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tFormations of multi-agent systems, su
h as satellitesand air
raft, require that individual agents satisfytheir kinemati
 equations while 
onstantly maintain-ing inter-agent 
onstraints. In this paper, we develop asystemati
 framework for studying formations of multi-agent systems. In parti
ular, we 
onsider undire
tedformations for 
entralized formations and dire
ted for-mations for de
entralized formations. In ea
h 
ase, wedetermine di�erential geometri
 
onditions that guar-antee formation feasibility given the individual agentkinemati
s. Our framework also enables us to ex-tra
t a smaller 
ontrol system that des
ribes the for-mation kinemati
s while maintaining all formation 
on-straints. 1 Introdu
tionAdvan
es in 
ommuni
ation and 
omputation have en-abled the distributed 
ontrol of multi-agent systems.This philosophy has resulted in next generation auto-mated highway systems [9℄, 
oordination of air
raft infuture air traÆ
 management systems [8℄, as well asformation 
ying air
raft, satellites, and multiple mo-bile robots [2, 3, 7, 4℄.The 
ontrol of multiple homogeneous or heterogeneousagents raises fundamental questions regarding the for-mation 
ontrol of a group of agents. Multi-agent forma-tions require individual agents to satisfy their kinemat-i
s while 
onstantly satisfying inter-agent 
onstraints.In typi
al leader-follower formations, the leader has theresponsibility of guiding the group, while the followershave the responsibility of maintaining the inter-agentformation. Distributing the group 
ontrol tasks to in-dividual agents must be 
ompatible with the 
ontroland sensing 
apabilities of the individual agents. As1This work was performed while the �rst author was visitingthe University of Pennsylvania. This resear
h is partially sup-ported by DARPA under grant N66001-99-C-8510, the Univer-sity of Pennsylvania Resear
h Foundation, and by Funda�
~ao paraa Ciên
ia e Te
nologia under grant PRAXIS XXI/BD/18149/98.

the inter-agent dependen
ies get more 
ompli
ated, asystemati
 framework for 
ontrolling formations is vi-tal.In this paper, we propose a framework for formation
ontrol of multi-agent systems. Formations are mod-eled using formation graphs whi
h are graphs whosenodes 
apture the individual agent kinemati
s, andwhose edges represent inter-agent 
onstraints that mustbe satis�ed. A similar approa
h has been proposedin [4℄. We assume kinemati
 models for ea
h agentdes
ribed by drift free 
ontrol systems. This 
lass ofsystems is ri
h enough to 
apture holonomi
, nonholo-nomi
, or undera
tuated agents. Two distin
t types offormations are 
onsidered : undire
ted formations anddire
ted formations.In undire
ted formations ea
h agent is equally respon-sible for maintaining the formation. For ea
h edge
onstraining two agents of the formation graph, bothagents 
ooperate in order to satisfy the 
onstraint.Undire
ted formations therefore present a more 
en-tralized approa
h to the formation 
ontrol problem as
ommuni
ation between agents is, in general, ne
es-sary. In dire
ted formations, for ea
h edge 
onstrain-ing two agents, only one of the agents (the follower)is responsible for maintaining the 
onstraint. Dire
tedformations, therefore, represent a more de
entralizedsolution to the formation 
ontrol problem.In this paper, we fo
us on the feasibility problem:Given the kinemati
s of several agents along with theinter-agent 
onstraints, determine whether there existagent traje
tories that maintain the 
onstrains. Forboth dire
ted and undire
ted formations we obtaindi�erential-geometri
 
onditions that determine forma-tion feasibility. When su
h 
onditions are veri�ed theformation 
ontrol abstra
tion problem is then 
onsid-ered: Given a feasible formation, extra
t a smaller 
on-trol system that maintains formations along its traje
-tories. The extra
ted 
ontrol system allows to 
ontrolthe formation as a single entity, therefore being wellsuited for higher levels of 
ontrol.The stru
ture of this paper is as follows: In Se
tion 2 we1



