Modelling, Analysis and Execution of Robotic Tasks using Petri Nets

Hugo Costelha and Pedro Lima

Abstract— This paper introduces Petri net based models of
robotic tasks, which can be used to analyse and synthesise task
plans, taking into account a Petri net model that abstracts the
relevant features from the robot environment as well. Logical
analysis concerning deadlocks and resource conservation can be
performed over the ordinary version of the model. A task plan
modeled by a Petri net can be extracted from the generalised
stochastic version of the model, representing the optimal plan
given a probabilistic measure of uncertainty associated to the
effects of its composing actions. The Petri net representing the
model is suitable for being ran directly within the code, as
well as for plan monitoring during execution time. Simulation
results illustrating the methodology are presented for a robotic
soccer scenario.

I. INTRODUCTION

Most of the existing robotic task models are not based on
formal approaches but tailored to the task at hand, usually
leading to task plans with few actions. Applying discrete
event system concepts to model robotic tasks provides a sys-
tematic approach to modelling, analysis and design, scaling
up to realistic applications, and enabling analysis of formal
properties, as well as design from specifications.

The need for a modular design of complex robotic tasks
from specifications of quantitative and qualitative properties
is the main motivation for this work. Petri nets come up as
an adequate modelling and analysis tool to accomplish this
goal. Their modelling and analysis power applied to single
or multi robot tasks definition can prove to be quite effective.

Most of the work found on the literature concerning
the design of robotic tasks using Discrete Event Systems
(DES) is based on FSA for code generation [3], qualitative
specifications [4], some quantitative specifications [5], modu-
larisation [4] and even to model multi-robot systems [6], [8].
Work using Petri nets to design robotic tasks under temporal
requirements, focusing also on the generation of real-time,
error-free code can be found in [9]. Recently Petri net Plans
[10] were introduced for design and execution of task plans.

The work described here can be seen as an extension of
the ideas introduced in [6] and [11]. The latter proposes
a framework for qualitative and quantitative performance
analysis using Petri nets.

Petri nets are preferred to Finite State Automata (FSA)
due to their larger modelling power [7] and because one
can model the same state space with a smaller graph.
Moreover, although composition of Petri nets usually leads
to an exponential growth in the state space (as for FSA),
graphically the growth is linear in the size of the composed

H. Costelha and P. Lima are with Instituto Superior Técnico,
Universidade Técnica de Lisboa 1049-001 Lisboa, Portugal
{hcostelha,pal}@isr.ist.utl.pt

graphs. This makes the design process simpler for the task
designer, and helps managing the display of the tasks both
for monitoring and designing purposes.

Another reason to choose Petri nets is its modularity, as
each resource can be easily modeled separately and then
composed with others. Although composition operators exist
for FSA, Petri nets can model subsystems with input and
output places, so that they can be connected as in a circuit.
Additionally, Petri nets are suited to model concurrency,
parallelism, synchronisation and decision making.

The main difference between our work and past work is
that we do not just create the high-level models for execution
purposes, but rather model the action itself using generalised
stochastic Petri nets, leading to a more realistic model which
also enables obtaining not only qualitative properties of the
task, but also performance measures. Thus, plans can be
analysed and synthesised automatically as explained later in
the paper. Throughout this paper we will use examples from
a robotic soccer scenario.

II. PETRINETS
A. MARKED ORDINARY PETRI NETS

The simplest models we use are Marked Ordinary Petri
nets [7]:

Definition 2.1: A marked ordinary Petri net (MOPN) is a
five-tuple PN = (P, T,I,0, M), where:

e P = {p1,p2,...,pn} is a finite, not empty, set of
places;
o T ={ty,ta,...,ty} is a finite set of transitions;

e I = P x T represents the arc connections from places
to transitions, such that 4;; = 1 if, and only if, there is
an arc from p; to ¢;, and ¢;; = O otherwise;

e O = T x P represent the arc connections from transition
to places, such that o;; = 1 if, and only if, there is an
arc from ¢; to p;, and o;; = 0 otherwise;

o« Mj = {my,,...,my,} is the state of the net, and
represents the marking of the net at time j, where
my,,; = q means there are g tokens in place p, at time
instant j. M, is the initial marking of the net.

