
Petri Net Models of Roboti
 TasksDejan Milutinovi
, Pedro LimaInstituto de Sistemas e Rob�oti
a, Instituto Superior T�e
ni
o | Torre NorteAv. Rovis
o Pais, 1; 1049-001 Lisboa; PORTUGALE-mail: fdejan,palg�isr.ist.utl.ptAbstra
t| This paper introdu
es a Roboti
 Task Model(RTM) based on Petri nets, that establishes a frameworkfor task evaluation from qualitative and quantitative view-points, as well as a methodology for the implementation ofroboti
 task 
oordination. A testbed for the evaluation ofthe RTM and the details of its implementation over a net-work of distributed task exe
utors is des
ribed.Keywords|Dis
rete Event Systems, Petri nets, IntelligentRobots, Distributed Control, Ma
hine Learning.I. Introdu
tionAmong the existing models of Dis
rete Event Systems[1℄, Petri nets have been widely used to model dynami
systems [2℄, notably automated manufa
turing systems [3℄.Petri net properties also make them good 
andidates forqualitative performan
e evaluation (using untimed mod-els) and quantitative performan
e evaluation (using timedand/or sto
hasti
 models) of roboti
 tasks. Simultaneously,they provide the means for task design and intera
tion be-tween an operator and the task under exe
ution.This paper introdu
es a new framework under whi
hPetri nets are used for qualitative and quantitative per-forman
e evaluation, as well as a tool to design and exe-
ute roboti
 tasks. This framework is motivated by previ-ous work by Wang and Saridis [4℄, where Petri nets were�rst proposed as models of roboti
 tasks. Later, Limaand Saridis [5℄ introdu
ed a methodology for roboti
 tasksperforman
e evaluation and learning-based improvementthrough feedba
k, whi
h is mapped here to Petri nets, asa development of preliminary 
on
epts introdu
ed in [6℄.Related work is s
ar
e and typi
ally refers to logi
al andtemporal spe
i�
ation, veri�
ation and 
ode generation [7℄,[8℄. In this work we fo
us mainly on quantitative evaluationof task reliability and 
ost, with the goal of 
hoosing theoptimal task to a
hieve a given goal. The paper also de-s
ribes the implementation of a testbed for the evaluationof roboti
 task Petri net models, where a Petri net Exe
utor
an be designed and implemented to 
ontrol a distributedroboti
 system 
omposed of di�erent devi
es (e.g., mobilerobots, manipulators, vision systems).The paper is organised as follows: Se
tion II introdu
esa roboti
 task model, the di�erent Petri net types used tomodel di�erent views of that model, and a mapping be-tween the model and those views. Se
tion III 
overs taskquantitative performan
e evaluation 
on
erning 
ost andreliability-based measures, as well as their mapping to PetriThe work of the �rst author was supported by grantSFRH/BD/2960/2000 from the Portuguese Funda�
~ao para a Ciên
iae a Te
nologia

nets and the use of reinfor
ement learning to optimize theperforman
e evaluation fun
tion. The testbed implemen-tation is des
ribed in Se
tion IV. The paper ends with
on
lusions and referen
es to future work (Se
tion V).II. Petri Net Views of a Roboti
 Task ModelA roboti
 task is de�ned in [5℄ as a string of primitivetasks, representing the sequen
e of a
tions the roboti
 sys-tem must 
arry out to a

omplish the task goal. Ea
hprimitive task may be a
tually implemented by more thanone primitive a
tion (e.g., a lo
ate obje
t primitive task 
anbe implemented by a set of di�erent image pro
essing algo-rithms, de�ned here as primitive a
tions). Primitive tasksand their translating primitive a
tions must be establishedat design time, asso
iated to spe
i�
 goals (e.g., to lo
atean obje
t, to follow a traje
tory). When, during the exe-
ution of a primitive task, its spe
i�
 goal or an error state(e.g., due to a timeout) is rea
hed, an event o