de�ne the notion of a formation graph. In Se
tion 3 we
onsider the feasibility problem for undire
ted forma-tions, whereas in Se
tion 4 we 
onsider it for dire
tedformations. Finally, Se
tion 5 des
ribes many interest-ing dire
tions of further resear
h.2 Formation GraphsWe assume the reader is familiar with various di�er-ential geometri
 
on
epts at the level of [1℄. Con-sider n heterogeneous agents with states xi(t) 2 Mi,i = 1; : : : ; n whose kinemati
s are de�ned by drift free
ontrolled distributions on manifolds Mi as:�i : Mi � Ui ! TMi�i = Xj Xjuj (1)where Ui is the 
ontrol spa
e, and the ve
tor �elds Xjform a basis for the distribution. The 
ontrolled distri-butions are general enough to model nonholonomy andundera
tuation. A distribution �i 
an be equivalentlyde�ned by its annihilating 
odistribution !Ki de�nedas [5℄: !Ki = f� 2 T �Mi j �(�) = 0g (2)The formation of a set of agents is de�ned by the forma-tion graph whi
h 
ompletely des
ribes individual agentkinemati
s and global inter-agent 
onstrains.De�nition 2.1 (Formation Graph) A formationgraph F = (V;E;C) 
onsists of:� A �nite set V of verti
es who's 
ardinality isequal to the number of agents. Ea
h vertex vi :Mi�Ui ! TMi is a distribution �i modeling thekinemati
s of ea
h individual agent as des
ribedin (1).� A binary relation E � V � V representing a linkbetween agents.� A family of 
onstraints C indexed by the set E,C = f
ege2E. For ea
h edge e = (vi; vj), 
e isa possibly time varying fun
tion 
e(xi; xj ; t) = 0des
ribing the �(e) independent 
onstraints be-tween verti
es vi and vj . For a generi
 edgee = (vi; vj), 
e is mathemati
ally de�ned as 
e :Mi �Mj � R ! R�(e) , �(e) 2 N 8e2E.Two di�erent types of formation graphs will be 
on-sidered: undire
ted formations where (V;E) will be anundire
ted graph and dire
ted formations where (V;E)will be a dire
ted graph. In undire
ted formations,

for ea
h edge e = (vi; vj) both agents are equally re-sponsible for maintaining the asso
iated 
onstraint 
e,whereas for dire
ted formations the 
onstraint 
e mustbe maintained by agent i. At this point no furtherstru
ture is assumed on the set E, additional stru
turewill be expli
itly mentioned when needed throughoutthe paper.In this paper, we fo
us on the formation feasibilityproblem, more pre
isely:Problem 2.2 Given a formation graph F = (V;E;C)determine whether there are solutions xi(t) of all agentkinemati
s (1) that maintain the 
onstraints 
e for alle 2 E.We will solve Problem 2.2 for both undire
ted and di-re
ted formations. In 
ase the formation is feasible, anew problem immediately emerges, the extra
tion of aformation 
ontrol abstra
tion whi
h 
hara
terizes thesolution spa
e of Problem 2.2 :Problem 2.3 Given a feasible formation graph F =(V;E;C), extra
t a smaller 
ontrol system that main-tains formation for all values of its 
ontrol inputs.Problem 2.3 will also be solved for both the undire
tedand the dire
ted 
ases.3 Undire
ted Formations3.1 FeasibilityIn undire
ted formations ea
h agent is equally respon-sible for maintaining 
onstraints. Be
ause of this prop-erty it will be useful to 
olle
t all agent kinemati
s and
onstraints on a single manifold:M = nYi=1Mi (3)Given an element x of M the 
anoni
al proje
tion onthe ith agent: �i :M !Mi (4)allow us to denote the state of the individual agents byxi = �i(x). The formation kinemati
s is obtained byappending individual kinemati
s through dire
t sum,that is: � :M � U ! TM� = �ni=1�i (5)where U is taken to be U =Qni=1 Ui. To lift the individ-ual 
onstraints 
e fromMi�Mj�R, i; j 2 f1; 2; : : : ; ng2