In this class of Petri nets, all the transitions are immediate

(have zero firing time), i.e., once they are enabled and fired,
the new marking is instantly reached.

B. GENERALISED STOCHASTIC PETRI NETS

MOPNSs are suited for qualitative analysis, but not for per-
formance analysis. For this purpose, one can use generalised
stochastic Petri nets (GSPN) [1].

Definition 2.2: A GSPN is
(P, T,1,0, My, R,S), where:

an eight-tuple PN =

o« PT I O, My are as defined in 2.1;

o T is partitioned in two sets: 77 of immediate transitions
and T of exponential transitions;

e R is a function from the set of transitions Tz to the set
of real numbers, R (t Ej) = p;, where pi; is called the
firing rate of ¢ E;s

e S is a set of random switches, which associate proba-
bility distributions to subsets of conflicting immediate
transitions.

Stochastic (exponential) transitions, once enabled, fire
only when an exponentially disributed time d; has elapsed.
This definition of GSPNs includes also the possibility of
associating a probability distribution to conflicting immediate
transitions, by the use of the random switches.

The GSPN marking is a semi-Markov process with a
discrete state space given by the reachability graph of the net
for an initial marking [1]. A Markov chain can be obtained
from the marking process, and the transition probability
matrix computed by using the firing rates of the exponential
timed transitions and the probabilities associated with the
random switches.

Given that the marking of the GSPN is equivalent to
a Markov chain allows the use of tools already available
to analyse Markov chains directly with the GSPN, instead
of relying on e.g., Monte Carlo simulation. Thus, we have
two different (complementary) types of analysis that can be
performed with GSPN: conservation properties (based on
T-invariants and P-invariants) and performance evaluation
(based on the continuous time, discrete state space Markov
process).

ITI. MODELLING ROBOTIC TASKS USING PETRI
NETS

Our robotic task models are divided in layers with different
degrees of abstraction. The layers are (from the lowest to the
highest level of abstraction):

1) Environment: Includes environment related models;

2) Action Executor: Here one finds the action models;

3) Action Coordinator: Includes the task plan models,
used in the decision process;

4) Organisation: The higher-level layer, where roles are
dynamically assigned and mission goals selected.

Layers 2, 3 and 4 are tightly coupled with what runs
on the robot, while the Environment layer is only used
for analysis purposes. In this paper we are not concerned
with the Organisation layer, but focus on the other three
layers. Each layer includes several models (e.g., in the Action
Executor we have one model per action), and each model can
be designed separately, thus simplifying the design process.

A. THE ENVIRONMENT LAYER

The Environment layer includes the environment state
model, including state changes that might occur due to
actions performed either by the robot, by other robots, or
other agents. A discrete set of relevant states is abstracted
from the actual environment.

The core of the environment model is the predicate (e.g.:
SEE_BALL), consisting of a logic with an output value of
true or false. In order to define a Petri net model of a
predicate, we need first to define a predicate place:

Definition 3.1: A predicate place p is a place associated
with the predicate P(), described by p = P(), such that:

o Vj, Pj() =true & m,, =1

. Vj,Pj() = false < My, = 0,
where P;() is the predicate P() at time step j.

Definition 3.2: Given a predicate place p associated with
the predicate P(), —p is the place associated with the
predicate —P(), such that:

o V¥, Pi() = true & m—,, =0

o Vj, Pj() = false <& m—p, =1,
where P;() is the predicate P() at time step j.

Given Definitions 3.1 and 3.2 we obtain Lemma 3.1.

Lemma 3.1: Given a predicate place p associated with
predicate P(), it results that

Vi mp; +m-p, =1,

i.e., the places are mutually exclusive.

Given the definition of a predicate place, we can build the
full Petri net associated with the given predicate.

