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Abstract— In this paper we derive general expressions for the 
performance of hierarchical multilevel quadrature amplitude 
modulation constellations (M-QAM), over flat Rayleigh fading 
environments with imperfect channel estimation. Cases of 
diversity reception with identical channels and with dissimilar 
channels, employing maximal ratio combining (MRC) are 
considered. Since hierarchical constellations are usually 
employed to achieve unequal bit error protection, the individual 
bit error rate (BER) of each bit stream is analyzed and it is 
shown that poor channel estimation has a more severe impact in 
the performance of the least protected bit streams. 

Keywords- Channel estimation, diversity reception, quadrature 
amplitude modulation, Rayleigh fading. 

I.  INTRODUCTION 

In the design of wireless communication networks, the 
limited spectrum available is one of the main restrictions for 
achieving high bit rate transmissions. The use of M-QAM is 
considered an attractive technique to achieve this objective due 
to its high spectral efficiency and has been studied for wireless 
systems by several authors [1]-[3].  

A great deal of attention has been devoted to obtaining 
analytical expressions for the bit error rate (BER) performance 
of M-QAM. The symbol error rate (SER) of 16-QAM on L 
branch Rayleigh fading channels with Maximal Ratio 
Combining (MRC) was derived in [4]. [5] presents exact SER 
expression for M-QAM with L branch diversity reception in 
Rayleigh fading for the cases of MRC and selection combining 
(SC).  These studies assume perfect channel state information 
(CSI). The CSI is required to rescale the received symbols so 
that they can correspond to symbols of the original 
constellation. Since in real systems the channel estimation is 
always imperfect it will have a significant impact in the 
performance of M-QAM constellations. Several authors have 
addressed the performance of QAM transmissions with 
imperfect channel estimation. A tight upper bound on the SER 
of 16-QAM with pilot symbol assisted modulation in Rayleigh 
fading channels was presented in [6]. The BER of 16-QAM 
and 64-QAM in flat Rayleigh fading with imperfect channel 
estimates was derived in [7]. In [8] this derivation was 
extended for the case of 16-QAM with diversity reception and 
MRC.   

All the previous work referred so far refers to M-QAM 
uniform constellations. These constellations can be looked at as 
a subset of the more general case of hierarchical M-QAM 
constellations (which includes uniform and non uniformly 
spaced signal sets). These constellations can be used as a very 
simple method to provide unequal bit error protection and to 
improve the efficiency of a network. This idea is based on the 
work of Cover [9] who showed that in broadcast transmissions 
it is possible to exchange some of the capacity of the good 
communication links to the poor ones and this tradeoff can be 
worthwhile. In hierarchical constellations there are two or more 
classes of bits with different error protection, to which different 
streams of information can be mapped according to its 
importance. Depending on the propagation conditions, a given 
user can attempt to demodulate only the more protected bits or 
also the other bits that carry the additional information. 
Hierarchical 16-QAM and 64-QAM constellations have 
already been incorporated in the DVB-T standard [10]. In [11] 
a recursive algorithm for the exact BER computation of 
generalized M-QAM constellations in AWGN and fading 
channels was presented. Later closed-form expressions were 
obtained also for these channels [12]. At the moment the 
analytical BER performance for these constellations in 
Rayleigh channels with imperfect channel estimation has not 
been investigated yet.  

Although the method used in [7] and [8] can be extended to 
general M-QAM constellations, the manipulations and 
development required for obtaining the expressions can 
become quite cumbersome. Thus, in this paper we adopt a 
different method and obtain general closed-form expressions 
for the BER performance in Rayleigh fading channels of 
generalized M-QAM constellations with diversity reception, 
employing MRC at the receiver. Cases of diversity reception 
with identical channels and also with dissimilar channels are 
considered. Recently, in [13], exact expressions were published  
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Figure 1. Hierarchical 16-QAM constellation. 

for the performance of uniform M-QAM constellations but 
only for identical diversity channels. 

The paper is organized as follows. Section II describes the 
model of the communication system, which includes the 
definition of hierarchical M-QAM constellations, the channel 
and the modeling of the channel estimation error. Section III 
derives the BER expressions and Section IV presents and 
analyzes some simulation and numerical results. The 
conclusions are given on Section V.  

