Petri Net Models of Robotic Tasks

Dejan Milutinovic, Pedro Lima
Instituto de Sistemas e Robdtica, Instituto Superior Técnico — Torre Norte
Av. Rovisco Pais, 1; 1049-001 Lisboa; PORTUGAL
E-mail: {dejan,pal}@isr.ist.utl.pt

Abstract— This paper introduces a Robotic Task Model
(RTM) based on Petri nets, that establishes a framework
for task evaluation from qualitative and quantitative view-
points, as well as a methodology for the implementation of
robotic task coordination. A testbed for the evaluation of
the RTM and the details of its implementation over a net-
work of distributed task executors is described.

Keywords— Discrete Event Systems, Petri nets, Intelligent
Robots, Distributed Control, Machine Learning.

I. INTRODUCTION

Among the existing models of Discrete Event Systems
[1], Petri nets have been widely used to model dynamic
systems [2], notably automated manufacturing systems [3].
Petri net properties also make them good candidates for
qualitative performance evaluation (using untimed mod-
els) and quantitative performance evaluation (using timed
and/or stochastic models) of robotic tasks. Simultaneously,
they provide the means for task design and interaction be-
tween an operator and the task under execution.

This paper introduces a new framework under which
Petri nets are used for qualitative and quantitative per-
formance evaluation, as well as a tool to design and exe-
cute robotic tasks. This framework is motivated by previ-
ous work by Wang and Saridis [4], where Petri nets were
first proposed as models of robotic tasks. Later, Lima
and Saridis [5] introduced a methodology for robotic tasks
performance evaluation and learning-based improvement
through feedback, which is mapped here to Petri nets, as
a development of preliminary concepts introduced in [6].
Related work is scarce and typically refers to logical and
temporal specification, verification and code generation [7],
[8]. In this work we focus mainly on quantitative evaluation
of task reliability and cost, with the goal of choosing the
optimal task to achieve a given goal. The paper also de-
scribes the implementation of a testbed for the evaluation
of robotic task Petri net models, where a Petri net Executor
can be designed and implemented to control a distributed
robotic system composed of different devices (e.g., mobile
robots, manipulators, vision systems).

The paper is organised as follows: Section II introduces
a robotic task model, the different Petri net types used to
model different views of that model, and a mapping be-
tween the model and those views. Section III covers task
quantitative performance evaluation concerning cost and
reliability-based measures, as well as their mapping to Petri

The work of the first author was supported by grant
SFRH/BD/2960/2000 from the Portuguese Fundagdo para a Ciéncia
e a Tecnologia

nets and the use of reinforcement learning to optimize the
performance evaluation function. The testbed implemen-
tation is described in Section IV. The paper ends with
conclusions and references to future work (Section V).

II. PETRI NET VIEWS OF A RoBOoTIC TASK MODEL

A robotic task is defined in [5] as a string of primitive
tasks, representing the sequence of actions the robotic sys-
tem must carry out to accomplish the task goal. Each
primitive task may be actually implemented by more than
one primitive action (e.g., a locate object primitive task can
be implemented by a set of different image processing algo-
rithms, defined here as primitive actions). Primitive tasks
and their translating primitive actions must be established
at design time, associated to specific goals (e.g., to locate
an object, to follow a trajectory). When, during the exe-
cution of a primitive task, its specific goal or an error state
(e.g., due to a timeout) is reached, an event occurs and
must be detected. To reach its goal, a task must first reach
the specific goals of each of its composing primitive tasks.

Primitive actions, primitive tasks, and events constitute
a robotic task model (RTM). One can look from different
viewpoints at such a model. Different Petri net types [2]
are used depending on the viewpoint taken. The following
subsections illustrate this concept, starting by some defini-
tions which map Petri nets and the robotic task model.

