this paper, the RMMAC/XI identification subsystem
we may consider different disturbance intensities. Forconsists of 2N Kalman filters (KFs) followed by a “Pos-
instance, we can assume that plants with spring stiffnegerior Probability Evaluator (PPE)”. It was not clear, from
within a certain interval can either be described by modeRefs. [1-4], what the posterior probabilities were when the
#P or model #P+N, depending on the disturbance intendisturbance intensity was unknown during design stage or
sity, sayZ; or Z,, respectively. Note that in Refs. [1- when it was changing in time (fast or slowly). In order to
4] model #Pwas designectonsidering the disturbance evaluate the performance of the RMMAC/XI architecture,
intensity =;, and considering, for model #P+N. we compare it, whenever possible, to that associated

with “Perfect Model Identification (PM.ID.)” with local
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in [4], two different cases are analyzed in this paper:
the first, for a low frequency control bandwidth case Lar
(previously designed in [1]); the second, which is a much 12l
harder control problem, for a higher control bandwidth
(previously designed in [2]).

Each dynamic model and covariance matrix, o8t

covlé(ty:e(m)] = B{E®E(MYy = ot — 1), of || 1 |

06

the continuous-time zero-mean plant white noige), #3,47)
have associated one KF, whei is the plant-noise B R 1o
intensity matrix. o : ‘ ‘ ‘ ‘ ‘

The disturbance forcé(t) shown in Fig. 2 is a station- S
ary colored stochastic process that results from the output
of a first order low-pass filter. This transfer function, Fig- 3. Waveform A: Time-varying spring constar,
Wa(s), has a pole ak = « and is driven driven with

(#1, #5)

K1 (N/m)

(#2, #6)

(44, #8)

continuous-time white noisé€(t), with zero mean and 100}
intensity =.
80
I1. Low-FREQUENCYDESIGN (LFD) SIMULATIONS 60r
In this section a set of 4 simulations are presented for aof
the LFD design case. We consider= 0.1 rad/s, and
RMMAC/XI controller design choices and performance 20r
requirements are as presented in [1-3]. The simulation
results were obtained from 5 Monte-Carlo runs. o

Table | shows the respective spring constant interval 0 w0 030 g s e T
and disturbance intensity for each design case. The re-
gions for the spring constant are chosen according to [3Fig. 4. Waveform AX: Disturbances poweg,
so the performance of the RMMAC/XI is not below 70%

1 1

of the fixed nonadaptive robust controller (FNARC), as 205 . 205
explained in detail in [1-3]. Eight models are obtained, * o * o
four associated to disturbance intensi#y= 1, and four . Time (s) ) Time ()
associated to disturbance intensy= 100. os o5
0O 200 400 600 00 200 400 600
TABLE | Time (s) Time (s)
LFD RMMAC/X| M ODEL DEFINITIONS s, » l s » ﬂ
o o 1
Model # Model # Spring Constant % 200 Time4(os<; 600 0 200 Tim:g; 600
for2=1 | for = =100 Interval 1 1
#1 #5 Q1 = [1.02 1.75] RS gos o
#2 #6 Q2 =1[0.64 1.02] 0 200 400 600 0 200 400 600
#3 #7 Q3 =[0.4 0.64] e e
#4 #8 Q4 =10.25 0.4] Fig. 5.  Probability transientspPy(t), for k1 waveform A and=
waveform AX
Case 1 (LFD):k; Waveform AZ = {1,100} (Waveform
AX) 0 — BMMAC/XIvalue—PM.ID value
Next, we consider a case where the disturbance inten- PAM.ID.value B
sities take one of two predefined values, as in [3] and as it o4 F — GNARCvalue—RMMAC/X Ivalue
can be seen in Fig. 4. We also consider the spring stiffness o RMMAC/X Ivalue

with step changes, depicted in Fig. 3. The probability Although the RMMAC/XI RMS performance is lower
transients are shown in Fig. 5, from which it can bethan the one achieved by the PM.ID. scheme, it is still
concluded that the transitions are not as fast as in theemarkably above the one obtained with a nonadaptive
case where the disturbance intensities are constant (semntroller. In the second part of the simulation (high
for instance, [3] or [4]). Nonetheless, this identification disturbance intensity), there is an improvement in terms
problem does not avoid the improved performance of thef RMS performance. This is mainly due to the fact
RMMAC/XI when compared with the GNARC. This can that higher intensity disturbances help the identification
be concluded from Fig. 6 and Table II. procedure resulting in faster probability transients amd i