urs andmust be dete
ted. To rea
h its goal, a task must �rst rea
hthe spe
i�
 goals of ea
h of its 
omposing primitive tasks.Primitive a
tions, primitive tasks, and events 
onstitutea roboti
 task model (RTM). One 
an look from di�erentviewpoints at su
h a model. Di�erent Petri net types [2℄are used depending on the viewpoint taken. The followingsubse
tions illustrate this 
on
ept, starting by some de�ni-tions whi
h map Petri nets and the roboti
 task model.A. Roboti
 Task Model and Petri NetsA marked Petri net is de�ned by the �ve-tuple P =(P; T;A;w; x0), where P = fp1; p2; : : : ; pnpg and T =ft1; t2; : : : ; tntg are �nite sets of pla
es and transitions, re-spe
tively, A is a set of ar
s, subset of (P � T ) [ (T � P ),w a weight fun
tion, w : A ! f1; 2; 3; : : :g, and x0 isthe initial marking. The marking x of a Petri net is afun
tion x : P ! f0; 1; 2; : : :g, whi
h de�nes a ve
torx = [x(p1); x(p2); : : : ; x(pnp)℄, interpretable as the state ofthe Petri net. Ea
h ve
tor entry denotes the number of to-kens in the 
orresponding pla
e for a given state. The 
ov-erability tree [1℄ of a given Petri net is a tree whose nodesare Petri net states and ar
s represent Petri net transitions.It will be used in this work as a Petri net representationhelpful for qualitative and quantitative analysis purposes.An RTM is de�ned by the 3-tuple T = (R;E;A),where R = fr1; r2; : : : ; rnrg is the set of resour
es,E = fe1; e2; : : : ; eneg is the set of events and A =fa1; a2; : : : ; anag is the set of primitive a
tions.A robot, an obje
t in the environment or a primitivetask are resour
es. It is also 
onvenient to de�ne � =1



f�1; �2; : : : ; �n�g � R, the subset of primitive tasks in R.A is partitioned in n� subsets, be
ause ea
h primitivetask has an asso
iated non-empty set of primitive a
tions,representing alternative implementations (i.e., algorithms)of the primitive task.An event o

urs when a primitive a
tion ends its exe
u-tion, either be
ause its spe
i�
 goal has been rea
hed oran error 
ondition has been dete
ted. Events 
an be de-te
ted by spe
ialized sensor monitoring algorithms runningin parallel with the primitive a
tion. However, even thoughan event 
an be dete
ted, the primitive a
tion must enableit, so that the event o

urren
e triggers the appropriateresponse.Under our framework Petri net pla
es represent resour
esand transitions are asso
iated to logi
al 
onditions de�nedover the event set E. Whenever a token is inside a pla
e,the 
orresponding resour
e is available. When the resour
eis a primitive task the token means that the primitive a
-tion 
hosen to translate the primitive task is running. Uponits 
ompletion, every primitive a
tion generates an event.Any logi
al 
ondition asso
iated to a transition is madetrue or false by the o

urren
e of the event.Interpreting � as the set of terminal symbols of a gram-mar G, one 
an determine the language L generated bya Petri net asso
iated to an RTM T . First, without lossof generality, the Petri nets used are 
onstrained to the
lass of Petri nets whose transitions have only one outputpla
e. More general Petri nets 
an be redu
ed to those inthis 
lass, by using ma
ro-pla
es to represent task bran
hesrunning 
on
urrently. The set of terminal symbols of Gis then extended to in
lude the symbols k; (; ) to de�ne�G = � [ fk; (; )g, used to 
on
atenate symbols represent-ing primitive tasks running in parallel (e.g., �2 k (�4�1)).
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Fig. 1. Petri net representation of an RTM.Ea
h string of the language L generated by a Petri netP asso
iated to an RTM T is obtained by following a pathin the 
overability tree of P , from the root node to a ter-minal node and generating one or more symbols from �G