A. Robotic Task Model and Petri Nets

A marked Petri net is defined by the five-tuple P =
(P,T,A,w,x9), where P = {p1,p2,...,pp,} and T =
{t1,t2,...,ty, } are finite sets of places and transitions, re-
spectively, A is a set of arcs, subset of (P x T') U (T x P),
w a weight function, w : A — {1,2,3,...}, and zg is
the initial marking. The marking = of a Petri net is a
function z : P — {0,1,2,...}, which defines a vector
x = [x(p1),x(p2), ..., x(pn,)], interpretable as the state of
the Petri net. Each vector entry denotes the number of to-
kens in the corresponding place for a given state. The cov-
erability tree [1] of a given Petri net is a tree whose nodes
are Petri net states and arcs represent Petri net transitions.
It will be used in this work as a Petri net representation
helpful for qualitative and quantitative analysis purposes.

An RTM is defined by the 3-tuple 7 = (R, E,A)

where R = {ry,r9,...,r,, } is the set of resources,
E = {e,eq,... e, } is the set of events and A4 =
{ai,as,...,a,,} is the set of primitive actions.

A robot, an object in the environment or a primitive
task are resources. It is also convenient to define II =

{m,m2,...,mn, } C R, the subset of primitive tasks in R.

A is partitioned in n, subsets, because each primitive
task has an associated non-empty set of primitive actions,
representing alternative implementations (i.e., algorithms)
of the primitive task.

An event occurs when a primitive action ends its execu-
tion, either because its specific goal has been reached or
an error condition has been detected. Events can be de-
tected by specialized sensor monitoring algorithms running
in parallel with the primitive action. However, even though
an event can be detected, the primitive action must enable
it, so that the event occurrence triggers the appropriate
response.

Under our framework Petri net places represent resources
and transitions are associated to logical conditions defined
over the event set . Whenever a token is inside a place,
the corresponding resource is available. When the resource
is a primitive task the token means that the primitive ac-
tion chosen to translate the primitive task is running. Upon
its completion, every primitive action generates an event.
Any logical condition associated to a transition is made
true or false by the occurrence of the event.

Interpreting II as the set of terminal symbols of a gram-
mar G, one can determine the language £ generated by
a Petri net associated to an RTM 7. First, without loss
of generality, the Petri nets used are constrained to the
class of Petri nets whose transitions have only one output
place. More general Petri nets can be reduced to those in
this class, by using macro-places to represent task branches
running concurrently. The set of terminal symbols of G
is then extended to include the symbols ||,(,) to define
% =1uU{|,(,)}, used to concatenate symbols represent-
ing primitive tasks running in parallel (e.g., o || (7471)).

6%6
SR

not _e

O

®

t5 p7

not _e %}\
m QM

t15 p10
b)

Fig. 1. Petri net representation of an RTM.

Each string of the language £ generated by a Petri net
P associated to an RTM 7T is obtained by following a path
in the coverability tree of P, from the root node to a ter-
minal node and generating one or more symbols from II¢

for each node visited. The path may include several vis-
its to any duplicate node(s) [1]. More than one symbol is
generated when a node representing a state associated to a
macro-place of the restricted class of Petri nets considered
is visited. Such a situation denotes the concurrent execu-
tion of primitive tasks, hence a concatenation of symbols
from II separated by || symbols and associated by (and)
symbols will be generated.

Petri net conflicts, occurring when a place has more than
one output transition, determine the number of strings
composing the language, as they create alternative paths
in the coverability tree. Task execution cannot be non-
deterministic. Hence, whenever conflicts occur, each tran-
sition in the conflict set must be associated to a logical
condition defined over a subset of the event set, such that
no more than one logical condition from the conflict set
will be true at a time.

A Petrinet illustrating some of those concepts is depicted
in Figure 1 a). Figure 1 b) is an equivalent Petri net in the
restricted class considered, where the concurrent branches
between t; and t4 have been reduced to macro-places pg be-
tween t13 and 43 and pig between t15 and t45, depending
on whether the logical condition e or not e, e € E is satis-
fied, respectively. Assuming a relation p1 — m;Vp,ep r e,
when visited along a path in the coverability tree, the sym-
bol 7 is replaced by (wams) || (m3(7s || 76)), while 7g is
replaced by (mamy) || (mw377).