Definition 3.3: A Petri net model of a predicate is a
MOPN, where:

e P = {—p,p}, where p is a predicate place associated
with predicate P();
o« I =10
o V;M; ={0,1} v {1,0}.
Having defined the predicate models, we can define the
environment models:
Definition 3.4: A Petri net model of the environment is a
GSPN, where:
o V., 3p,0,pi E Pu(), every place is a predicate place;
e V;313, 145 = 1A0jm = 1, all transitions have at least
one input arc and one output arc;

Basically, Environment models consist of GSPNs, where
all the places are associated with a given predicate, and the
underlying MOPN is conservative, i.e., the total number of
tokens is constant. An environment model example of the
ball location in a soccer field is depicted in Fig. 1.

BALL_OWN_GOAL BALL_NEAR_OWN_GOAL BALL_MID_FIELD BALL_NEAR_OPP_GOAL BALL_OPP_GOAL

A e e
SR AR

~BALL_OWN_GOAL -BALL_NEAR_OWN_GOAL -BALL_MID_FIELD -BALL_NEAR_OPP_GOAL -BALL_OPP_GOAL

Fig. 1. Part of an Environment model (ball location).

B. THE ACTION EXECUTOR LAYER

The first, and lowest level layer of the group of layers
representing the robot actions, is the Action Executor layer,
which holds the action models.

An action is mainly described by the effects it causes
on the environment and the conditions that need be met
for the effects to take place. The complete action model is
achieved by specifying the Running-conditions, Effects, and
the relation between them. The Effects are further divided
in Success Effects and Failure Effects. The meaning of these
sets is as follows:

+ Running-conditions: Conditions that need be met for

the action to be able to provoke changes in the world,;

o Effects: Composed of Success Effects and Failure Ef-

fects, describe the action impact on the environment;

— Success Effects: Effects associated with the suc-
cess of the action. These include the desired effects
plus additionally intermediate effects that might
occur in order to achieve success. The action can
have different subsets of Success Effects, but only
one subset of desired effects;

— Failure Effects: Relevant undesired effects, which
may happen when the action is running. The action
can have different subsets of Failure Effects.

Definition 3.5: A Petri net model of an action is a GSPN,
where:

1) P = P,UPgUPgr with Py\NPg = (DandPAﬂPR =0,

where

Py is the action place set;
Pr s the effects place set;
Pr is the running-conditions place set;

2) P, = {a} consists on a single place, the action place,
which is an input place (drawn with a double circle);

3) (Pg U Pgr) C Predicates and Py ¢ Predicates , all
places are predicate places, except for the action place;

4) Pg = Pg,UPg,, where Pg, and Pg, are designated
respectively success places set and failure places set.

5) Pg, = PEs, U PESD, where PEs, and PEsD are
designated respectively intermediate effects place set
and desired effects place set.

6) T =Ts U T with Ts N Tr = (), where:

Ts is the set of transitions associated with suc-
cessful impact of the action;

Tr s the set of transitions associated with failure
impact of the action;

7) vtjETv 7LEP\PAainj = 1 = (ij, = 1) A
[(pm = —pn) V (m =mn)]. If there is an arc from
place p,, associated to predicate P(), to transition t;,
then there is an arc from ¢; to place p,,, associated to
predicate = P(), or an arc back to py;

8) Vi,erVp,epasing = 1 A 0j, = 1. All transitions have
one input arc and one output arc to the action place;

9) Vi,erVp,epr,in; = 1. All transitions have one input
arc from each running-condition;

10) Vt €T if Hp,LEPE y Ojn, = 1 then vaEPES
1. If a desired effD ct place is an output pface of a
transition, then all the desired effects places are also
output places of that transition;

11) Vi, ers the transition label is success;

12) Vi, er, the transition label is failure;

» Ojm

Lemma 3.2: Item 7 of Definition 3.5 implies that the
action model fulfils does not violate the predicate places
definition and associated lemma for all the predicate places
used in the action model.