for ea
h node visited. The path may in
lude several vis-its to any dupli
ate node(s) [1℄. More than one symbol isgenerated when a node representing a state asso
iated to ama
ro-pla
e of the restri
ted 
lass of Petri nets 
onsideredis visited. Su
h a situation denotes the 
on
urrent exe
u-tion of primitive tasks, hen
e a 
on
atenation of symbolsfrom � separated by k symbols and asso
iated by ( and )symbols will be generated.Petri net 
on
i
ts, o

urring when a pla
e has more thanone output transition, determine the number of strings
omposing the language, as they 
reate alternative pathsin the 
overability tree. Task exe
ution 
annot be non-deterministi
. Hen
e, whenever 
on
i
ts o

ur, ea
h tran-sition in the 
on
i
t set must be asso
iated to a logi
al
ondition de�ned over a subset of the event set, su
h thatno more than one logi
al 
ondition from the 
on
i
t setwill be true at a time.A Petri net illustrating some of those 
on
epts is depi
tedin Figure 1 a). Figure 1 b) is an equivalent Petri net in therestri
ted 
lass 
onsidered, where the 
on
urrent bran
hesbetween t1 and t4 have been redu
ed to ma
ro-pla
es p9 be-tween t13 and t43 and p10 between t15 and t45, dependingon whether the logi
al 
ondition e or not e, e 2 E is satis-�ed, respe
tively. Assuming a relation p1 ! �i8pi2P;�i2�,when visited along a path in the 
overability tree, the sym-bol �9 is repla
ed by (�2�4) k (�3(�5 k �6)), while �10 isrepla
ed by (�2�4) k (�3�7).B. Task Design and Exe
utionThe a
tual task implementation (i.e., its design and exe-
ution) requires the s
heduling of the primitive tasks 
om-posing the task, as well as the syn
hronization with theevents. Events are 
ru
ial to 
oordinate task exe
ution, asthey signal when a primitive task 
an be 
alled for exe
u-tion, by �ring the input transition of the pla
e asso
iatedto the primitive task. An intera
tive man-ma
hine inter-fa
e is also important, so that the appropriate s
hedule ofprimitive tasks 
an be designed and task exe
ution 
an befollowed and/or modi�ed by an operator.Interpreted Petri nets [2℄ are used to model task imple-mentation. At design time, pla
es and transitions (i.e.,resour
es, primitive tasks and logi
al 
onditions over E)must be linked together by the task designer su
h that theroboti
 system goes through the desired sequen
e of spe
i�
goals that must be rea
hed before the task goal is a

om-plished. The designer must also identify all the resour
esother than primitive tasks required at ea
h task step, andrepresent them by pla
es. He/she must also provide, forea
h pla
e asso
iated to a primitive task, two output tran-sitions: one 
orresponding to a su

essful 
ompletion of theprimitive task, another to an exit upon an error situation.In the latter 
ase, an appropriate error re
overy pro
eduremust be spe
i�ed. To avoid a 
umbersome task represen-tation, the error re
overy bran
hes may be hidden in thegraphi
al display of the Petri net asso
iated to the task.During task exe
ution, a transition is enabled if ea
h ofits input pla
es has a suÆ
ient number of tokens available.This happens when all the asso
iated resour
es are avail-2