B. Task Design and Execution

The actual task implementation (i.e., its design and exe-
cution) requires the scheduling of the primitive tasks com-
posing the task, as well as the synchronization with the
events. Events are crucial to coordinate task execution, as
they signal when a primitive task can be called for execu-
tion, by firing the input transition of the place associated
to the primitive task. An interactive man-machine inter-
face is also important, so that the appropriate schedule of
primitive tasks can be designed and task execution can be
followed and/or modified by an operator.

Interpreted Petri nets [2] are used to model task imple-
mentation. At design time, places and transitions (i.e.,
resources, primitive tasks and logical conditions over E)
must be linked together by the task designer such that the
robotic system goes through the desired sequence of specific
goals that must be reached before the task goal is accom-
plished. The designer must also identify all the resources
other than primitive tasks required at each task step, and
represent them by places. He/she must also provide, for
each place associated to a primitive task, two output tran-
sitions: one corresponding to a successful completion of the
primitive task, another to an exit upon an error situation.
In the latter case, an appropriate error recovery procedure
must be specified. To avoid a cumbersome task represen-
tation, the error recovery branches may be hidden in the
graphical display of the Petri net associated to the task.

During task execution, a transition is enabled if each of
its input places has a sufficient number of tokens available.
This happens when all the associated resources are avail-

able, such as the required hardware, a path to be followed
or an image to be processed stored in the shared memory.
Resource availability includes making sure that the primi-
tive tasks associated to the transition input places are run-
ning. However, the transition will only be fired when its
associated logical condition defined over E is true. The
tokens are then deposited in the output places of the tran-
sition, enabling the execution of their associated primitive
tasks, requesting and relinquishing other resources. An
operator may follow task execution by following the token
flow through the Petri net representing the task.

C. Quantitative Performance Evaluation

Once an Interpreted Petri Net has been designed to rep-
resent the actual task implementation, one may evaluate
quantitative properties of the task performance by modi-
fying its associated Petri net, turning it into a generalized
stochastic Petri net [3].

Generalized stochastic Petri nets can be used to model
time-related properties (such as the probability that the
task execution time will be less than a given specification)
and/or task reliability, defined as the probability that the
task will meet its specifications, i.e., that it will achieve its
goal [5].

Primitive task execution time can actually be determined
by associating time to places (P-timed model). The time
assigned to each place will determine the performance mea-
sure obtained afterwards. For instance, if the CPU time
taken by the primitive tasks associated to each place is
used, the total CPU time spent by the task will be com-
puted. One may use the actual time taken by each primi-
tive task instead. In this case, the actual time taken by the
task will be computed. Of course, this will be a stochastic
variable, but random times can be associated to the places
under the P-timed Petri net model. When those times are
distributed according to an exponential law, the marking
of this stochastic Petri net is an homogeneous Markovian
process [3], whose well known properties help to determine
the time properties of task execution.

Primitive task reliability can be modeled by random
switches [3]. Random switches are arcs linking each place
p € P representing a primitive task = € Il to output tran-
sitions. In this model, only two output transitions are con-
sidered: one representing a failure and the other a success
meeting the specifications for 7. When enabled, one of the
transitions will be fired according to the success and failure
probabilities. The success probability is actually the relia-
bility of a primitive task. The failure probability includes
situations where the specifications were not met but task
execution proceeds along the normal execution branch, as
well as situations where error recovery is actually required.
Using this model, tools appropriate for analysis of gener-
alized stochastic Petri nets can be applied to the perfor-
mance analysis of the whole task or any of its sub-tasks.
An alternative method based on the coverability tree will
be described in Section III.

D. Qualitative Performance Evaluation

Ordinary Petri net models (or some of their abbrevia-
tions [2]) can be used to evaluate qualitative properties [3]
of a task, such as boundedness (which can be viewed as a
measure of stability), properness (related to the possibility
of error recovery and/or restarting the system) and liveness
(associated to state reachability, i.e., whether a state or a
set of states will ever be reached or not). Once again, if
a qualitative performance evaluation is required, the orig-
inal interpreted Petri net modeling task execution can be
modified into an ordinary Petri net (e.g., no event synchro-
nization) to determine such properties.