to the group manifold M we de�ne Ce by:Ce : M � R ! R�(e)Ce(x; t) = 
e(�i(x); �j(x); t) (6)Formation feasibility requires that the 
onstraints aresatis�ed along the formation traje
tories, more pre-
isely: ddtCe = LXCe + �Ce�t = 0 8e2E (7)When Ce is ve
tor valued we 
onsider that the Liederivate of Ce along X will be given by LXCe =[LXC1e LXC2e : : : LXC�(e)e ℄T . To develop a single mathe-mati
al obje
t that will allow us to 
he
k for feasibilitywe will adopt a di�erential forms approa
h instead ofworking dire
tly with the ve
tor �elds. By de�ning theexterior derivative of Ce as dCe = [dC1e dC2e : : : dC�(e)e ℄Tequation (7) 
an be written as dCejt(X) = � ��tCe,where we have denoted by dCejt the exterior derivativeof Ce for �xed t. If we now 
onsider an enumerationf1; 2; : : : ;mg of the edges set E and de�ne the follow-ing ve
tor valued forms1:!F = 26664 dC1jtdC2jt...dCmjt37775 TF = �26664 �C1�t�C2�t...�Cm�t 37775 (8)we 
an express equation (7) as:!F (X) = TF (9)The kinemati
s 
an also be modeled as di�erentialforms by using the annihilating 
odistributions. Thislead us to de�ne a single 
odistribution !K modelingthe kinemati
s of all formation agents as:!K = [!K1 !K2 : : : !Kn ℄T (10)Solutions of equation (9) represent ve
tor �elds thatmaintain formation while solutions of equation (10) sat-isfy the kinemati
s. Therefore by merging both obje
tsinto: 
 = �!F!K� T = �TF0 � (11)we 
an 
he
k for formation feasibility in a single equa-tion: 
(X) = T (12)The previous dis
ussion leads to the following solutionof Problem 2.2:1This de�nition is independent of the 
hosen enumeration as
an be easily veri�ed.

Proposition 3.1 An undire
ted formation is feasiblei� equation (12) has solutions, equivalently i� T be-longs to the range of 
.Corollary 3.2 (Time-Invariant Case) If the for-mation 
onstraints C are time-invariant then the undi-re
ted formation is feasible i� 
 (thought as a pointwiselinear map between ve
tor spa
es) is not of full rank.A solution of equation 
(X) = T spe
i�es the mo-tion of ea
h individual agent. When more than oneindependent solution exists, a 
hange in the dire
tionof a single agent may require that all other agents also
hange their a
tions to maintain formation. This showsthat, in general, solutions for undire
ted formations are
entralized and require inter-agent 
ommuni
ation fortheir implementation.3.2 Group Abstra
tionWhenever more then one independent solutions exist,the solution spa
e of equation 
(X) = T 
an be used toextra
t a smaller 
ontrol system that will preserve theformation along its traje
tories. This new 
ontrol sys-tem is an abstra
tion that hides away low-level 
ontrolne
essary to maintain the formation and 
an be usedin higher levels of 
ontrol. Sin
e the solution spa
e is ingeneral an aÆne spa
e the new 
ontrol system will alsobe aÆne in the 
ontrol. Let Kp be a parti
ular solutionof equation (12), Problem 2.3 is therefore solved by thenew 
ontrol system:�G = Kp +Ker(
) (13)If we now denote by fK1;K2; : : : ;Kkg a basis for thekernel of 
 we 
an rewrite (13) in a more usual formas: �G = Kp + kXj=1Kjuj (14)In the time-independent 
ase we re
over linearity of theabstra
ted 
ontrol system sin
e we 
an 
hose Kp = 0.The 
entralized nature of the problem is also re
e
tedon the 
ontrol abstra
tion. When one or more of the
ontrol inputs ui are used, inter-agent 
ooperation isne
essary to implement the new dire
tion of motionsin
e ea
h ve
tor Kj spe
i�es the motion for all forma-tion agents.In addition to using the above abstra
ted system to
ontrol the formation, one 
an also guide the formationby appending a virtual vertex v0 de�ning the referen
etraje
tory and several edges spe
ifying how the refer-en
e should be followed by the formation. In parti
u-lar 
onsider a feasible formation graph F = (V;E;C)and let V 0 be a singleton 
ontaining the vertex v0 :R ! TM0, v0 = ddtx0(t). This vertex is 
onne
ted3