able, su
h as the required hardware, a path to be followedor an image to be pro
essed stored in the shared memory.Resour
e availability in
ludes making sure that the primi-tive tasks asso
iated to the transition input pla
es are run-ning. However, the transition will only be �red when itsasso
iated logi
al 
ondition de�ned over E is true. Thetokens are then deposited in the output pla
es of the tran-sition, enabling the exe
ution of their asso
iated primitivetasks, requesting and relinquishing other resour
es. Anoperator may follow task exe
ution by following the token
ow through the Petri net representing the task.C. Quantitative Performan
e EvaluationOn
e an Interpreted Petri Net has been designed to rep-resent the a
tual task implementation, one may evaluatequantitative properties of the task performan
e by modi-fying its asso
iated Petri net, turning it into a generalizedsto
hasti
 Petri net [3℄.Generalized sto
hasti
 Petri nets 
an be used to modeltime-related properties (su
h as the probability that thetask exe
ution time will be less than a given spe
i�
ation)and/or task reliability, de�ned as the probability that thetask will meet its spe
i�
ations, i.e., that it will a
hieve itsgoal [5℄.Primitive task exe
ution time 
an a
tually be determinedby asso
iating time to pla
es (P-timed model). The timeassigned to ea
h pla
e will determine the performan
e mea-sure obtained afterwards. For instan
e, if the CPU timetaken by the primitive tasks asso
iated to ea
h pla
e isused, the total CPU time spent by the task will be 
om-puted. One may use the a
tual time taken by ea
h primi-tive task instead. In this 
ase, the a
tual time taken by thetask will be 
omputed. Of 
ourse, this will be a sto
hasti
variable, but random times 
an be asso
iated to the pla
esunder the P-timed Petri net model. When those times aredistributed a

ording to an exponential law, the markingof this sto
hasti
 Petri net is an homogeneous Markovianpro
ess [3℄, whose well known properties help to determinethe time properties of task exe
ution.Primitive task reliability 
an be modeled by randomswit
hes [3℄. Random swit
hes are ar
s linking ea
h pla
ep 2 P representing a primitive task � 2 � to output tran-sitions. In this model, only two output transitions are 
on-sidered: one representing a failure and the other a su

essmeeting the spe
i�
ations for �. When enabled, one of thetransitions will be �red a

ording to the su

ess and failureprobabilities. The su

ess probability is a
tually the relia-bility of a primitive task. The failure probability in
ludessituations where the spe
i�
ations were not met but taskexe
ution pro
eeds along the normal exe
ution bran
h, aswell as situations where error re
overy is a
tually required.Using this model, tools appropriate for analysis of gener-alized sto
hasti
 Petri nets 
an be applied to the perfor-man
e analysis of the whole task or any of its sub-tasks.An alternative method based on the 
overability tree willbe des
ribed in Se
tion III.

D. Qualitative Performan
e EvaluationOrdinary Petri net models (or some of their abbrevia-tions [2℄) 
an be used to evaluate qualitative properties [3℄of a task, su
h as boundedness (whi
h 
an be viewed as ameasure of stability), properness (related to the possibilityof error re
overy and/or restarting the system) and liveness(asso
iated to state rea
hability, i.e., whether a state or aset of states will ever be rea
hed or not). On
e again, ifa qualitative performan
e evaluation is required, the orig-inal interpreted Petri net modeling task exe
ution 
an bemodi�ed into an ordinary Petri net (e.g., no event syn
hro-nization) to determine su
h properties.III. Quantitative Performan
e EvaluationCurrent work has been 
on
entrated on task reliabilityas a performan
e measure. This will be des
ribed by �rstintrodu
ing a 
ost fun
tion for the RTM whi
h is thenmapped to the 
overability tree of the asso
iated Petri net.Finally, a brief look at the use of reinfor
ement learning toimprove performan
e over time is in
luded.A. Cost Fun
tionA 
ost fun
tion to determine task performan
e from theperforman
e measure of ea
h of its 
omposing primitivetasks and a
tions has been introdu
ed in [5℄. Su
h a 
ostfun
tion is general enough to be applied to the diversity ofprimitive tasks whi
h may 
ompose a roboti
 task model.It is based on a 
onjun
tive de�nition of 
ost and reliability(see [5℄ for details), summarized by the following equations:R(�; f) = Prf� meeting spe
i�
ations of f < �g (1)f� = argminf2FfR(�; f) : R(�; f) � Rdg (2)C(�) = 
ost(�; f�) (3)R(�) = R(�; f�) (4)where R is the reliability, C the 
ost, � a primitive a
tion,f a problem element in F , a data set representative of thetask at hand (e.g., a 
olle
tion of images for a lo
ate ob-je
t primitive task), and � > 0. The total 
ost, denoted bythe fun
tion 
ost(:), is determined by adding the 
ost ofgetting information from f 2 F and the 
ost of pro
essingthat information. The 
ost and relibility of the primitivea
tion � are obtained for the problem f whi
h leads to thelowest reliability among those with values lower-boundedby some target reliability Rd. In general, 
ost in
reaseswith reliability. For instan
e, to improve the reliability oflo
ating a point within a noisy image with a given a