III. QUANTITATIVE PERFORMANCE EVALUATION

Current work has been concentrated on task reliability
as a performance measure. This will be described by first
introducing a cost function for the RTM which is then
mapped to the coverability tree of the associated Petri net.
Finally, a brief look at the use of reinforcement learning to
improve performance over time is included.

A. Cost Function

A cost function to determine task performance from the
performance measure of each of its composing primitive
tasks and actions has been introduced in [5]. Such a cost
function is general enough to be applied to the diversity of
primitive tasks which may compose a robotic task model.
It is based on a conjunctive definition of cost and reliability
(see [5] for details), summarized by the following equations:

R(¢,f) = Pr{¢ meeting specifications of f < e} (1)
fro= argmin{R(¢, f) : R(¢,f) 2 Ra} (2)
C(¢) = cost(g, f7) (3)
R(¢) = R(¢,[f7) (4)

where R is the reliability, C the cost, ¢ a primitive action,
f a problem element in F', a data set representative of the
task at hand (e.g., a collection of images for a locate ob-
ject primitive task), and € > 0. The total cost, denoted by
the function cost(.), is determined by adding the cost of
getting information from f € F' and the cost of processing
that information. The cost and relibility of the primitive
action ¢ are obtained for the problem f which leads to the
lowest reliability among those with values lower-bounded
by some target reliability R;. In general, cost increases
with reliability. For instance, to improve the reliability of
locating a point within a noisy image with a given accu-
racy, one has to average several pictures of the image. If
the cost is defined as the number of required pictures, it
will depend on the target reliability. However, if the num-
ber of pictures is established at design time, the reliability
will depend on the number of images (i.e., the cost) used
to compute the average. Therefore, a minimum of the fol-
lowing cost function exists, corresponding to the optimal
primitive action

J=1—R+ pC (5)

where p a weight factor such that pC € [0,1]. In general p
will be such that the cost does not overwhelm the reliability
when directing the search for the optimal action. A typical
pisgiven by p = m, where A is the set of primitive
actions. The cost is computed a priori, but in general it
can assume any value and may have any units, depending
on the primitive task. Hence, p is used to normalize both
the cost value to the interval [0, 1] and the cost units across
primitive tasks.

The definition of cost and reliability refers to primitive
actions. However, their values, and consequently those of
the cost function, can be propagated to the primitive tasks
and to the task using appropriate expressions [5], extending
the quantitative performance evaluation to the complete
robotic task model. In particular, propagation of relia-
bility and cost from primitive tasks to the whole task is
determined by composition of the following expressions:
¢ given two primitive tasks m; and o running concurrently
(e.g., associated to places p; and p, in the output set of a
given transition):

R(m [m) =
C(m || m) =

R(m1)R(m2)
max{C(m), C(m2)} (6)
e given n primitive tasks mq,..., 7, running sequentially

(e.g., place p; is in the input set of transition ¢ and place
p2 is in the output set of transition t):

n

R(ﬂ'l...ﬂ'n) = HR(ﬂ'Z)
Clri...my) = %Zo(m) (7)

Reliability is computed for concurrent or sequential
primitive tasks using the same expression, since all tasks
must be successful to achieve a reliable task. Cost of se-
quential primitive tasks adds up (normalized to the [0, 1]
interval), while cost of concurrent tasks is determined for
the worst case (maximum cost between the two tasks).