Modelling an action consists in building a GSPN following
the rules stated in Definition 3.5. The general Petri net model
of an action is depicted in Fig. 2 (the enabling arcs are de-
picted in a different colour just to increase readability). Note
that both the action place and Running-conditions places,
since they are connected to all the transitions, function as
enabling places.

action

(-EFF
‘

Intermediate
Effects

Desired
Effects

Success
Effects

Effects

Failure
Effects

failure

ol
. Running-conditions
O =

Fig. 2. General action model.

These models represent a never ending action, that when
enabled e.g., by a higher layer, with the right conditions, in-
creases the probability of certain effects to happen. Although
the action can be always enabled, if the running-conditions
are not met, it is as if the action were not enabled. This action
model represents the actual action coded on the robot, and
might be used to generate the action source code structure
with the various conditions tests, leaving the user only to fill
the method itself.

An action model for grabbing a ball, grabBall, can
be seen in Fig. 3. The purpose of the grabBall action
is to grab the ball, thus, when executed, it increases the
probability of the predicate HAS_BALL (the only desired
effect) becoming true, given that the ball can be seen and
the robot is near the ball (running-conditions). The expected
increase in the probability of success is reflected in the action
model, by containing a stochastic transition from the place
associated with the predicate NOT_HAS_BALL to the one
associated with the predicate HAS _BALL.

grabBall

HAS_BALL Effects

NEAR_BALL Q
SEE_BALL O

Model of the grabBall action.

Running-conditions

Fig. 3.

The example depicted in Fig. 3, includes no undesired ef-
fects explicitly modelled, however, these still might happen.
For analysis, the models are composed with the Environment
model, thus including different transitions, although with
much lower probability of occurrence, and not specifically
associated with the given action. Thus, undesired action out-
comes are included only when they are relevant to the action
being modelled, i.e., the probability of their occurrence is far
higher due to the modelled action being executed. Note that
the running-conditions might be an empty set, meaning the
respective action can be executed with success at any time.

The action place will be used by a higher level to control
the execution of an action, and to represent the action itself.
The running-conditions and effects can be used to determine
when an action can and should be used, respectively.

C. THE ACTION COORDINATOR

The Action Coordinator layer holds the task plans used to
execute tasks, consisting of a network of actions. In its most
basic form, we can build a plan using the GSPN formalism
and the action models.

1) THE ACTION MODEL: From the definition of the
action Petri net model at the Action Executor level, we
extract important details for the selection of actions:

o Pre-conditions: conditions that should be met when
starting the action to ensure its usefulness in a given
context;

o Running-conditions: conditions that must be met dur-
ing the action execution for it to have any impact on
the environment;

o Success-conditions: conditions that are satisfied when
the action is successful.

Definition 3.6: The full action model, at the Action Co-
ordinator level, is a GSPN (P, T, 1,0, My, R, S) automati-
cally obtained from the action model at the Action Executor
level (P, T, I,0,Mo,R,S), where:

1) P= P4, U PpU PgU Pg, where:

Py =P, = {a} is the action place set;

e Ppb=PrU —Pgg, is the pre-conditions places set;
o Pg = P, is the success-conditions places set;
e Pp = —Py is the failure-conditions places set;

2) T =TsUTpsUTgr, with TsNTgs =0, TsNTEr =
0 and Tps N Trr = (), where:

o Ts = {start} contains one transition that enables
the action, labeled start;

e Tps = {success} contains one transition that
ends the action with success, labeled success;

o Tk is the set of the transitions that end the action
with failure, which have the label failure;

3) Vi,erVp,ep\Pas (ing = 1) = (0jn = 1). If there is an
arc from a place p,,, associated to predicate P(), to a
transition ¢;, then there is an arc from ¢; to place py;

4) Yp, epp, (inj = 1)A(0jn, = 1), where t; = start. There
is an input arc and an output arc from every pre-
condition set place to transition start;

5) VtJeTstn = 1, where p,, € P4. All the start transi-
tions have an output arc to the action place;

6) the(TEsUTEF)inj = 1, where p,, € P4. All the end
transitions have an input arc from the action place;

) Vpnepe3tjeTpp (inj =1) A (0jn =1). There is a
failure transition for each running-condition, with an
input and output arc from the corresponding running-
condition;

8) Vp,epss (inj = 1) A (0j, = 1), where t; = success.
There is an input and output arc from every success-
condition set place to transition success;

Lemma 3.3: Item 3 from Definition 3.6 implies that when
a token is consumed from a predicate place, it is placed again
on the same place, which means that the high-level action
model does not violate the predicate places definition and
associated lemma.