u-ra
y, one has to average several pi
tures of the image. Ifthe 
ost is de�ned as the number of required pi
tures, itwill depend on the target reliability. However, if the num-ber of pi
tures is established at design time, the reliabilitywill depend on the number of images (i.e., the 
ost) usedto 
ompute the average. Therefore, a minimum of the fol-lowing 
ost fun
tion exists, 
orresponding to the optimalprimitive a
tion J = 1�R+ �C (5)3



where � a weight fa
tor su
h that �C 2 [0; 1℄. In general �will be su
h that the 
ost does not overwhelm the reliabilitywhen dire
ting the sear
h for the optimal a
tion. A typi
al� is given by � = 1maxa2A C(a) , whereA is the set of primitivea
tions. The 
ost is 
omputed a priori, but in general it
an assume any value and may have any units, dependingon the primitive task. Hen
e, � is used to normalize boththe 
ost value to the interval [0; 1℄ and the 
ost units a
rossprimitive tasks.The de�nition of 
ost and reliability refers to primitivea
tions. However, their values, and 
onsequently those ofthe 
ost fun
tion, 
an be propagated to the primitive tasksand to the task using appropriate expressions [5℄, extendingthe quantitative performan
e evaluation to the 
ompleteroboti
 task model. In parti
ular, propagation of relia-bility and 
ost from primitive tasks to the whole task isdetermined by 
omposition of the following expressions:� given two primitive tasks �1 and �2 running 
on
urrently(e.g., asso
iated to pla
es p1 and p2 in the output set of agiven transition):R(�1 k �2) = R(�1)R(�2)C(�1 k �2) = maxfC(�1); C(�2)g (6)� given n primitive tasks �1; : : : ; �n running sequentially(e.g., pla
e p1 is in the input set of transition t and pla
ep2 is in the output set of transition t):R(�1 : : : �n) = nYi=1R(�i)C(�1 : : : �n) = 1n nXi=1 C(�i) (7)Reliability is 
omputed for 
on
urrent or sequentialprimitive tasks using the same expression, sin
e all tasksmust be su

essful to a
hieve a reliable task. Cost of se-quential primitive tasks adds up (normalized to the [0; 1℄interval), while 
ost of 
on
urrent tasks is determined forthe worst 
ase (maximum 
ost between the two tasks).B. Task Cost Fun
tion and Coverability TreeThe 
overability tree of a bounded Petri net P 
an againbe used to determine the quantitative performan
e of astring in the language L generated by P and its asso
iatedRTM T . Prior to that, all 
on
urrent bran
hes of the Petrinet must be repla
ed by an equivalent ma
ro-pla
e, su
has in the Petri net of Figure 1. Then, a 
overability treeis built for the redu
ed equivalent Petri net, following thealgorithm in [1℄. Strings 
an be obtained by traversingthe 
overability tree as des
ribed in Se
tion II, and their
orresponding performan
e is determined by applying (7)to the sequen
e of 
overability tree nodes, whose 
ost andreliability are previously determined by the following rules:� 
ost and reliability of states with only one pla
e asso
i-ated to a primitive task are determined from the 
ost andreliability of the alternative primitive a
tions for the prim-itive task, using appropriate expressions [5℄;

