
A Functional Architecture for a Team ofFully Autonomous Cooperative Robots?Pedro Lima, Rodrigo Ventura, Pedro Apar��cio, and Luis Cust�odioInstituto de Sistemas e Rob�oticaInstituto Superior T�ecnicoAv. Rovisco Pais, 1 | 1049-001 LisboaPORTUGALfpal, yoda, aparicio, lmmcg@isr.ist.utl.pthttp://lci.isr.ist.utl.pt/projects/mrob/socrob/Abstract. A three-level functional architecture for a team of mobilerobots is described in detail, including the de�nition of the role assignedto each level, the main concepts involved, and the corresponding imple-mentation for each individual robot. The architecture is oriented towardsteams of fully autonomous cooperative robots, able to carry out di�erenttypes of cooperative tasks. Complexity is reduced by the decompositionof team strategies into individual behaviors, which in turn are composedof primitive tasks. Relationships among robots of the team are modeledupon the joint intentions framework. An application to Robotic Soccerand some of its preliminary results are presented.1 Introduction and MotivationDi�erent functional architectures have been proposed in distributed arti�cialintelligence and intelligent control literature to handle the complexity of con-trolling a fully autonomous mobile robot or a team composed of such robots. Acommon concept among those approaches is the existence of atomic primitivetasks or behaviors which are the kernel of the architecture. Tasks executed bythe robot result from the composition of those entities.The main di�erence between the existing approaches concerns the interactionamong the atomic entities. While some authors allow full 
exibility, so that ateam behavior emerges from a negotiation between running behaviors [3], othersprescribe, with di�erent 
exibility levels, the task decomposition into primitivetasks [1], to an extent which may even forbid any direct communication betweenprimitive tasks [7].A three-level functional architecture for a team of mobile robots is introducedin this paper. The architecture is oriented towards teams of fully autonomouscooperative robots, able to carry out di�erent types of cooperative tasks. The? This work was supported by the Science Service of the Calouste Gulbenkian Foun-dation and by the Portuguese Foundation for Science and Technology (ISR/ISTprogrammatic funding).



level splitting is inspired by the work of Drogoul and his co-workers [3], butthere are important di�erences regarding the modeling of the relational level,which describes inter-agent negotiation and role assignment. The joint intentionsframework [8, 5, 2] provides a solid foundation for teamwork modeling, and willbe used in this work to support the implementation of the relational level.Complexity is reduced by the decomposition of team strategies (i.e., whatshould be done) into individual behaviors, which in turn are composed of prim-itive tasks. A set whose elements are the behaviors assigned to each robot ofthe team is designated as the tactics (i.e., how to do it) for a given strategy.An application to Robotic Soccer and some of its preliminary results developedduring and after the RoboCup'98 contest are presented.The paper is organized as follows. Section 2 describes the team and individualarchitectures, with details of teamwork modeling at the relational level and ofthe foreseen/current implementation for the introduced concepts. Section 3 mapsthe concepts onto a robotic soccer team. Section 4 closes the paper with somepreliminary conclusions and reference to future work.
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{ Organizational level: establishes the strategy to be followed by the wholeteam, given the team and world states. The team state corresponds to thecurrent set of behaviors under execution. The following examples, taken fromthe robotic soccer context, illustrate the concept of world (game) state, whichis divided in two classes:1. game situations reached upon the application of RoboCup tournamentrules (e.g., kicko�, end-of-game, penalty-for, penalty-against);2. team evaluation of current game status (e.g., losing & close to the end ofthe game, ball close to our goal).Strategies can be divided in, at least, two major categories:� pre-programmed scenarios for game situations in game state category 1above;� dynamic strategies (e.g., defend, attack, counter-attack), correspondingto game state category 2 above.{ Relational level: at this level, relationships among robots are established.The robots negotiate and eventually come to an agreement about some teamand/or individual goal. Moreover, behaviors are assigned to the individualrobots, after a selection from within behavior sets representative of alterna-tive tactics for the strategy selected by the organizational level. The selectedbehavior set depends on the current world plus team states. Behavior as-signments may also be temporarily modi�ed as a result of inter-robot nego-tiations.{ Individual level: encompasses all the available robot behaviors. Those in-clude the primitive tasks (e.g., SeekBall, KickBall, RotateLeft) and their re-lations.A behavior corresponds to a set of purposive (i.e., with a goal) primitive taskssequentially and/or concurrently executed. A primitive task is a sense-think-actloop (STA loop), a generalization of a closed loop control system which mayinclude motor, ball tracking or trajectory following control loops, to name a few.STA loops are composed of the following key components:{ goal: the objective to be accomplished by the primitive task (e.g., movingto a given position plus orientation (pose) set-point, tracking the ball in theimage);{ sense: sensor data required to accomplish the goal (e.g., distance to anobject, object position in an image);{ think: the actual algorithm which, using the sensor data, does what is re-quired to accomplish the goal (e.g., motion controller, ball visual servoing);{ act: the actions associated to the think algorithm (e.g., moving the wheelmotors).The sequence of primitive tasks is traversed as the logical conditions associ-ated with the connections among them become true. The logical conditions arede�ned over a predicate set. There are two predicate classes:{ predicates which check the value of a given variable (e.g., the variable goalin lastseen(goal)=left);