The last two columns of Table Il show the following control laws closer to those selected in the PM.ID case.
percentage comparisons: Case 2 (LFD):k; = 0.28, = Waveform BX
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Fig. 6. Mass positionz(t), for k1 waveform A and= waveform AX

TABLE Il
CAsSEl (LFD) RMSAND MEAN VALUES OF z(t)
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| Time Interval | [0350] | [350 700] |
Mean RMMAC/XI 6.22e-5 -8.56e-5
Mean PM.ID. 5.84e-5 | -5.32e-5
Mean GNARC | 1.34e-3 | -2.34e-3
RMS RMMAC/XI | 1.26e-4 | 5.39e-3
RMS PM.ID. 5.20e-5 | 2.87e-3
RMS GNARC 6.34e-4 | 2.68e-2
%E Mean 6.4 % 60.8 %
%F Mean 2052.8 % | 2633.1 %
%E RMS 1432% | 87.7%
%F RMS 401.6 % | 397.9 %

used for mode}1 is the same used for modgh, the one
used for mode}2 is the same used for modgi6, and so

on. Therefore, it is not important, for control purposes, if
the identification procedure picks modgh or #8 as far

as one of them is selected. This justifies the overall quality
of the results obtained. However, it is very worthwhile to
mention that to guarantee a certain level of performance
the transition between these two models should occur
in such way that the remaining models present always
negligible posterior probabilities.

TABLE IlI
CASE2 (LFD) RMSAND MEAN VALUES OF z(t)

Next, the spring constant is fixed tg = 0.28 and the
disturbance intensity is defined as depicted in Fig. 7. This
sinusoidal time-varyin@ will help to show which one of

RMMAC/XI | GNARC %F
Mean 8.41e-5 9.05e-4 975.8 %
RMS 1.93e-3 4.92e-2 || 2443.6 %

the two models is selected by the identification proces&ase 3 (LFD):k; Waveform C an& Waveform BX
when the disturbance intensity differs from the predefined Now we discuss a much harder problem. The spring

values.
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Fig. 7. Waveform BX: Sinusoidal time-varying disturbangesver, =

stiffness is assumed to be sinusoidal as shown in Fig. 9
andZ(t) is the same as in Case 2. The behavior of the
RMMAC/XI can be judged from the results illustrated
in Fig. 10 and Table IV. The probabilities convergence
is slower than in the previous tests, as expected, since
we are changing not only a system parameter but also
the disturbance intensity, turning out a much difficult task
for the estimation algorithm. Due to the misbehavior of
the identification technique, we do not have the same
performance improvement as before, when comparing the
RMMAC/XI results with those of the GNARC. Nonethe-
less, the gain of about 6 is obtained for the overall RMS
performance.

TABLE IV
CASE 3 (LFD) RMSAND MEAN VALUES OF z(t)

Figure 8 shows that only iE is roughly below 10, RMMAC/XI | GNARC %F
the identification procedure considers the correct model Mean 6.74e-5 7.15e-4 || 961.1 %
to be in the first KF setd = 1). Table IIl presents RMS 2.60e-3 1.99¢-2 || 667.4 %

the performance improvement of using adaptive control.
From the table it can be readily seen that indeed we hav€ase 4 (LFD):k; Waveform C ancE Waveform CX

a RMS performance gain of about 24. As explained in [3], Finally, an even harder case is analyzed. In the pre-
the LNARCs used in the RMMAC/XI controller do not vious case, we had the disturbance intensity within the
depend on the disturbance intensity. Hence, the LNARQredefined valuesz € [1,100]. Here we assume that
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Fig. 9. Waveform C: Sinusoidal time-varying spring constén
Fig. 12.