� 
ost and reliability of states with only one pla
e asso
i-ated to a resour
e other than a primitive task are 0 and 1,respe
tively;� 
ost and reliability of states asso
iated to ma
ro-pla
esare determined from the string asso
iated to the ma
ro-pla
e by applying (6) and (7) and giving pre
eden
e tothe bra
keted sub-strings (e.g., in the example of Figure 1,C(�9) = C((�2�4) k (�3(�5 k �6))) = maxf 12 [C(�2) +C(�4)℄; 12 [C(�3 +maxfC(�5); C(�6)g)℄g.C. Learning the Optimal TranslationsThe RTM de�ned in Se
tion II in
ludes a set A of primi-tive a
tions, partitioned in n� non-empty subsets, with thesubset i representing alternative primitive a
tions for theprimitive task �i. Ea
h time a primitive task is ready tobe exe
uted, the �rst step 
onsists of sele
ting whi
h of itstranslating primitive a
tions will a
tually run. Di�erentalternatives will have di�erent performan
es, measured bythe 
ost fun
tion (5). Therefore, it is important to 
reate ame
hanism to: i) update, at ea
h step, the primitive a
tion
ost fun
tion estimates; ii) learn over time the optimal se-le
tion, i.e., the primitive a
tion whi
h minimizes the 
ostfun
tion.This framework distinguishes between three primitive a
-tion status, returned by the primitive a
tion upon 
omple-tion: su

ess, when the spe
i�
ations were fully met, failure,when the spe
i�
ations were not fully met, but task exe
u-tion may pro
eed along the normal exe
ution bran
h, anderror, when the spe
i�
ations were not met and error re
ov-ery is required (e.g., the primitive task exited on timeout).The su

ess and failure signals are used to update thereliability and the 
ost fun
tion estimates iteratively, af-ter the exe
ution of ea
h primitive a
tion, based on Fu'sreinfor
ement learning s
heme [9℄:R̂(ni+1) = R̂i(ni) + 1ni + 1[yi(ni + 1)� R̂i(ni)℄ (8)pi(n+ 1) = pi(n) + 1n+ 1(�i(n)� pi(n+ 1)) (9)where yi 2 f0; 1g is the instantaneous performan
e of prim-itive a
tion i (0 being a penalty, i.e., i failed to meet theprimitive task spe
i�
ations, and 1 a reward), ni the num-ber of times i was applied so far, n = Pi ni and pi the
urrent probability of 
hoosing i. The estimated 
ost fun
-tion ĵ at ea
h iteration, obtained by repla
ing in (5) the
urrent reliability estimate from (8), is used to determine�i as �i(n) = � 1 if Ĵi(n) = mink Ĵk(n)0 if Ĵi(n) 6= mink Ĵk(n) (10)The s
heme 
onverges, with probability one, to the se-le
tion with probability 1 of the optimal primitive a
tionfor a given primitive task [5℄.IV. The Petri Net Based Distributed Roboti
TestbedIn order to test experimentally the 
on
epts developedin the previous se
tions, a distributed roboti
 testbed has4



been implemented over the years to support the design andimplementation of roboti
 tasks modeled by Petri nets. Inthis se
tion the Petri net based distributed roboti
 systemis presented.Under this system, a roboti
 task 
an be designedthrough a graphi
al interfa
e, by drawing the 
orrespond-ing Petri net and asso
iating primitive tasks to pla
es and(when appropriate) events to transitions. Task exe
ution
an be followed in real time through the same graphi
alinterfa
e, by following the token 
ow in the Petri net. Theoperator 
an 
hange the task exe
ution path and/or tim-ing by token removal/insertion in spe
ial pla
es, used fortask 
ow 
ontrol only (e.g., step-by-step exe
ution is possi-ble). The software ar
hite
ture of the distributed system isbased on a 
lient-server philosophy. Ea
h 
omputer in thenetwork behaves either as a server or as a 
lient, depend-ing on the 
ir
umstan
es. When a
ting like a server, the
omputer provides servi
es, whi
h are appli
ations residentin that server. Servi
es may be divided in primitive a
-tions and general-purpose appli
ations. The latter in
ludefun
tions to 
ommuni
ate between 
omputers using so
k-ets (TCP/IP proto
ol), fun
tions whi
h a