The general model of the action at the Action Coordinator
level, corresponding to the model in Fig. 2 at the Action
Executor level, is depicted in Fig. 4. As an example, the
Action Coordinator layer model of the action grabBall,
corresponding to the Action Executor layer model seen in
Fig. 3, is depicted in Fig. 5.

success-conditions

—
EFF)
[
— e . success |
-EFF ‘ .
B start) action EFF ‘
. \ n

" running-conditions

Fig. 4. General model for the action at the Action Coordinator level.

Both the models in Figs. 4 and 5 are complete mod-
els, representing an abstraction from the lower level action
models, which ensure maximum efficiency, since the actions
can only be enabled if they can change the environment,

i.e., if the running-conditions are met and the associated
successful effects are not already caused on the environment.
The simplest model at the Action Coordinator level consists
only of the action place, which corresponds to selecting an
action independently of its usefulness in the given context.

success
failure

\NEAR_BALL
'

| SEE_BALL

Fig. 5. Model of the grabBall action at the Action Coordinator level.

2) THE TASK PLAN: A full task plan model can be ob-
tained by systematic plugging of actions, using information
retrieved from the action models, either by a human or by
a planning algorithm. These task plans run directly on the
robot, so the user does not have to write any actual code.

As an example, in Fig. 6 (left) is a GSPN model of
a simple Petri net task plan of a SCORE GOAL task
in the robotic soccer domain, which includes four pos-
sible actions (standBy, getBall, takeBall2Goal
and shoot2Goal) chosen according to the actions pre-
conditions, running-conditions and success-conditions. This
plan was manually specified and we did not always use all
the information available when enabling an action, creating
a simple, but not optimal, plan. An automatically generated
optimal plan would use the full action models in order to
guarantee modularity and optimal action selection.

In this example we considered a simple shoot2Goal
action that could only be successful near the opponent’s goal.
As another example, we considered a full shoot2Goal ac-
tion which can score from everywhere, but includes failures,
so as to have higher scoring probability nearer the opponent’s
goal (see Fig. 6 on the right). Here, a random switch is
included, so that when the robot is running getBall and
grabs the ball, both ¢3 and ¢5 are enabled. Changing the prob-
ability associated with each of these transitions changes how
often, under the above conditions, the takeBall2Goal
or the shoot2Goal actions are selected. Moreover, these
could be changed at runtime. For instance, if a game is near
the end and our team is losing, we might prefer to shoot to
the goal more often, while if it is winning, we might prefer
to stay on the safe side and only shoot if the probability of
scoring is very high, i.e., near the opponent’s goal.

IV. RESULTS ON THE ANALYSIS OF ROBOTIC
TASKS USING PETRINETS

Analysing a given Petri net based task plan consists of
composing all the models together, building a single Petri net,
and performing analysis on that Petri net. This composition
is performed based on the premise that every place with the
same label is in fact the same place, and each transition
is different, regardless of its label. Analysing the resulting
GSPN, equivalent to a semi-Markov process, we can obtain

standBy

standBy

SEE_BALL

getBall NOT_SEE_BALL SEE_BALL getBall NOT_SEE_BALL

Cnd O O
t 1 vl t, L
HAS_BALL fakeBall2Goal™._ NOT_HAS_BALL HAS_BALL Ba"ng 1, NOT_HAS_BALL
1 O Q ' @,
. shoot2Goal h

NOT_NEAR_OPP_GOAL NEAR_OPP_GOAL

NEAR_OPP_GOAL

Fig. 6. Two SCORE GOAL Petri net task models: a simple one (left) and
more complex one, with random switches (right).

various results, such as: existence of deadlocks, probability
of reaching a given state, time to reach a given state.