to the remaining formation by the additional edge setE0 = [i2If(v0; vi)g, where I � V is a subset of all theverti
es indi
es. Asso
iated with ea
h vertex we havethe 
onstraints C 0 = f
0ege02E0 and we 
an de�ne a newformation graph given by F 0 = (V 0[V;E0[E;C 0[C).On
e again it is ne
essary to ensure that the feasibleformation is 
apable of maintaining the referen
e 
on-straints by applying Proposition 3.1 to formation graphF 0.Note that this 
onstru
tion is general enough to en
om-pass traditional formations su
h as: leader-follower bysuperimposing the virtual vertex onto an existing oneor pla
ing referen
es on the formation 
entroid [4, 7℄. Italso allows some other interesting possibilities su
h as
onne
ting a dis
onne
ted feasible formation graph bythe referen
e 
onstraints, that is several independentformations following a single referen
e.Example: Consider two planar robots evolving onMi = R2 � S1 i = 1; 2, parameterized by (xi; yi; �i),�i 2 [0; 2�[, xi; yi 2 R. Robot 1 is nonholonomi
, there-fore only motions along the dire
tion where it is pointedto are allowed while robot 2 is holonomi
 being able tomove in any dire
tion. The two robots are des
ribedby the following 
ontrolled distributions:�1 = X11u1 +X12u2�2 = X21u1 +X22u2 +X23u3 (15)where the ve
tors X1, X2 and X3 are de�ned as:X i1 = 2400135 X i2 = 24
os �isin �i0 35 X i3 = 24� sin �i
os �i0 35 (16)Equivalently the kinemati
s of robot 1 and 2 
an be
olle
tively modeled by the following form:!K = �� sin �1dx1 + 
os �1dy10dx2 + 0dy2 � (17)
Figure 1: Graph used to spe
ify the undire
ted formation.The desired formation is presented on Figure 1. Vertexv0 is a virtual node asso
iated with the referen
e tra-je
tory given by ( _a(t); _b(t)). The 
onstraints asso
iatedwith edge e1 are given by 
e1 = [x0 � x1 y0 � y1℄T ,therefore the position of vertex v0 will be the same asthe position of vertex v1, but no 
onstraints exist onthe orientation. The 
onstraints asso
iated with edgee2 are 
e2 = [x1 � x2 � kx y1� y2 � ky �1 � �2℄T for