B. Task Cost Function and Coverability Tree

The coverability tree of a bounded Petri net P can again
be used to determine the quantitative performance of a
string in the language £ generated by P and its associated
RTM 7. Prior to that, all concurrent branches of the Petri
net must be replaced by an equivalent macro-place, such
as in the Petri net of Figure 1. Then, a coverability tree
is built for the reduced equivalent Petri net, following the
algorithm in [1]. Strings can be obtained by traversing
the coverability tree as described in Section II, and their
corresponding performance is determined by applying (7)
to the sequence of coverability tree nodes, whose cost and
reliability are previously determined by the following rules:
« cost and reliability of states with only one place associ-
ated to a primitive task are determined from the cost and
reliability of the alternative primitive actions for the prim-
itive task, using appropriate expressions [5];

« cost and reliability of states with only one place associ-
ated to a resource other than a primitive task are 0 and 1,
respectively;

« cost and reliability of states associated to macro-places
are determined from the string associated to the macro-
place by applying (6) and (7) and giving precedence to
the bracketed sub-strings (e.g., in the example of Figure 1,
Clmy) = O((mams) || (malms ||) = max{i[C(ms) +
C(ma)], 1[0 (s +max{C (ms). C(mo)})]}.

C. Learning the Optimal Translations

The RTM defined in Section II includes a set A of primi-
tive actions, partitioned in n, non-empty subsets, with the
subset i representing alternative primitive actions for the
primitive task m;. Each time a primitive task is ready to
be executed, the first step consists of selecting which of its
translating primitive actions will actually run. Different
alternatives will have different performances, measured by
the cost function (5). Therefore, it is important to create a
mechanism to: i) update, at each step, the primitive action
cost function estimates; ii) learn over time the optimal se-
lection, i.e., the primitive action which minimizes the cost
function.

This framework distinguishes between three primitive ac-
tion status, returned by the primitive action upon comple-
tion: success, when the specifications were fully met, failure,
when the specifications were not fully met, but task execu-
tion may proceed along the normal execution branch, and
error, when the specifications were not met and error recov-
ery is required (e.g., the primitive task exited on timeout).

The success and failure signals are used to update the
reliability and the cost function estimates iteratively, af-
ter the execution of each primitive action, based on Fu’s
reinforcement learning scheme [9]:

Rlns) = Biln) + ——lui(ns + 1) = Bi(n)] 9
P 1) = p)+ — =) —pia 1) (9)

where y; € {0,1} is the instantaneous performance of prim-
itive action ¢ (0 being a penalty, i.e., i failed to meet the
primitive task specifications, and 1 a reward), n; the num-
ber of times ¢ was applied so far, n =), n; and p; the
current probability of choosing i. The estimated cost func-
tion j at each iteration, obtained by replacing in (5) the
current reliability estimate from (8), is used to determine
1 if Ji(n) = ming Jy(n)

A; as
Ai(n) = { 0 if jl(n) # miny jk(n)

The scheme converges, with probability one, to the se-
lection with probability 1 of the optimal primitive action
for a given primitive task [5].

(10)

IV. THE PETRI NET BASED DISTRIBUTED ROBOTIC
TESTBED

In order to test experimentally the concepts developed
in the previous sections, a distributed robotic testbed has

been implemented over the years to support the design and
implementation of robotic tasks modeled by Petri nets. In
this section the Petri net based distributed robotic system
is presented.

Under this system, a robotic task can be designed
through a graphical interface, by drawing the correspond-
ing Petri net and associating primitive tasks to places and
(when appropriate) events to transitions. Task execution
can be followed in real time through the same graphical
interface, by following the token flow in the Petri net. The
operator can change the task execution path and/or tim-
ing by token removal/insertion in special places, used for
task flow control only (e.g., step-by-step execution is possi-
ble). The software architecture of the distributed system is
based on a client-server philosophy. Each computer in the
network behaves either as a server or as a client, depend-
ing on the circumstances. When acting like a server, the
computer provides services, which are applications resident
in that server. Services may be divided in primitive ac-
tions and general-purpose applications. The latter include
functions to communicate between computers using sock-
ets (TCP/IP protocol), functions which access the global
memory of the system, libraries of math functions, board
drivers and others. Some of the services are only avail-
able locally, i.e., can only be requested by local processes,
while others exist specifically to serve requests from other
network nodes — which will then behave as clients. From
the designer standpoint, the distribution of primitive ac-
tion services by processors in the network is transparent,
i.e., he/she must initially define in a file the location of the
different primitive actions and then the software will know
where to direct a request for such a service, each time it is
invoked. Data/primitive action requests between network
processors are handled by socket-based communication ser-
vices, always running in every PC of the network. Never-
theless, a wise procedure consists of distributing primitive
actions according to the hardware resources allocated to
each processor (e.g., a primitive action that processes an
image is better located in the computer