ess the globalmemory of the system, libraries of math fun
tions, boarddrivers and others. Some of the servi
es are only avail-able lo
ally, i.e., 
an only be requested by lo
al pro
esses,while others exist spe
i�
ally to serve requests from othernetwork nodes | whi
h will then behave as 
lients. Fromthe designer standpoint, the distribution of primitive a
-tion servi
es by pro
essors in the network is transparent,i.e., he/she must initially de�ne in a �le the lo
ation of thedi�erent primitive a
tions and then the software will knowwhere to dire
t a request for su
h a servi
e, ea
h time it isinvoked. Data/primitive a
tion requests between networkpro
essors are handled by so
ket-based 
ommuni
ation ser-vi
es, always running in every PC of the network. Never-theless, a wise pro
edure 
onsists of distributing primitivea
tions a

ording to the hardware resour
es allo
ated toea
h pro
essor (e.g., a primitive a
tion that pro
esses animage is better lo
ated in the 
omputerThe main 
omponents of the distributed roboti
 systemare the Petri Net Exe
utor (PN Exe
utor) and the PetriNet Task Server (PN Task Server). The stru
ture of thePetri net based distributed roboti
 system is depi
ted inFigure 2.
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Fig. 2. Blo
k diagram of the Petri net based distributed roboti
system.
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Fig. 3. The Puma Linux Driver USP-User Spa
e Part, KSP-KernelSpa
e Part, RSI- Robot Software Interfa
e.The system may in
lude several primitive task exe
utors.These are appli
ations running on 
omputers at the nodesof an Ethernet network, whi
h interfa
e the hardware of amanipulator, a mobile robot, a per
eption system (e.g., avision system) or any other roboti
 devi
e. Ea
h primitivetask exe
utor has an assigned PN Task Server. The PNTask Servers 
ommuni
ate with the PN Exe
utor throughthe network. Ea
h PN Task Server provides low-level 
on-trol of a primitive task exe
utor and re
eives task exe
utionrequests over the network 
onne
tion. The message-passing
ommuni
ation proto
ol used to ex
hange information be-tween the PN Exe
utor and a PN Task Server is des
ribedin [6℄. The PN Task Server's ID and primitive task thatshould be exe
uted are en
apsulated in the proto
ol mes-sages. These values uniquely de�ne ea
h primitive taskin the overall system. After the primitive a
tion 
hosenby the primitive task exe
utor triggers an enabled event,the event dete
tion dete
tion makes the PN Task Serverreturn a message to the PN Exe
utor signaling the eventdete
tion. Simultaneously the su

ess or failure status ofthe primitive a
tion is evaluated and used to update itsreliability estimate, as part of the reinfor
ement learningalgorithm. An error status means that an error re
overyis required, by following the appropriate pre-de�ned Petrinet path. Signaling event dete
tion is made for syn
hro-nization purposes. Syn
hronization of all primitive taskexe
utors is de�ned at the PN Exe
utor, whi
h is responsi-ble for task 
oordination. The PN Exe
utor is the roboti
task supervisor, based on an interpreted Petri net model.It 
ontinuously 
he
ks the o