waveform CX

Probability transientsPy(¢), for k1 waveform C and=

= 1 HO.Z
g 05 ’ ﬂ. §o1 TABLE V
% 200 400 600 % 200 400 600 CASE4 (LFD) RMSAND MEAN VALUES OF z(t)
Time (s) Time (s)
0.2 0.2
& 01 Fo1 RMMAC/XI GNARC %F
% 200 400 600 % 200 400 600 Mean 6.73e-5 6.75e-4 || 903.7 %
L Time ) L Tme ) RMS | 2.97e-3 | 238e-2 || 701.4 %
g os t I\ ’ \ gos
a o
00 200 400 600 00 200 400 600 )
) Time (s) . Time (s) performance evaluation of the RMMAC/XI methodology,
€05 205 we now consider a higher frequency range with= 3
o o . . s
R TR rad/s. Thus, the disturbance fore¥t) has 5|gn|f|cant
Time (s) Time (s) power over a larger frequency range, leading to the
. . . excitation of all the lightly-damped modes of the MSD
Fig. 10.  Probability transientsP(t), for k1 waveform C and= ghtly P

system. In order to compensate for the disturbances with
the new extended frequency range, a controller with wider
bandwidth is required.

E exceeds these boundaries, as shown in Fig. 11. This The details of the HFD RMMAC/XI methodology for
should be more difficult for the probabilistic estimation this case are given in [2]. This problem reveals several
algorithm to identify the correct model. However, this difficulties when it comes to the identification of the
may not necessarily result in a loss of performance. Irtorrect model, as will be seen in the sequel. In order
fact, when relating the results regarding the comparisofo achieve the same performance specifications as in [2],
between the RMMAC/XI and the GNARC and previous we use 14 models (2N=14), corresponding to 7 models
tests, we have a slight improvementin terms of RMS gainfor each=, as described in Table VI.

as presented in Table V. Figure 12 shows the misbehavior
of identification process which does not degradate the
performance of the closed loop system.

waveform BX

TABLE VI
HFD RMMAC/X| M ODEL DEFINITIONS

Model # Model # Spring Constant

120 for2=1 | for 2 =100 Interval
ol #1 #8 Q1 =[1.4 1.75]
#2 #9 Q= [1.11 1.4]
gor #3 #10 Q3 =[0.85 1.11]
W el #4 #11 Q4 =[0.65 0.85]
#5 #12 Q5 =[0.49 0.65]
a0f #6 #13 Q6 =[0.35 0.49]
ol #7 #14 Q7 =[0.25 0.35]

of Simulation results for the different situations are pre-

sented next, using 5 Monte-Carlo runs for each case.
Case 5 (HFD):ky Waveform D= = {1,100} (Waveform
DX)

Similarly to Case 1,k; has step changes, but with
waveform D, illustrated in Fig. 13. The waveform &f

. HIGH-FREQUENCY DESIGN SIMULATIONS is also similar to the one of Case 1, as shown in Fig. 14,

In this section, a more challenging control problem isbut now the step occurs at a different time.

discussed. Although we use the same MSD system for the Figure 16 presents the output of the system for the three
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Fig. 11. Waveform CX: Sinusoidal disturbances povier,
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Fig. 16. Output,z(t), for k1 waveform D and= waveform DX
100 TABLE VI
CASE5 (HFD) RMSAND MEAN VALUES OF z(t)

80|

| Time Interval | [0650] | [650 1300] ]

Mean RMMAC/XI | 6.67e-3 | -3.69e-2
Mean PM.ID. 6.46e-3 | -1.87e-2
Mean GNARC 7.19e-3 -6.25e-2

RMS RMMAC/XI | 1.41e-2 1.09

60~

a0

201

RMS PM.ID. 1.02e-2 7.48e-1
ok RMS GNARC 6.07e-2 5.89
0 2[‘)0 4(;0 6(‘)0 B(‘)O 10‘00 1200 %E Mean 33 % 975 %
e %F Mean 7.9 % 69.7 %
Fig. 14. Waveform DX: Disturbances powet, %E RMS 38.6 % 46.1 %
%F RMS 329.2% | 439.1%

controllers considered. From the Fig. 16 and Table VII,

one can see that there are significant RMS performanaglodel #12 wherE = 100) and waveform EX, as shown
improvements when comparing the RMMAC/XI to the in Fig. 17, for the disturbance intensity. As illustrated in
best nonadaptive controller. However, there is still aFig. 18, the probability transients are not as well behaved
substantial loss of RMS performance when comparings in the LFD case. This means that the RMS performance
with the PM.ID. This can again be explained by thegain from the GNARC to the RMMAC/XI should be
misbehavior of the identification process — see Fig. 15. smaller than for the LFD case, due to the misbehavior
of model identification procedure. This can be concluded
based upon Table VIII.
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Fig. 15.  Probability transientspPy(¢), for k1 waveform D and= 0 100 200 0 ™ 500 600 700

waveform DX

Table VII also shows that, as in Case 1, a higher loss of'9- 17-  Waveform EX: Disturbances powe,

performance from the PM.ID to the RMMAC/XI occurs  Nonetheless, we attain a RMS performance gain of

when the disturbance intensity is smaller. about 3.4 resulting from the use of adaptive control,