The main components of the distributed robotic system
are the Petri Net Executor (PN Executor) and the Petri
Net Task Server (PN Task Server). The structure of the
Petri net based distributed robotic system is depicted in

Figure 2.
—»g

Robot

Vision System

Ll

Mobile Robot

PN Task
Server 1

PN Task
Server 2

I

PN Task
Server n

Fig. 2.
system.

Block diagram of the Petri net based distributed robotic

Application

Application

RSI

L | USP | »| KSP i

Fig. 3. The Puma Linux Driver USP-User Space Part, KSP-Kernel
Space Part, RSI- Robot Software Interface.

The system may include several primitive task executors.
These are applications running on computers at the nodes
of an Ethernet network, which interface the hardware of a
manipulator, a mobile robot, a perception system (e.g., a
vision system) or any other robotic device. Each primitive
task executor has an assigned PN Task Server. The PN
Task Servers communicate with the PN Executor through
the network. Each PN Task Server provides low-level con-
trol of a primitive task executor and receives task execution
requests over the network connection. The message-passing
communication protocol used to exchange information be-
tween the PN Executor and a PN Task Server is described
in [6]. The PN Task Server’s ID and primitive task that
should be executed are encapsulated in the protocol mes-
sages. These values uniquely define each primitive task
in the overall system. After the primitive action chosen
by the primitive task executor triggers an enabled event,
the event detection detection makes the PN Task Server
return a message to the PN Executor signaling the event
detection. Simultaneously the success or failure status of
the primitive action is evaluated and used to update its
reliability estimate, as part of the reinforcement learning
algorithm. An error status means that an error recovery
is required, by following the appropriate pre-defined Petri
net path. Signaling event detection is made for synchro-
nization purposes. Synchronization of all primitive task
executors is defined at the PN Executor, which is responsi-
ble for task coordination. The PN Executor is the robotic
task supervisor, based on an interpreted Petri net model.
It continuously checks the occurrence of events which are
used to decide the direction of task execution flow. The
PN Executor sends requests for primitive task execution
to the appropriate PN Task Server. The components of
the distributed robotic system for the particular case of
a Pumab60 robot endowed with a PC-based open control
architecture are described in the following two subsections.

A. The Puma Linux Driver

The Puma Linux Driver is a control software appli-
cation developed for the Pumab60 robot, running under
Linux operating system. Originally, the Puma UNIMATE
MARK IIT Controller handled the manipulator 6-joint con-
trol, as well as the interaction with the user through

connection
\(
Client —® MA create
< \ Unix
WE command
[~
T~
T
wait | TP
r==-= !_ -
| WE &
Connection Execution Task
level level level

Fig. 4. The Petri Net Task Server for the Puma:
Analyzer, WE-Wait Execution, TP-Task Process.

MA-Message

the VAL-II operating system. To provide greater sys-
tem flexibility, the six joint control boards were replaced
by Trident Robotics cards which interface the joint en-
coders and motors with an external PC where the joint
controllers and the user-interaction software now run (see
http://lci.isr.ist.utl.pt/projects/puma/puma_open.html), un-
der Linux.

The Puma Linux Driver is divided in two parts: the
Kernel Space Part (KSP) and the User Space Part (USP).
Functions that directly interface the hardware are imple-
mented in the KSP. After the driver is installed they ap-
pear as the part of the Linux kernel. The USP implements
joint digital controllers, one per joint. It is a high priority
task that executes periodically with a pre-specified sam-
pling time. At each execution step, the USP reads joint
references and computes control action based on the ac-
tual measurements. The interface functions library Robot
Software Interface (RSI) provides the communication be-
tween the USP and the KSP. A block diagram of the Puma
Linux Driver is depicted in Figure 3.