A. THE SETUP

The results were obtained using a robotic soccer scenario,
with the goal being to score in the opponents goal. We used
several different models to test the influence of the realism
of the actions and environment models. We also tested the
impact on goal achievement with different task plans.

The environment model included the ball position model
depicted in Fig. 1 plus a similar robot position model.
The ball position model was slightly changed in order not
to allow the ball to leave a goal once inside. The used
actions were standBy, getBall, takeBall2Goal and
shoot2Goal. We considered two different environment
models: the Probabilistic Environment and the Determin-
istic Environment. The difference is that the Deterministic
Environment did not contain stochastic transitions, thus not
considering external changes in the environment.

As explained in Section III-B, the action models are
always stochastic timed, even if they only contain success
transitions (in which case the failures appear only by com-
position of the models). To test the impact on modelling
the action failures we considered the two shoot2Goal
actions described earlier: the simple shoot2Goal and full
shoot2Goal.

Finally, to test the impact of action selection, we con-
sidered four different task plans. The first case consists in
using the task plan depicted in Fig. 6 (left). The other three
cases correspond to using the task plan depicted in Fig. 6
(right) with different probabilities associated with the random
switch, i.e., takeBall2Goal is chosen with probability:
a) 1,b) 0.5 and ¢) 0.

In each test, the ball was initially placed near our own goal
and the robot in the midfield. Furthermore, we considered
that the robot could always see the ball and changed the ac-
tion models to prevent the robot from entering the goals. The
rates used in the models were (in fime units) 1/1 for success
transitions, 1/4 for failure transitions, 1/10 for environment
stochastic transitions and, 1/4 and 1/6 for scoring from the
midfield and near our own goal, respectively.

B. RESULTS

Given the different models, we tested eight setups using
the TimeNET tool [2], obtaining the results shown in Table

TABLE I

RESULTS

Env. | Actions | Pscore | T1% | Ts0% | Too%
1 D S 1 13 43 8.1
2 P S 0.75 12 6.0 -
3| D I 1 13 5.7 132
4 P F 0.68 12 95 -
5 D FP 1 1.1 6.5 15.5
6 3 FP 0.68 1.0 99 -
7] D F° 1 0.9 73 18.0
8 P F° 0.66 0.83 10.7 -

I. P and D on the Environment column denote using the
Probabilistic or Deterministic model respectively. In the
Actions column, S and F mean using the simple and full
shoot2goal action respectively. The superscript a, b and
c refer to the three task plan models described previously.
In Table I, Pscore is the highest score probability achiev-
able, while T,y is the time taken to achieve n% scoring
probability. All the time values are in time units.
Qualitatively, we concluded there is always the possibility
of a deadlock, corresponding to a goal score, since the ball
cannot leave the goal, and is not reachable inside the goal.
The results show that, like in reality, since the robot is
not the only responsible for changing the environment, the
probability of scoring a goal is not 1 when the environment
model is stochastic. Furthermore, the more complete the
models are, the lower is the probability of scoring, and the
longer it takes to achieve high scoring probability.
Comparing the values obtained with F?, F® and F?, an
interesting, but expected result appears: when we choose
to shoot not only from near the opponent’s goal, the 1%
scoring probability is achieved more quickly, however, it
takes longer to achieve high scoring probability, i.e., the long
run performance is decreased.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

Petri nets provide a practical and intuitive way of mod-
elling robotic tasks and associated components, being also
appropriate to monitor the execution of tasks given their
graphical nature. The fact that a GSPN is equivalent to a
Markov chain brings an additional advantage by allowing
the use of currently available tools and techniques in order
to extract important a priori information about a given task.

Being able to model the actions more thoroughly at a lower
level allows for mores realistic models. We are simultane-
ously able to create an abstract and simpler model of the
action to be used at higher levels, without compromising
the analysis possibilities. Furthermore we can create all the
models separately and build the task plan by creating a
network of actions. This task plan can be ran directly on
the robots for execution purposes, and for analysis purposes
we compose all the models that were designed separately
onto one Petri net, and analyse that net.