urren
e of events whi
h areused to de
ide the dire
tion of task exe
ution 
ow. ThePN Exe
utor sends requests for primitive task exe
utionto the appropriate PN Task Server. The 
omponents ofthe distributed roboti
 system for the parti
ular 
ase ofa Puma560 robot endowed with a PC-based open 
ontrolar
hite
ture are des
ribed in the following two subse
tions.A. The Puma Linux DriverThe Puma Linux Driver is a 
ontrol software appli-
ation developed for the Puma560 robot, running underLinux operating system. Originally, the Puma UNIMATEMARK III Controller handled the manipulator 6-joint 
on-trol, as well as the intera
tion with the user through5
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Fig. 4. The Petri Net Task Server for the Puma: MA-MessageAnalyzer, WE-Wait Exe
ution, TP-Task Pro
ess.the VAL-II operating system. To provide greater sys-tem 
exibility, the six joint 
ontrol boards were repla
edby Trident Roboti
s 
ards whi
h interfa
e the joint en-
oders and motors with an external PC where the joint
ontrollers and the user-intera
tion software now run (seehttp://l
i.isr.ist.utl.pt/proje
ts/puma/puma open.html), un-der Linux.The Puma Linux Driver is divided in two parts: theKernel Spa
e Part (KSP) and the User Spa
e Part (USP).Fun
tions that dire
tly interfa
e the hardware are imple-mented in the KSP. After the driver is installed they ap-pear as the part of the Linux kernel. The USP implementsjoint digital 
ontrollers, one per joint. It is a high prioritytask that exe
utes periodi
ally with a pre-spe
i�ed sam-pling time. At ea
h exe
ution step, the USP reads jointreferen
es and 
omputes 
ontrol a
tion based on the a
-tual measurements. The interfa
e fun
tions library RobotSoftware Interfa
e (RSI) provides the 
ommuni
ation be-tween the USP and the KSP. A blo
k diagram of the PumaLinux Driver is depi
ted in Figure 3.The �gure shows that user appli
ations 
ommuni
atewith USP through RSI and shared memory. The sharedmemory is a bu�er between the appli
ations and the joint
ontroller, implemented as a ring bu�er data stru
ture. Fortraje
tory tra
king, the traje
tory parameters are input pa-rameters of a fun
tion at the RSI level. The traje
tory is
al
ulated by the RSI and the ring bu�er is �lled with thetraje
tory sampled points. The USD reads, at the sam-pling rate, these points from the ring bu�er, using them asreferen
es for the joint 
ontrollers.B. The Petri Net Task ServerThe PN Task Server for the Puma open ar
hite
ture wasdeveloped under Linux OS. Every primitive task exe
utionrequest translates to a native Unix operating system 
om-mand. Therefore, ea
h primitive task 
an be written asan independent software appli
ation without 
aring aboutwhi
h server will use it. The PN Task Server is a TCPserver 
apable to a

ept multiple 
onne
tions. Its blo
k di-agram is shown in Figure 4 and is 
omposed of three levels:� the 
onne
tion level is responsible for the analysis ofmessages from 
lients arriving over the 
onne
tion port.The pro
ess Message Analyser (MA) parses messages and

sear
hes for the primitive task that should be exe
uted.The sear
h is based on the information that the server
ontains in its task des
ription �le. Before the primitivetask is run, the Wait Exe
ution (WE) pro
ess, that mon-itors primitive task exe
ution to dete
t the o

urren
e ofevents, is laun
hed.� the exe
ution level is where the WE pro
ess runs. WEwill wait until an enabled event is dete
ted and, at thatpoint, 
olle
ts the primitive task exe
ution status data. Af-terwards the end of primitive task exe
ution is signaled tothe 
lient through the network 
onne
tion.� the task level is 
omposed of the operating system 
allthat invokes the primitive task as an Unix 
ommand.V. Con
lusionsA roboti
 task Petri net model was introdu
ed in thispaper that allows qualitative and quantitative analysis ofroboti
 tasks, as well as its real-time exe
ution (in
ludingan interfa
e with the user), through a suitable 
hoi
e of theappropriate Petri net types for ea
h of the above obje
tives.A Petri net based testbed to evaluate the model was de-veloped and its software ar
hite
ture, as well as relevantproperties, was also des
ribed.Future work in
ludes the implementation, analysis andtest of roboti
 tasks en
ompassing several distributedroboti
 devi
es using the testbed. An interesting resear
htopi
 is also the availability of alternative tasks for a givengoal, represented by random swit
hes at de
ision points inthe Petri net model, whose probabilities 
an be learned us-ing delayed-reward reinfor
ement learning te
hniques, su
has Q-learning [10℄, upon the availability of task su

ess andfailure signals, 
urrently in
luded in the model for primitivea
tions only. Referen
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