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Abstract

In this paper we discuss how communication can be used advantageously for cooperative
navigation in sparse environments. Specifically, we analyze the tradeoff between the cost of
communication cost and the efficient completion of the navigation task. We make use of a
partially observable Markov decision process (POMDP) to model the navigation task, since
this model allows to explicitly consider the tradeoff between information-gathering actions
and actions that move the robot towards the goal. By explicitly including communication
in the POMDP model as an information-gathering action with an associated cost, we are
able to optimally settle this tradeoff between the gain in information arising from the use
of communication and the corresponding cost. We illustrate our results in a small test
application.

1 Introduction

Consider a group of robots moving in a sparse environment described by a topological map
with M nodes. We refer to the nodes in the map as states. Each robot must navigate from an
initial state to a goal state, known only to that single robot. We admit that several states in
the environment have distinctive landmarks that the robots can generally perceive through its
sensors. However, until a robot is able to reach one such state and observe the corresponding
landmark, it must generally navigate through several other states receiving no sensorial feedback
from the environment (e.g., using only dead-reckoning).

In this paper we focus only on the problems of global localization and navigation/planning,
disregarding other problems such as motion control or obstacle avoidance. We model the nav-
igation task as a sequence of decisions: at each decision instant, each robot must choose from
a set of action primitives that control its movements. The robots are allowed to communicate
with each other and share sensorial information. This received sensorial data can then be used
by the robot to improve its localization in the environment.

However, if communication can be used to improve the sensorial capabilities of each robot,
it is also true that the communication process generally takes time and consumes resources.
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Furthermore, it may happen occasionally that no useful information is received. Therefore, it is
important to realize in which situations is communication advantageous and in which situations
it should be avoided. For example, it may happen that the cost of communication is much higher
than the benefit obtained from it. To settle this problem, we make use of a partially observable
Markov decision process (POMDP) to model each robot in the environment. POMDPs have
successfully been used for topological navigation [1–3] and are particularly amenable to the
use of Markov localization methods [4]. Furthermore, POMDPs explicitly consider the tradeoff
between choosing actions to disambiguate the state of the robot (information-gathering) and
actions to move the robot towards the goal. By explicitly including communication in the POMDP
model as an information-gathering action with an associated cost, we are able to optimally settle
this tradeoff between the gain in information arising from the use of communication and the
corresponding cost. This appealing feature of the POMDP framework has led some researchers
to address active sensing using POMDP models [5].

The paper is organized as follows. In Section 2 we introduce the general POMDP framework.
In Section 3 we apply this framework to model the particular problems addressed in the paper.
We introduce a simple illustrative example that is used throughout the paper to illustrate the
main ideas. Finally, Section 4 concludes the paper with a summary of the main conclusions and
points out several possible directions for future work.

2 Partially observable Markov decision processes

A POMDP is a tuple (X ,A,Z,P,O, r, γ), where X is the finite set of possible states of the system,
A is a finite set of control primitives and Z corresponds to a finite set of possible observations.
At each time instant t, a decision-maker chooses an action At depending on the past history of
events, causing the system to move from its current state Xt to state Xt+1. We denote by Pa(i, j)
the probability of moving from state i to state j under action a. As soon as the transition occurs,
the decision-maker receives an observation Zt+1 that depends on the new state of the system.
We denote by Oa(j, z) the probability of Zt+1 = z when Xt+1 = j and At = a. Also, as soon
as the transition occurs, the decision-maker is granted a numerical reward r(i, a, j), verifying
|r(i, a, j)| ≤ Rmax. The purpose of the decision-maker is to choose the control sequence {At} so
as to maximize the functional

V (b0, {At}) = E

[
∞∑

t=0

γtr(Xt, At, Xt+1) | X0 ∼ b0

]
, (1)

where γ < 1 is a positive discount factor, b0 is the initial belief for the process and X0 ∼ b0

denotes the fact that X0 is distributed according to b0. The initial belief b0 is a probability
vector describing the initial distribution of the state of the system.