{ predicates which check the occurrence of a given event (e.g., the see(ball)predicate checks whether the ball became visible).A world model is required to provide information to the relational and or-ganizational levels regarding the world state. Since all computation is supposedto be distributed over the team members, with no external storage available, adistributed world model representation is required, containing all the relevantinformation for negotiation between agents, and in general the result of process-ing raw data, for primitive tasks usage. A distributed blackboard is proposed toimplement the world model [9].2.2 Individual Robots ArchitectureEach individual robot is provided with all the three levels of the team func-tional architecture. However, the organizational level is only active in one ofthe robots, assigned as the team captain. The remaining robots have a dormantorganization level, to ensure fault-tolerance: whenever the captain robot has amalfunction, the next robot in the list takes over as the captain. The list hasno special order since, from the hardware standpoint, all robots of the team arecurrently homogeneous. In an non-homogeneous population, the potential cap-tains (from a computational capacity standpoint) should be sorted according totheir descending computational power.An agent-based programming language has been speci�ed and is currentlyunder development [9, 10], to provide the team strategist (e.g., the coach, inrobotic soccer) with the means to program the population in order to achievethe strategic objectives, embedded in the behaviors and in the primitive taskSTA loops.Each of the above concepts will be implemented as follows:{ the strategy is determined at the organizational level by a state-machinewhose transitions are traversed upon the matching of speci�c world states,and whose states de�ne the current strategy. Therefore, strategies changewhen the world state (as perceived by the team) changes;{ tactics selection, including behavior selection, negotiation, and temporarybehaviors modi�cation, is implemented by relational rules at the relationallevel;{ a behavior consists of a state-machine, where each state corresponds to anSTA loop and each transition has associated logical conditions de�ned overthe predicate set described in subsection 2.1;Team organization is necessarily a centralized operation. As such, decisions onstrategies must be taken by a single agent, designated as the captain. Thus, theorganizational state machine runs in the captain. To increase team robustness,whenever the current captain does not signal that it is alive for more than atimeout period, a new captain must take control of the team.
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uence zone associated to its active behavior (see Section 3).2.3 Relational RulesRelationships among the team robots are established at the relational level of theteam functional architecture. Given a strategy established by the organizationallevel, di�erent tactics can be used to implement it. Tactics consist of behaviorsets, whose elements are the behaviors assigned to each individual robot of the1 Event is interpreted here in the context of a computational model.



team. A tactics is chosen based on the current world state, but also on eachagent's current internal state. The strategy must specify not only the goal to beattained (e.g., attack, defense) but also criteria to check how close to the goalthe team is. Behaviors can be temporarily modi�ed as a result of inter-robotnegotiation, as part of the tactics to attain the goal.An example is the situation where two teammates, both assigned a forward-like behavior, actively try to get the ball. In such a case, one of them should signalthe other its intention. A negotiation process would follow, where the teammateswould determine their distances to the ball, to decide which one should pursueit. After taking such a decision, the other player should temporarily modify itsnormal forward-like behavior.The absence of such a relational mechanism leads to situations where teambehavior is poor. Consider the case of two forward-like players with similar be-haviors, that often con
ict with each other while trying to reach the ball. Thekey to solve this problem is to endow the team members not only with individualgoals, but also make them knowledgeable of the team goals. This is clearly relatedto concepts such as joint persistent goal, joint intentions and joint commitment[8, 5, 2]. Moreover, it requires communication between team members.For instance, a joint persistent goal is de�ned in [5] as follows: A team ofagents has a joint persistent goal, relative to q, to achieve p i�: they all mutuallybelieve that p is currently false; they all mutually believe that they all want p tobe eventually true, and until they all come to mutually believe either that p istrue, that p will never be true, or that q is false, they will continue to mutuallybelieve that they each have p as a weak achievement goal relative to q.The example above can be interpreted under this de�nition. The strategy p(e.g., attack) is a weak achievement goal relative to the main goal q of scoringa goal. Suppose the two players both assumed the Forward behavior as part ofthe selected tactics. They will pursue the strong goal q (i.e., they will attempt toscore a goal) by executing their Forward behaviors so as to attain p. A criterionto check whether p is attained is to determine whether the players are able tokeep playing within their assigned in
uence zone. Both players will continueto work towards meeting this and the other criteria which de�ne the attackstrategy until they all come to mutually believe either that all the criteria weremet, that the criteria will never be attained (e.g., after a timeout), or that'scoring a goal' is no longer the main team endeavor (e.g., because the gameis over). Working towards meeting the criteria includes temporarily modifyingtheir behaviors to cope with the team goal (e.g., refraining from pursuing theball). This distinguishes a group of non-cooperative agents whose individualgoals just happen to be the same, from a group of cooperative agents whichshare a common aim. The latter exhibits cooperation and coordination, while inthe former the individual agents compete when the resources are scarce [5].The relational rules implement a recipe which is commonly agreed by all theagents of a team [5]. This recipe is embedded in the rules and may either beprescribed initially (i.e., before joint action is started) or evolve over time. Weare currently looking at the possibility of changing the recipe over time using re-