The figure shows that user applications communicate
with USP through RSI and shared memory. The shared
memory is a buffer between the applications and the joint
controller, implemented as a ring buffer data structure. For
trajectory tracking, the trajectory parameters are input pa-
rameters of a function at the RSI level. The trajectory is
calculated by the RSI and the ring buffer is filled with the
trajectory sampled points. The USD reads, at the sam-
pling rate, these points from the ring buffer, using them as
references for the joint controllers.

B. The Petri Net Task Server

The PN Task Server for the Puma open architecture was
developed under Linux OS. Every primitive task execution
request translates to a native Unix operating system com-
mand. Therefore, each primitive task can be written as
an independent software application without caring about
which server will use it. The PN Task Server is a TCP
server capable to accept multiple connections. Its block di-
agram is shown in Figure 4 and is composed of three levels:
o the connection level is responsible for the analysis of
messages from clients arriving over the connection port.
The process Message Analyser (MA) parses messages and

searches for the primitive task that should be executed.
The search is based on the information that the server
contains in its task description file. Before the primitive
task is run, the Wait Execution (WE) process, that mon-
itors primitive task execution to detect the occurrence of
events, is launched.

o the execution level is where the WE process runs. WE
will wait until an enabled event is detected and, at that
point, collects the primitive task execution status data. Af-
terwards the end of primitive task execution is signaled to
the client through the network connection.

« the task level is composed of the operating system call
that invokes the primitive task as an Unix command.

V. CONCLUSIONS

A robotic task Petri net model was introduced in this
paper that allows qualitative and quantitative analysis of
robotic tasks, as well as its real-time execution (including
an interface with the user), through a suitable choice of the
appropriate Petri net types for each of the above objectives.
A Petri net based testbed to evaluate the model was de-
veloped and its software architecture, as well as relevant
properties, was also described.

Future work includes the implementation, analysis and
test of robotic tasks encompassing several distributed
robotic devices using the testbed. An interesting research
topic is also the availability of alternative tasks for a given
goal, represented by random switches at decision points in
the Petri net model, whose probabilities can be learned us-
ing delayed-reward reinforcement learning techniques, such
as Q-learning [10], upon the availability of task success and
failure signals, currently included in the model for primitive
actions only.

REFERENCES

[1] C. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, Kluwer Academic Publ., 1999.

[2] R. David and H. Alla, “Petri Nets for modeling of dynamic
systems,” Automatica, vol. 30, no. 2, pp. 175-202, 1994.

[3] N. Vishwanadham and Y. Narahari, Performance Modelling of
Automated Manufacturing Systems, Prentice Hally, 1992.

[4] Fei-Yue Wang and G. N. Saridis, “Task translation and integra-
tion specification in Intelligent Machines,” IEEFE Transactions
on Robotics and Automation, vol. RA-9, no. 3, pp. 257271,
1993.

[5] P.U.Limaand G. N. Saridis, Design of Intelligent Control Sys-
tems Based on Hierarchical Stochastic Automata, World Scien-
tific Publ., 1996.

[6] P.Lima, Hugo Gracio, Vasco Veiga, and Anders Karlsson, “Petri
Nets for modeling and coordination of robotic tasks,” in Pro-
ceedings of IEEE 1998 International Conference on Systems,
Man and Cybernetics, 1998.

[7] B. Espiau, K. Kapellos, M. Jourdan, and D. Simon, “On the vali-
dation of robotics control systems, Part I: High level specification
and formal verification,” Tech. Rep. 2719, INRIA, Rhone-Alpes,
1995.

[8] L. Montano, F. Garcfa, and J. Villarroel, “Using the time Petri
Net formalism for specification, validation, and code generation
in robot-control applications,” The International Journal of
Robotics Research, vol. 19, no. 1, January 2000.

[9] K. S. Fu and J. M. Mendel, Adaptive, Learning and Pattern
Recognition Systems: Theory and Applications, Academic Press,
1970.

[10] R. Sutton and A. Barto, Reinforcement Learning, MIT Press,
Cambridge, MA, 1998.