II. SYSTEM AND CHANNEL MODEL 

A. Hierarchical QAM Signal Constellations 

Hierarchical signal constellations (also called hierarchical 
constellations) are constellations where the distances along the 
I or Q axis between adjacent symbols can be different 
depending on their position. These constellations are thus able 
to provide unequal bit error protection. As an example, an 
hierarchical 16-QAM constellation can be constructed from a 
main QPSK constellation where each symbol is in fact another 
QPSK constellation, as shown in Figure 1. The basic idea is 
that the constellation can be viewed as a 16-QAM constellation 
if the channel conditions are good enough or as a QPSK 
constellation otherwise. In the latter situation, the received bit 
rate is reduced by half. These constellations can be 
characterized by the parameter k=D1/D2 (0<k≤0.5), as shown in 
Figure 1. If k=0.5, the resulting constellation corresponds to a 
uniform 16-QAM. This approach can be naturally extended to 
any QAM constellation size. The general expression for the 
definition of a symbol is 

( ) ( )2 2log log
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The number of possible classes of bits with different error 
protection that can be obtained is 21/ 2 log M⋅ . In our analysis 
we consider that the parallel information streams are split in 
two, so that half of each stream goes for the in-phase branch 

and the other for the quadrature branch of the modulator. The 
resulting bit sequence in each branch is Gray encoded and 

mapped to the respective -PAM M  constellation symbols. 
The symbols from the in-phase and quadrature branches are 
then grouped together forming complex M-QAM symbols. The 

Gray coding for each -PAM M  constellation is performed 
according to the procedure described in [11]. First the 
constellation symbols are represented in an horizontal axis and 
are labeled from left to right with integers starting from 0 to 

-1M . These labels are then converted to their binary 
representation so that each symbol sj can be represented by 

a 2 log 2M -digit binary sequence: 2log 21 2, ,..., M
j j jb b b . The 

corresponding Gray code is then computed using 
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where ⊕  represents modulo-2 addition. 

B. Received signal model 

Let us consider the case of a transmission over an L 
diversity branch flat Rayleigh fading channel where all the 
branches can have different fading powers. Assuming perfect 
carrier and symbol synchronization, each received signal 
sample can be modelled as 

,    1...k k kr s n k Lα= ⋅ + =   (3) 

where αk is the channel coefficient for diversity path k, s is 
the transmitted symbol and nk represents additive white thermal 
noise.  Both αk and nk are modelled as complex gaussian 

random variables with [ ] 0kE α = , 
2 22

kkE αα σ⎡ ⎤ =
⎣ ⎦
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fading power for path k), [ ] 0kE n =  and 
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(N0/2 is the noise power spectral density). Since αk and nk are 
complex gaussian variables, the probability density function of 
the received signal sample, rk, conditioned on the transmitted 
symbol, s, is also gaussian, and its mean is 0. The channel’s 
corresponding autocorrelation and cross correlation functions 
can be expressed as [14] 
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where 0 ( )J ⋅ is the zeroth-order Bessel function of the first kind,  

fD is the Doppler frequency and I
kα and Q

kα  are the in-phase 

and quadrature components of the fading coefficient kα . 

The receiver performs Maximal Ratio Combining (MRC) 
of the received signals. Since the mapping of the bits into the 
constellation symbols is performed independently to the I and 
Q branches, the decision variable in the receiver is either the 
real or the imaginary part of the result of the MRC. So, for the  
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Figure 2. Frame structure for a PSAM system. 

detection of the in-phase bits the decision variable can be 
expressed as  

*
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C. Channel Estimation 

In this analysis we consider that the communication system 
employs a pilot symbol assisted modulation (PSAM) 
philosophy  [6], where the transmitted symbols are formatted in 
frames of length N  with P pilot symbols periodically inserted 
into the data sequence, as shown in Figure 2. The pilot symbols 
are known by the receiver and are used for channel estimation 
purposes. The channel estimate for each pilot symbol, Sp, is 
obtained with 
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 To obtain the BER expressions it is necessary to model the 
channel estimate which depends on the type of estimation 
algorithm employed. Next it will be shown two examples for 
modeling the channel estimate. 

1) Basic channel estimator 
If the channel fading rate is sufficiently low so that it can be 

considered approximately constant during the duration of the 
frame then it is possible to use the same channel estimate for 
all the data symbols. This channel estimate can be computed 
simply as the average of the channel estimates of the P pilot 
symbols: 
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From (7), we see that the channel estimate, ˆ
kα , is a sum of 

zero mean complex gaussian variables and thus it is also a  zero 

mean complex gaussian variable. The variance of ˆkα depends 

on the position t in the frame and can be written as 
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where Ts is the symbol period. The second order moment of rk 

and ˆ
kα , is given by 
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2) Channel estimation using a FIR 
Instead of using only the pilot symbols of the current frame 

it is possible to transmit only one pilot symbol per frame (P=1) 
and then perform the channel estimation in the receiver taking 
into account also the pilot symbols of the neighbor frames. To 
obtain the channel estimates for the data symbols, an 
interpolation is performed using a finite impulse response 
(FIR) filter that uses the pilot symbols estimates of the 