inforcement learning techniques, based on a performance function which weightsthe reliability (i.e., the ability to meet speci�cations) and the cost (computa-tional or other) of a given recipe [6]. Reinforcement learning should be able todetermine the recipe (to achieve a joint intention) that best balances cost andreliability.3 Application to a Soccer Robot TeamSome of the concepts described in the previous section will now be mapped ontoa team of fully autonomous soccer robots.Fig. 3 presents a functional division of the �eld in several regions. These arezones where robots try to locate themselves inside the �eld, according to theirassigned behaviors, e.g., defenders should stay inside the D zone and Forwardplayers should stay inside the F zone. This division helps the assignment ofin
uence areas to players.
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Fig. 3. The �eld division in actuation areas.Besides Defense (D), MidDefense (MD), MidForward (MF) and Forward (F),further divisions are introduced to increase the �eld resolution. Along the �eldlongitudinal axes, the �eld is divided in Left (L), Center (C) and Right (R)parts. This division is particularly useful when the team has more than oneplayer acting in the same functional area (e.g., L and R defenders).3.1 Player BehaviorsAs explained before, behaviors are composed of primitive tasks sequentially orconcurrently executed. A �eld in
uence zone is associated to each behavior. Sev-eral behaviors must be implemented in a robot soccer team. The most signi�cantones, whose in
uence zones are depicted in Fig. 4, are:{ GoalKeeper { Defends the goal. To do that, it continuously looks for the balland, if necessary, leaves the goal area and kicks it away. The in
uence zoneis de�ned by the goal area lines and is shown in Fig. 4 - a).
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uence zones for individual behaviors.{ Defender { The defender mission is to move the ball from the vicinity of itsteam goal to the opponents �eld. If possible, it should try to move the ballto the vicinity of a MidFielder. It should return to its original position (D)when the ball is once again in the opponent's �eld (see Fig. 4 - b)).{ MidFielder { Such as in real soccer, the Mid�elder is able to play in a varietyof positions. Its in
uence zone lies within the MD and MF areas (see Fig. 4 -c)). This player natural ability is to receive the ball from its own team �eldand decide what to do, based on the other players availability. If a Forwardis in the near vicinity of the opponents goal (F area), the MidFielder shouldtry to pass it the ball.{ Forward { The Forward behavior induces the player to be in the F zone (seeFig. 4 - d)). If the ball goes into our �eld, the Forward's mission is to keeptrack of the ball, although it should not move out of its zone by its owninitiative. When the ball moves into the F zone, it must try to take controlover it and kick it into the opponents goal. Such a behavior is implementedby the state machine of Fig. 5 - a).An alternative implementation would consist of letting the Forward playersmove up and down the �eld, using the lateral L and R corridors.3.2 Relational Behavior Modi�cationIndividual behaviors can be temporarily modi�ed to allow cooperative rela-tions between teammates, as explained in Subsection 2.3. Fig. 5 - b) depictsthe state machine which implements the Forward behavior endowed with states
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ow and teams actions during the game. Examples ofgame states are as follows:Game situations



{ game-start { This happens in the beginning of the game, after a goal or whenthe game restarts after a break;{ penalty-for, penalty-against;{ end-of-game { This is signaled by an external event (e.g., two whistle blows).Evaluation of game status{ ball-our-o�eld { One of our players has ball possession. The ball is in our�eld;{ ball-nour-ot�eld { None of our players has ball possession. The ball is in theother team �eld;{ losing & close to the end of the game;{ ball close to our goal.3.4 Scenarios for Game SituationsPre-de�ned scenarios are usually associated with the game states correspondingto game situations (see above). An example is the game-start situation, wherethe players must move to their pre-determined start positions (see Fig. 6). Self-location of the players must be accomplished at this state as they must becorrectly positioned prior to the start of the game. After positioning, the playerswill wait for the external kicko� signal (e.g., a whistle blow) that signals thestart of the game.
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RFig. 6. Players position at game start-up.3.5 Dynamic Strategies and TacticsDuring the game the ball moves inside and outside of the team mid-�eld. De-pending on factors such as the ball position and motion, the current game state,the current score, the number of available players and their behaviors, the op-ponents positions, the elapsed time, and the current strategy, the team strategymay change. This is inspired by real soccer. Possible strategies are:



{ defense { The ball must be prevented from entering our �eld. Should thathappen, it must be moved into the opponents �eld. Several defense tacticsexist. Two examples of tactics for the Defense strategy are:� Strong Defense (SD) { This strategy points towards creating a continu-ous, physical barrier between the ball and our goal. It is aimed at avoidingopponent players from moving towards our goal. When re-positioning,the Defender players should try to avoid occluding the GoalKeeper visi-bility of the �eld, i.e., the DC zone should be free of players (see Fig. 7 -a)).
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R b) Medium Defense initial positions.Fig. 7. Strong and Medium Defense tactics for the Defense strategy.� Medium Defense (MD) { Points towards a strong defense and a good re-covery mechanism, essential to counter-attack. The concept is illustratedin Fig. 7 - b). The di�erence between the SD and the MD is that in MDnot all players are moved into our �eld. This makes the transition toCounter-Attack easier, as one of the players stays in the opponent �eld.{ counter-attack { A counter-attack happens if the team is positioned to movethe ball quickly into the opponent �eld and score a goal. It requires a De-fender, to handle a possible interception of the ball by an opponent, a Mid-Fielder, to pass the ball into the Forward area, and a Forward player to kickthe ball into the opponent goal.{ attack { Under this strategy, the whole team moves forward. Besides the GK,there is only one player in our �eld. This movement requires two MidFielders(one in the MD zone and another in MF zone), and one Forward. The ideais to have the ball passed from the M zone into the F zone, where a Forwardplayer is to pick it up and kick at the goal.4 Preliminary Conclusions and Future WorkCurrently, our mid-size real robots are capable of simple but essential behaviors,composed of primitive tasks, such as following a ball, kicking a ball, scoringgoals and defending the goal, using vision-based sensors (see Fig. 5). Currentavailable behaviors include shooting at an empty goal starting from increasingly



more di�cult situations or defending the goal by permanently tracking the balland kicking it out of the goal area as soon as it gets too close. One Forward vsone Defender and a GoalKeeper have also been successfully tested in live action.Our current and future work is centered on four main topics:{ development of the self-localization system based on a vision camera and amirror;{ update and tuning of the primitive tasks software;{ design and implementation of an agent-based programming language suitablefor multi-agent systems;{ study and development of a teamwork model and its integration with theteam functional architecture.Among those, self-localization is perhaps the most essential. The functionalarchitecture described in this paper relies on a (at least rough) awareness byeach robot of its location in the �eld and, consequently, of the team currentdisposition in the �eld.The work has been carried out in a bottom-up fashion, since we believe thatmany conceptual issues can be raised from and are strongly constrained by theactual implementation problems. Nevertheless, the basic framework describedin the paper, concerning hardware, software and functional architectures, wasdesigned in a top-down fashion in the beginning of the project and has beenessentially kept unchanged so far.References1. J. S. Albus. Outline for a Theory of Intelligence. IEEE Transactions on Systems,Man, and Cybernetics, 21(3), May/June 1991.2. P. Cohen and H. Levesque. Teamwork. Technical Report 504, Center for the Studyof Language and Information, SRI International, March 1991.3. A. Drogoul and A. Collinot. Autonomous Agents and Multi-Agent Systems, chap-ter Applying an Agent-Oriented Methodology to the Design of Arti�cial Organi-zations: A Case Study in Robotic Soccer. Kluwer Academic Publ., 1998.4. Alex Drogoul and C. Dubreuil. A distributed approach to n-puzzle solving. InProceedings of the Distributed Arti�cial Intelligence Workshop, 1993.5. N. R. Jennings. Controlling cooperative problem solving in industrial multi-agentsystems using joint intentions. Arti�cial Intelligence, 75:195{240, 1995.6. P. U. Lima and G. N. Saridis. Design of Intelligent Control Systems Based onHierarchical Stochastic Automata. World Scienti�c Publ., 1996.7. G. N. Saridis. Architectures of intelligent controls. In M. M. Gupta and N. Sinha,editors, Intelligent Control Systems. IEEE Press, Piscataway NJ, 1995.8. M. Tambe. Towards 
exible teamwork. Journal of Arti�cial Intelligence Research,7, 1997.9. R. Ventura, P. Apar��cio, and P. Lima. Agent-based programming language formulti-agent teams. Technical Report RT-701-99, RT-401-99, Instituto de Sistemase Rob�otica, IST-Torre Norte, March 1999.10. R. Ventura, P. Aparicio, P. Lima, and L. Cust�odio. IsocRob | Intelligent Societyof Robots. In Collection of RoboCup99 Team Description Papers, August 1999.