some positive o�sets kx and ky. These 
onstraints re-quire that both agents perform equal traje
tories trans-lated by the o�sets kx and ky. From the 
onstraints we
ompute the form !F and the ve
tor TF :!F = 266664 �dx1�dy1dx1 � dx2dy1 � dy2d�1 � d�2377775 TF = 266664� _a(t)�_b(t)000 377775 (18)Constru
ting the form 
 and the ve
tor T from theabove forms we easily see that T belongs to the rangeof 
, as long as _b(t) 
os �1 � _a(t) sin �1 = 0 (meaningthat robot 1 must be aligned with the referen
e velo
-ity) therefore the formation is feasible. If we swap thelo
ation of the robots, the new form !K will be givenby: !K = � 0dx1 + 0dy1� sin �2dx2 + 
os �2dy2� (19)and the equation 
(X) = T has solutions as long asrobot 1 is aligned with the referen
e velo
ity and sin
eboth robots must share the same orientation, robot 2must also be aligned with the referen
e velo
ity. Bothundire
ted formations are feasible but this is not the
ase when dealing with dire
ted formations as we shallsee next. 4 Dire
ted FormationsAnother important 
lass of formations 
an be modeledby dire
ted graphs. A dire
ted graph assigns respon-sibilities to the formation members in an asymmetri
way. For ea
h edge e = (vi; vj) agent i is responsiblefor maintaining the 
onstraints 
e, while agent j is nota�e
ted by the 
onstraint of the edge.We will assume through the remaining se
tion that adire
ted formation graph is a dire
ted a
y
li
 graph.As a 
onsequen
e all dire
ted formations will have atleast one leader. This assumption will allow the re
ur-sive pro
edures to start on the leaders and to terminatesin
e there are no 
y
les. Cy
li
 formation graphs, al-though important, will be dis
ussed separately, see fore.g. [6℄. We will also 
onsider that the formation
onstraints are time independent for simpli
ity of pre-sentation although the results 
an easily be extendedto time-varying 
onstraints.Although in the undire
ted 
ase we were able to liftthe 
onstraints and individual agents kinemati
s to alarger manifold M , the same approa
h will not be pos-sible for the dire
ted 
ase sin
e only one agent is re-sponsible for satisfying the 
onstraints asso
iated withan edge. More pre
isely, given an edge e = (vi; vj) the4



time derivative of its asso
iated 
onstraints 
e 
an bede
omposed as: d
edt = LXi
e + LXj 
e (20)Feasibility requires that d
edt = 0, however only Xi 
anbe 
hosen to ensure feasibility. In view of this we willfollow a similar approa
h to the undire
ted 
ase, butin a re
ursive formulation. This requires the followingoperators:De�nition 4.1 (Post and Pre) Let F = (V;E;C)be a dire
ted formation graph. The Post operator isde�ned byPost : V ! 2Vvi 7! fvj 2 V : (vi; vj) 2 Eg (21)Similarly, the Pre operator is de�ned as:Pre : V ! 2Vvi 7! fvj 2 V : (vj ; vi) 2 Eg (22)Intuitively, Post(vi) will return the agents that areleading agent i, while Pre(vi) will return all the agentsthat are following agent i. Post and Pre extend to setsof verti
es in the natural way, Post(P ) = [p2P Post(p)and Pre(P ) = [p2P Pre(p).De�nition 4.2 (Leaders) A vertex vi is 
alled aleader i� Post(vi) = ?.We shall abuse notation a represent the distribution �ide�ning the kinemati
s of agent vi by �(vi) and for theset of agents Post(vi), �(Post(vi)) = �p2Post(vi)�(p)de�ned over �p2Post(vi)Mp. Similarly to the undire
ted
ase we de�ne the following obje
ts for ea
h agent i:!iF = 26664d
1jxjd
2jxj...d
mjxj37775 !jF = �26664d
1jxid
2jxi...d
1jxi37775 (23)where f1; 2; : : :mg is an enumeration of the edges setbetween agent i and its leaders (Post(vi)). These ve
-tor valued di�erential forms allow us to write equa-tion (20) as: !iF (Xi) = !jF (XJ) (24)whi
h is to be 
onsidered only for Xi 2 �(vi) and XJ 2�(Post(vi)). Instead of restri
ting the Xi's to �(vi)we 
an in
orporate the kinemati
 restri
tions dire
tlyinto equation (24) by de�ning:
i = �!iF!iK� 
j = �!jF0 � (25)