( )1 2W −⎢ ⎥⎣ ⎦ previous and 2W⎢ ⎥⎣ ⎦  following frames, according 

to 
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where u is the current frame index, t=2,…,N  is the symbol 

position in the frame, 1j u
th − +  are the interpolation coefficients 

of the estimation filter and ( )ˆ 1k j Nα ⋅ +  are the channel 

estimates of the pilot symbols. These coefficients depend on 
the interpolation algorithm employed. There are several 
proposed algorithms in the literature like the optimal Wiener 
filter interpolator [6], the low pass sinc interpolator [15] or the 
low-order Gaussian interpolator [16].   

Looking at expression (10), we see that, similarly to the 
previous case, the channel estimate, ˆ

kα , is also a zero mean 
complex gaussian variable. The variance of the channel 
estimate for symbol t in frame u can be written as 

2ˆ (( 1) )kE u N tα⎡ ⎤− ⋅ + =
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The second order moment of rk and ˆ
kα , is given by 
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III. BER PERFORMANCE ANALYSIS 

Our target is to obtain the error probability of each different 
bit type im (m=1,…,log2(M)/2) in a constellation. As shown in 
the previous section the parameters that define the channel 
estimate model depend on the position in the transmitted frame. 
This means that the BER will also be dependent on this 



position. So, it is necessary to average the individual BER’s 
over all the possible locations in a frame.  

Due to the mapping considered, the I and Q branches are 
symmetric and thus we can develop our study using the 
decision variable for only one of the branches. In the following 
we will consider only the decision variable for the I branch, 
i.e., using (5). Although the BER performance of a M-QAM 
constellation in a Rayleigh channel with perfect channel 
estimation can be obtained reducing the constellation simply to 

a -PAM M  constellation, in the presence of imperfect 
channel estimation this simplification is not possible. This 
happens due to the existence of a phase error even after channel 
compensation, which adds interference from the quadrature 
components to the in-phase components and vice-versa. 
Nevertheless, the existing symmetries in the constellations still 
allows a simplification since it is only required to perform the 
computation of the error probability for each bit im by 
averaging the conditional BER’s over all existing constellation 
symbols in only one of the quadrants. 

In [12] an explicit closed-form expression for the bit error 
probability of generalized hierarchical QAM constellations in 
AWGN and Rayleigh channels was derived. It is possible to 
adapt this expression for the situation of imperfect channel 
estimation which is a more general case where the constellation 
can not be simply analyzed as a PAM constellation. In this 
situation, and admitting that the transmitted symbols are 

equiprobable, i.e., ( ), 1j fP s M= , the BER expression can be 

written as  
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Thus, to compute the analytical BER it is necessary to 

obtain an expression for ( ) 2
,

1
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In the following derivations we will drop the indexes t (symbol 
position in the frame), i (in-phase branch label of the 
constellation symbol) and f (quadrature branch label of the 
constellation symbol) and replace ( )m lb  for w for simplicity 

of notation. To avoid that the decision borders depend 

explicitly on the channel estimate, the probability expression 
can be rewritten as 
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where the modified variables 
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and 

ˆk k kr r w α′ = − ⋅   (18) 

are defined. Since kr  and ˆkα are complex random gaussian 

variables and w is a constant then kr′ also has a gaussian 

distribution. The second moment of kr′ is given by 
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the cross moment of kr′ and ˆ
kα is 
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and the cross-correlation coefficient between kr′  and ˆkα  is 

defined as 
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We will first compute the PDF of rez′  conditioned on s for 

each individual reception path. We start by writing the PDF of 

the decision variable 
krez′  ( ( )*ˆReal
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where  
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.  