In this paper, we are interested in using a POMDP model to describe a robot moving in a
sparse environment described topologically. Using a POMDP model, the state-space X corre-
sponds to the set of sites in the environment. The state of the system at time t, Xt, corresponds
to the position of the robot in the environment at time t. The control primitives, or actions,
correspond to the high-level navigation commands that allow the robot to move between sites in
the environment and the observations correspond to the sensorial information. With a POMDP



model, Markov localization [4] can be implemented in a straightforward way: at each time in-
stant t the robot maintains a belief-vector bt, each component bt(i) describing the probability of
being in a particular state i ∈ X . This belief-vector is updated componentwise as

bt+1(j) = Ba(b, z)j =

∑
i∈X bt(i)Pa(i, j)Oa(j, z)∑

i,k∈X bt(i)Pa(i, k)Oa(k, z)
,

where At = a and Zt+1 = z and Ba(b, z)j represents the jth component of the vector Ba(b, z).
The optimal value function for a POMDP is defined as V ∗(b) = max{At} V ({At} , b) and

verifies the following recursive relation

V ∗(b) = max
a∈A

∑
i,j∈X

b(i)Pa(i, j)

[
r(i, a, j) + γ

∑
z∈Z

Oa(j, z)V ∗
(
Ba(b, z)

)]
.

The value V ∗(b) represents the total expected discounted reward received along an optimal
trajectory starting from the initial state distribution b. The optimal decision rule can be defined
by means of the mapping

π∗(b) = arg max
a∈A

∑
i,j∈X

b(i)Pa(i, j)

[
r(i, a, j) + γ

∑
z∈Z

Oa(j, z)V ∗
(
Ba(b, z)

)]
.

is called the optimal policy for the POMDP (X ,A,Z,P,O, r, γ).
There are numerous methods in the literature to compute the optimal policy for a POMDP

(see the survey works [6,7]). In this paper we adopt the incremental prunning (IP) algorithm [8].
Further details can be found in an extended version of this paper.

3 The POMDP model

We are interested in addressing the situation in which a group of robots moves in a sparse envi-
ronment, each robot trying to reach its goal location. We use a POMDP model to analyze how
the robots can benefit from efficiently using communication, by explicitly including communi-
cation in the POMDP model as an information-gathering action with an associated cost. The
optimal POMDP policy optimally settle this tradeoff between the gain in information arising
from the use of communication and the corresponding cost.

Two important observations are in order. First of all, communication between two robots is
modeled as a directed exchange of sensorial information and we assume communication to be
peer-to-peer and not broadcasted.

Secondly, even though we consider the existence of multiple communicating robots in the
environment, we do not address the interaction between these robots. In particular, the actions
of one robot do not affect the behavior of any other robot nor its ability to reach the goal.
Therefore, each robot can be modeled independently of the other robots and there is no need to
consider multi-agent decision models, such as Dec-POMDPs or stochastic games.

From the discussion above, it should be clear that we can focus our analysis on the behavior
of a single robot, considering the other robots as part of the environment. We resort to a sim-
plified model that encompasses all the fundamental features of the class of navigation problems
considered in the paper. This model is represented in Figure 1.

In this simplified model, a robot departs from the “Start” state by choosing any of the two
available actions a or b. It then moves to either state 1 or state 2 with equal probability. The
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Figure 1: A general sparse environment.

Table 1: Comparison between the performance of the cooperative and the non-cooperative robots.

Test Total disc. reward
Non-cooperative 58.118 ± 22.185

Cooperative 81.498 ± 9.867

robot will then move to the “Goal” state by choosing a in state 1 or b in state 2 and to the state
marked as “Shuf”, otherwise. Upon reaching the Goal state, the robot receives a reward of +20
and upon reaching the Shuf state, it receives a reward of −5. At the Shuf state, independently
of the robot’s action, its position is randomly reset to either state 1 or 2, with equal probability.
In this model, the robot has 3 available observations: “Start”, in the Start state, “Void”, in the
states inside the dotted line, and “Goal”, in the goal state.

In terms of navigation in sparse environments, the set of three undistinguishable states de-
scribes those situations in which the robot gets lost due to long periods of dead-reckoning. Upon
reaching the Goal state, the robot is back to a location with distinguishing features and can use
this information to localize once again. In this simplified model, the robot merely ignores the
existence of other robots and just chooses its actions so as to maximize its total reward (reaching
the Goal state as quiclly as possible).

We ran IP to compute the optimal policy for the problem above and tested the performance
of the obtained policy by running 2000 independent Monte Carlo trials, each consisting of a
10-time step trajectory. We then computed the average total discounted reward. The results are
reported in Table 1.