Case 6 (HFD):k; = 0.57, = Waveform EX despite the problems found during the estimation process.
We now consider the HFD RMMAC/XI simulation Case 7 (HFD):k; Waveform F ancE Waveform EX

similar to the Case 2. We use the spring stiffnéss= In this case, we use the same waveform Hit) as

0.57 (the correct models are Model #5 whé&irl or before, and waveform F for the spring stiffneds|t).
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Fig. 18. Probability transients}, (¢), for k1 = 0.57 and= waveform

EX
TABLE VIII
CASE6 (HFD) RMSAND MEAN VALUES OF z(t)

RMMAC/XI | GNARC %F
Mean -2.26e-2 -1.03e-1 || 355.8 %
RMS 7.19e-1 3.20 345.3 %
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Fig. 20. Probability transients?, (¢), k1 waveform F ancE waveform
FX

TABLE X
CASE 8 (HFD) RMSAND MEAN VALUES OF z(t)

RMMAC/XI | GNARC %F
Mean -7.91e-3 -2.46e-2 || 211.6 %
RMS 6.28e-1 3.53 463.1 %

Despite the violation of several theoretical assumptions

Waveform F is a sinusoidal wave between 0.25 andequired for the design of the RMMAC/XI, we still obtain
1.75 with frequency one third of that of the disturbancegpms performance improvements of about 4.6. This is
intensity. The probability transients are depicted in Fig.remarkable since the intensity of the disturbance is time-

19. As expected, the identification process is somewhajariant and assumes values different from the ones used
“confused”, since we have time-variations on both thej, the KFs design stage.

system parameter and the disturbance intensity. Table IX

shows a significant gain on the RMS performance due to

the adaptive control law exploited.

1 1 1

05 ‘ 05 [ 0.5
0 0 0
1

P1()
P2()
P3(t)

0 500 1000 1500 ] 500 1000 1500 0 500 1000 1500
Time (s) Time (s) Time (s)
1 1

0.

0.

@
P5()

0.

@
P6(t)
@

P4(t)

0 0

0
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Time (s) Time (s) Time (s)

1 1 1
iosm %Uvsm go‘Sm
I £ g

0 o 0

0 500 1000 1500 ] 500 1000 1500 0 500 1000 1500
Time (s) Time (s) Time (s)

1 1 1
Sos o5 Sos
g / H g f L g

0 0 )

0 500 1000 1500 ] 500 1000 1500 o 500 1000 1500
Time (s) Time (s) Time (s)

1 1
9 05 S o5
g g

0 o

0 500 1000 1500 ) 500 1000 1500
Time (s) Time (s)
Fig. 19.  Probability transientsPy(t), for k1 waveform F and=

waveform EX

TABLE IX
CASE 7 (HFD) RMSAND MEAN VALUES OF z(t)

RMMAC/XI | GNARC %F
Mean -6.43e-3 -2.25e-2 || 249.2 %
RMS 5.00e-1 2.96 492.8 %

Case 8 (HFD):k; Waveform F andE Waveform FX

IV. CONCLUSIONS ANDFUTURE WORK

This work presented some results turning out that the
RMMAC/XI architecture can still have better performance
than the GNARC even when the uncertain parameter and
the disturbance intensity are simultaneously time-vayyin
It should be noted that this happens even when the actual
disturbance intensity was not considered during design.
Hence, the performance of this controller does not depend
strictly on the correct model identification, since what
matters for control purposes is that the interval of the
parameter value is properly identified.

The results presented also show that the violation of
several design assumptions does not affect the stability
of the closed loop system. Furthermore, the performance
of the RMMAC/XI was always clearly above the one of
the GNARC demonstrating that significant improvements
arise from the use of this adaptive controller.
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