From (17), the decision variable corresponds to the sum of 
L variables with PDF’s similar to (22). According to [18], the 



PDF of the sum of independent random variables can be 
computed as the inverse Fourier transform of the product of the 
individual characteristic functions. The characteristic function 
of the PDF defined in (22) is obtained applying the Fourier 
transform, which results in  
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Let us divide the L diversity branches in L′  different sets 
of diversity paths, where in each set there are kρ ( 1,...,k L′= ) 

received paths with equal powers, satisfying 
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Decomposing (25) as a sum of simple fractions according 
to the method proposed in [19], and then applying the inverse 
Fourier transform, we obtain the PDF of rez′ conditioned on s 
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To compute (16) it is necessary to integrate this PDF from  
-∞ to 0: 
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If the diversity branches have all equal powers, i.e., 

k Lρ = , 1L′ = and Fk, Gk and Hk are all equal (the k index can 
be dropped) results 
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If all the received diversity branches are different, i.e., 
1kρ =  for any k and L L′ = , the 1

,k iA  coefficients are 

computed as 

( ) ( )
1
,1

1 1

1 1
j j

L L

k
j j

k k j j k k j jj k

A
G H G H G H G H

ρ ρ
= =
≠

= ×
+ − − + − +

∏ ∏ , (30) 

resulting 
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IV. NUMERICAL RESULTS 

To verify the validity of the obtained expressions, some 
simulations were run using the Monte Carlo method. The 
results obtained are plotted as a function of ES/N0 (ES - symbol 
energy). Figure 3 shows the simulated BER performance of 
hierarchical 64-QAM (k1=0.4 and k2=0.4), employing basic 
estimation and considering four diversity branches with 
Rayleigh fading (fdTs=1x10-3) and different powers ([0dB -3dB 
-6dB -9dB]). The frame format is composed by 1 pilot and 14 
data symbols. The analytical results, computed using 
expressions (13) and (31), are also plotted. The curves 
corresponding to perfect channel estimation are drawn in both 
figures. It is clear that the analytical results accurately match 
the simulated ones. We also see that the non uniformity of the 
constellation used clearly result in differentiated performances 
for the different bit classes. 

Figure 4 compares the performances of an hierarchical 256-
QAM (k1=0.4, k2=0.4  and k3=0.4) constellation for a two equal 
branch diversity reception, in a slow Rayleigh fading 
environment (fdTs=1x10-4) using two different channel 
estimation algorithms. Results for perfect estimation, a basic 
channel estimator (P=4, N=18) and a low pass sinc channel 
estimation filter (K=20, N=18) are presented. The performance 
of the basic channel estimator is very close to the perfect 
channel estimation case and is better than the performance of 
the sinc filter for low Es/N0. This is due to the fact that because 
the channel evolution is slow, for low signal to noise ratios the 
estimation error is basically caused by the thermal noise. Since 
the basic channel estimator performs an averaging operation 
using 4 pilot symbols the effect of the thermal noise is reduced. 
Note that the better performance achieved with the basic 
estimator for low Es/N0 values requires the transmission of four 
times more pilot symbols. For high Es/N0 values, the error 
caused by the channel evolution prevails over the thermal noise 
becoming the main source for the channel estimation error. 
Since the basic channel estimator does not perform any 
interpolation between consecutive frames it clearly exhibits a 
higher irreducible BER floor than the sinc filter. It is important 
to note that these BER floors are more problematic for the least 
protected bits since in these cases they have much higher 
magnitude and may compromise the reception of these streams. 

V. CONCLUSIONS 

In this paper we have derived analytical expressions that 
allow the computation of the exact BER performance of the 
individual bit classes for any hierarchical square M-QAM 
constellation, in the presence of imperfect channel estimation. 
Rayleigh fading environments with equal or unequal receiving 
diversity   branches,  employing MRC,  are  considered.  It was  
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Figure 3 – Theoric and simulated BER performances of hierarchical 64-QAM 
(k1=0.4 and k2=0.4), with 4 diversity branches with different powers ([0dB -
3dB -6dB -9dB]). fdTs=1x10-3, basic channel estimator with P=1 and N=15.  
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Figure 4 – BER performance of hierarchical 256-QAM (k1= k2= k3=0.4), with 
2 diversity branches using basic channel estimation (P=4, N=18) and also a 

low pass sinc channel estimation filter (K=20, N=18) for fdTs=1x10-4. 

shown that using hierarchical constellations it is possible to 
improve the performance of some of the bit streams at the cost 
of degrading the performance of the others.  

It was shown that poor channel estimation can compromise 
the reception especially for the least protected bit streams, 
which were shown to be more sensitive. Using the derived 
expressions it was verified that for very slow fading channels, a 
basic channel estimator that employs a small number of pilot 
symbols for estimating the channel and then uses this estimate 
for all the data symbols in the frame, can be sufficient for 
obtaining good performances. If the fading rate is faster, then it 
is necessary to use the channel estimates of the pilot symbols in 
several adjacent frames and some interpolation algorithm, like 
the low pass sinc interpolator, to obtain an acceptable 
performance.  
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