Notice that, after the first action, the robot will get lost between states 1 and 2 and can only
“bet” in one of the two possible actions a and b, hoping that it will lead to the desired outcome.
However, whatever action the robot chooses, it lead to a successful outcome only 50% of the
time. A particularly “lucky” run can bring quite a large reward, while a particularly “unlucky”
run can bring an alarmingly large penalty. This justifies the large standard deviation observed
in the results portrayed in Table 1. An important aspect of the behavior just described is that
it matches the one expected from a robot navigating in a sparse environment: when it gets lost,
it keeps moving in a direction where a recognizable state is expectable.

We now describe how the model in Figure 1 is modified to include the existence of another
robot in the environment. In particular, and unlike the situation analyzed before, the robot
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Figure 2: Tradeoff between the cost of communication, and the value of information. Blue line –
Non-cooperative robot; Red line – Cooperative robot.

has now two further actions available, dubbed as “Comm 1” and “Comm 2”. None of the latter
actions affects the position of the robot in the environment. Instead, each action “Comm i”,
i = 1, 2, sends a message “from” state i. This message is sent to a second robot (Robot B) who,
upon receiving it, will send the first robot (Robot A) its sensorial information. Notice that such
communication actions only suceed in the corresponding states. This means that, if the robot
sends a message “Comm i” when at state j 6= i, there is a high probability of receiving no reply.
Finally, the robot receives a reward of −1 for every communication action.

Two important observations are in order. First of all, notice that there is a cost involved
in communication, even if less significant than getting into the “Shuff” state. Secondly, the
communication may not succeed. This can happen either because Robot A chose the “wrong”
communication action, or simply because Robot B can give Robot A no information on its
position (e.g., Robot B cannot “see” Robot A).

We ran IP and computed the optimal policy for this new scenario to compare the perfor-
mance of the robot with the one observed from the non-cooperative robot. As before, we tested
the performance of the optimal policy by running 2000 independent Monte Carlo trials, each
consisting of a 10-time step trajectory, and computed the average total discounted reward. The
results are reported in Table 1.

Notice, first of all, the tremendous difference in performance between the two robots. The
robot relying on communication exhibited an average increase in performance of about 30%, even
receiving the negative rewards arising from communication. Furthermore, the optimal policy in
the presence of communication leads to a much more reliable performance, since the observed
standard deviation is much smaller.

Finally, to assess the explicit tradeoff between the cost of communication and the “value of
information”, we have conducted similar tests, varying the communication cost, rcomm, between 0
and −10. The corresponding results are summarized in Figure 2, where the solid lines correspond
to the mean total discounted reward over 2000 independent Monte-Carlo runs and the dotted
line the corresponding standard deviation.

Notice that, as the cost of communication increases, the performance of the cooperative
(communicating) robot approaches that of the non-cooperative robot. The two performances



reach a similar level when the cost of communication is similar to that of getting lost (i.e., rcomm =
−5). An important aspect to emphasize is that, when rcomm = −5, the performance of the
optimal policy in the cooperative case is much more reliable than that of the non-cooperative
case. This is easily seen from the standard deviation observed. Therefore, even at a high cost,
the robot does rely on communication to navigate and this actually translates in an actual
improvement in terms of performance. Finally, for rcomm ≥ 6, communication becomes too
costly, as indicated in Figure 2. This means that the optimal policy in both the cooperative and
non-cooperative case are similar, as seen from the performance observed in Figure 2.

4 Conclusions and future work

In this paper we addressed the problem of cooperative localization and navigation in sparse
environments. We showed that, even if it is possible for a robot moving in such an environment
to reach its goal without ever considering the existence of other robots in the environment,
communication can greatly improve its overall performance. We made use of a POMDP model
to explicitly consider the tradeoff between choosing actions to disambiguate the state of the robot
(information-gathering) and actions to move the robot towards the goal. By explicitly including
communication in the POMDP model as an information-gathering action with an associated
cost, we were able to optimally settle this tradeoff between the gain in information arising from
the use of communication and the corresponding cost.

Our results suggest several interesting avenues for future research. First of all, decision-
theoretic models as the one described in this paper can be further explored to analyze situations
in which communication is used to combine the sensing information from different sources, so
as to optimize the total information obtained from the sensorial data. Secondly, multi-agent
variations of the model used here can also be used to address active sensor networks, by casting
such networks as communicating, cooperative multi-agent systems.
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