B. Future Work

We have recently finished implementing a Petri net execu-
tor in our MeRMalD architecture [12]. We are now starting
to use the referred models and analysis tools in real world
experiments, and plan to have further results of those soon.

We plan to work further on composition operators, used
to compose actions into behaviours, and study the possibility
of improving analysis time by simplification of the tasks by
replacing networks of actions by behaviours. These can also
have an important part in cooperative behaviours.

Another improvement that is planned is the use of data
obtained from real experiments to verify and complete the
various Petri net models, particularly the rates used in the
stochastic timed transitions.

As mentioned in Section III-C.2, the task plan can be
obtained by using planning algorithms. The information
given by the definition of the actions at the Action Coor-
dinator level should suffice in order to use algorithms for
deterministic planning, while the information given by the
definition of the actions at the Action Executor level could be
used for probabilistic planning. The Markov chain obtained
by the composition of all the models can be used to compute
the optimal action selection for any given state.

VI. ACKNOWLEDGEMENTS

This work was supported by Fundagdo para a Ciéncia e
Tecnologia (FCT) under grant SFRH/BD/12707/2003, and
by ISR/IST pluriannual funding from FCT through the
POS_Conhecimento Program that includes FEDER funds.

REFERENCES

[1] N. Viswanadham, Y. Narahari, Performance Modelling of Automated
Manufacturing Systems, Prentice Hall, 1992.

[2] A. Zimmermann, A Software Tool for the Performability Evaluation
with Stochastic Petri Nets, http://pdv.cs.tu-berlin.de/ timenet/, 2001.

[3] A.Dominguez-Brito, M. Andersson, H. Christensen, A Software Ar-
chitecture for Programming Robotic Systems based on the Discrete
Event System Paradigm, Report CVAP244, ISRN KTH/NA/P-00/13—
SE, Centre for Autonomous Systems, KTH (Royal Institute of Tech-
nology), 2000.

[4] J. Kosecka, H. Christensen, R. Bajcsy, Experiments in Behaviour
Composition, Robotics and Autonomous Systems, vol. 19, pp. 287-
298, 1997.

[5] B. Espiau, K. Kapellos, M. Jourdan, D. Simon, On the Validation of
Robotics Control Systems Part I: High Level Specification and Formal
Verification, Report 2719, INRIA, 1995.

[6] B. Damas, and P. Lima, Stochastic Discrete Event Model of a
Multi-Robot Team Playing an Adversarial Game, Proc. of the 5Sth
IFAC/EURON Symposium on Intelligent Autonomous Vehicles, 2004.

[7]1 C. Cassandras, S. Lafortune. Introduction to Discrete Event Systems,
Kluwer Academic Publishers, 1999.

[8] M. Andersen, R. Jensen, T. Bak, M. Quottrup, Motion Planning
in Multi-Robot Systems using Timed Automata, Proc. of the 5th
IFAC/EURON Symposium on Intelligent Autonomous Vehicles, 2004.

[9] L. Montano, F. Garcia, J. Villaroel, Using the Time Petri Net For-
malism for Specification, Validation, and Code Generation in Robot-
Control Applications, The International Journal of Robotics Research,
vol. 19, no. 1, pp. 59-76, 2000.

[10] V. Ziparo, L. Tocchi, Petri Net Plans, Proc. of the Fourth International
Workshop on Modelling of Objects, Components, and Agents, 2006.

[11] D. Milutinovic, P. Lima, Petri Net Models of Robotic Tasks, Proc. of
the IEEE International Conference on Robotics and Automation, 2002.

[12] N. Ramos, M. Barbosa, P. Lima, MeRMalD - Multiple-Robot Middle-
ware for Intelligent Decision-making, Proc. of IAV2007 - 6th IFAC
Symposium on Intelligent Autonomous Vehicles, 2007.