where !iK is the ve
tor valued form annihilating agenti kinemati
 distribution �(vi). Equation (20) 
an nowbe further modi�ed to the following form.
i(Xi) = 
j(XJ ) 8XJ2�(Post(vi)) (26)This motivates the following result analogous to theundire
ted 
ase:Proposition 4.3 A dire
ted formation is feasible i�equation (26) has solutions for ea
h agent i in the for-mation. Equivalently i� the range of 
j j�(Post(vi)) is
ontained in the range of 
i for ea
h agent i.Sin
e Proposition 4.3 must be true for ea
h agent, analgorithm 
an be 
onstru
ted to determine feasibility.Let L � V be a set of leaders and denote by (
i)�1(X)the set of preimages of X under 
i and by R(S) therange of operator S.Algorithm 1 (Dire
ted Feasibility)initialization: V := Lwhile Pre(V ) 6= ? doV := Pre(V )for all vi 2 V do�(vi) := 0if R(
j j�(Post(vi)) * R(
i)return UNFEASIBLESTOPelse �(vi) := �(vi) + (
i)�1(R(
j j�(Post(vi))))end ifendendAll the 
omputations in the algorithm 
an be per-formed using basis ve
tor �elds for the distributionsand sin
e there are no 
y
les in the algorithm we havethe following result:Theorem 4.4 (Dire
ted Formation Feasibility)Let F = (V;E;C) be an a
y
li
, dire
ted formationgraph. Algorithm 1 terminates in a �nite number ofsteps and returns:� Unfeasible if the formation is not feasible.� A distribution per agent spe
ifying the availabledire
tions to maintain formation if the formationis feasible.Example: Consider the formation graphi
ally dis-played in Figure 2, where agent 1 and agent 2 are as inthe previous example. Similarly we asso
iate the 
on-straint 
e = [x1 � x2 � kx y1 � y2 � ky �1 � �2℄T5



Figure 2: Graph used to spe
ify the dire
ted formation.to edge e = (v2; v1). To determine feasibility of thisdire
ted formation one has to 
ompute:!2F = 24�dx2�dy2�d�235 !1F = 24�dx1�dy1�d�135 (27)and also:
2 = 2664�dx2�dy2�d�20 3775 
1 = 2664 �dx1�dy1�d�1� sin �1dx1 + 
os �1dy13775(28)Feasibility now requires that R(
1j�(Post(v2))) �R(
2), but sin
e Post(v2) = v1 and agent v1 hasno kinemati
 
onstraints, we get R(
1j�(Post(v2))) =R(
1). From this we see 
learly that the 
onditions ofTheorem 4.4 are not ful�lled and the dire
ted forma-tion is not feasible. Maintaining the formation requiresa 
ooperative e�ort from agent v1 to 
ope with agentv2 nonholonomi
 restri
tions. However if we 
hange theposition of the robots in the formation we render theformation feasible. In this situation the new forms aregiven by:
2 = 2664 dx2dy2d�2sin �2dx2 + 
os �2dy23775 
1 = 2664dx1dy1d�10 3775 (29)and the in
lusion R(
1j�(Post(v2))) � R(
2) is sat-is�ed, meaning that formation feasibility is a
hieved.This shows, in parti
ular, that one 
an break the globalundire
ted solution into lo
al ones, for e.g. agent v1does not need to know that it is being followed. Froman implementation point of view this means that agentv1 
ontrol laws are independent from agent v2 state.When a dire
ted formation is feasible the formation
ontrol abstra
tion is trivially taken as the 
ontrol sys-tems of the leaders. Contrary to the undire
ted 
asethis abstra
tion does not allow dire
t 
ontrol over ea
hindividual agent. Control is exerted on the leadersthat indire
tly 
ontrol the formation through the inter-agents links. 5 Con
lusionsIn this paper we have proposed a general frameworkfor determining feasibility of formations. Two di�er-

ent types of formations were 
onsidered: undire
tedformations were inter-agent 
ooperation is required tomaintain formation and dire
ted formations were 
on-trol responsibilities are distributed between the agents.Conditions were developed to determine formation fea-sibility for the two type of formations 
onsidered and a
ontrol abstra
tion for the group was also extra
ted tomodel the formation as single obje
t in higher 
ontrollayers.When a dire
ted formation is not feasible it may stillbe possible to extra
t a feasible formation by redu
ingthe degrees of freedom that 
annot be handled by thefollowers. This dire
tion of resear
h will be addressedin forth
oming publi
ations as well as 
onsidering di-re
ted formation graphs with possible 
y
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