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t: The problem of tra
king a desired traje
tory is of fundamental importan
ein real appli
ations where some system is required to follow a pre-planned or pre-spe
i�ed traje
tory. For undera
tuated systems this problem is not always solvablesin
e the desired traje
tory may not belong to the set of feasible traje
tories for thegiven system. However real life appli
ations often only require tra
king of some ofthe variables, the most 
ommon example being a uni
y
le type robot following apreassigned 2D path. In this paper we study the problem of position tra
king forundera
tuated rigid bodies on SE(3).Keywords: Traje
tory Tra
king, Nonlinear Control, Nonholonomi
 Systems,Undera
tuated Systems, Di�erential Geometry.1. INTRODUCTIONTra
king a desired traje
tory is a frequent prob-lem is 
ontrol and roboti
s, where a pre-plannedpath representing the a

omplishment of 
ertaingoals must be enfor
ed. This pre-spe
i�ed pathmay represent an optimal solution for the prob-lem, a required maneuver to be exe
uted su
has do
king of a vehi
le, or the out
ome of somehigher-level 
ontroller.For fully a
tuated systems this problem is nowwell understood and solutions are proposed instandard textbooks on nonlinear 
ontrol (Isidori,1996) and (Nijmeijer and van der S
haft, 1990).On the other hand tra
king for undera
tuatedsystems is a 
hallenging problem from the theo-reti
al point of view sin
e not all traje
tories arefeasible by the system, and the results developed1 The �rst author was supported by Funda�
~aopara a Ciên
ia e Te
nologia under grant PRAXISXXI/BD/18149/98.

for fully a
tuated systems fail to apply. From thepra
ti
al point of view this problem is also ofgreat importan
e sin
e the development of sys-tems with less a
tuators allows for redu
tions inthe 
ost of the overall system and in full a
tuatedsystems represents a valuable safeguard regardingmalfun
tioning of some of the available a
tuators.In this arti
le we will address a spe
ial 
ase ofthis problem where the system in only required totra
k some of the state variables, more spe
i�
allywe will 
onsider undera
tuated rigid bodies on thespe
ial eu
lidean group SE(3) where it is onlyrequired that the system tra
ks a referen
e posi-tion in three dimensional spa
e. The importan
eof this problem 
omes from the fa
t that oftena mission is only spe
i�ed in terms of a desiredposition traje
tory and no orientation informationis available.Traditional approa
hes to this problem involvelinearization about the referen
e traje
tory andmethods from linear 
ontrol theory resulting in



a global gain-s
heduled 
ontrol law (Kaminer etal., 1998) or linear time-varying 
ontrol (Walshet al., 1994). Other approa
hes in
lude adaptiveand feedba
k linearization s
hemes (Fossen, 1994)or using 
onstant forward speed, thereby re-du
ing the problem to 
ontrol the attitude ofthe rigid body towards the referen
e traje
tory(En
arna�
~ao et al., 2000). This approa
h wasoriginally introdu
ed in (Samson, 1992; Mi
aelliand Samson, 1993) and sin
e then more advan
edte
hniques have also been applied to planar robotssu
h as partial feedba
k linearization and dy-nami
 feedba
k linearization, (d'Abdrea Nolvel etal., 1995) (Thuillot et al., 1996). A survey of thevarious methods of 
ontrol and traje
tory tra
kingfor mobile robots is given in (de Wit et al., 1997)and for o
ean vehi
les in (Fossen, 1994).Contrary to the des
ribed approa
hes, in this pa-per we will address the problem from a 
oordinate-free perspe
tive, therefore allowing a simpler andmore general understanding and presentation ofthe results often obs
ured by a parti
ular 
hoi
eof 
oordinates. This approa
h makes use of sev-eral te
hniques from di�erential geometry andhas been strongly in
uen
ed by work on tra
kingwith similar approa
hes su
h as (Bullo and Mur-ray, 1999). A good introdu
tion to nonholonomi
systems in the 
ontext of Riemannian manifoldsis given in (Blo
h and Crou
h, 1995).2. MATHEMATICAL PRELIMINARIESWe shall assume that the reader is familiar withseveral di�erential geometri
 
on
epts at the levelof (Boothby, 1975).2.1 SE(3), left invariant metri
s and kinemati

onne
tions.In this paper we will 
onsider the left-invariantkinemati
 model of an undera
tuated rigid bodyin SE(3) given by:ddtg = g:(X1u1 +X2u2 +X3u3 +X4u4) (1)where g 2 SE(3) and X1, X2, X3 and X4 are thebasis ve
tors of the lie algebra se(3) representingthe dire
tion of motion along roll, pit
h, yaw andforward translational velo
ity, respe
tively. Notethat the system is undera
tuated sin
e motionalong the remaining basis ve
tors of se(3) is notpossible. Instead of writing elements of se(3) inmatrix form we will adopt the following simplerrepresentation:f(!1; !2; !3); (v1; v2; v3)g $ 2664 0 �!3 !2 v1!3 0 �!1 v2�!2 !1 0 v30 0 0 0 3775(2)

whi
h allows us to represent a left invariant metri
on SE(3) in the following form:� = ��I3�3 03�303�3 �I3�3� (3)with � and � positive s
alars. For a dis
ussionon the possible metri
s on SE(3) and its relationwith the kinemati
 
onne
tion we defer the readerto (Zefran et al., 1999) and the referen
es therein.We shall also need the kinemati
s 
onne
tion 
om-patible with the previously given left-invariantmetri
 and whose non zero Christofell symbols wereprodu
e here for 
ompleteness:�312 = �231 = �123 = 12�321 = �213 = �132 = �12�615 = �426 = �534 = 1�624 = �435 = �516 = �1 (4)2.2 Error fun
tionsWe shall de�ne error fun
tions on Rn for the sakeof generality, although we are only interested intra
king traje
tories in R3 . For a de�nition oferror fun
tions on abstra
t manifolds the readeris deferred to (Bullo and Murray, 1999). An errorfun
tion is a map � : Rn � Rn ! R, su
h that�(x; r) � 0 and �(x; r) = 0 i� x = r. We shallalso impose that d2�(x; r) = �d1�(x; r) whered1 is the exterior derivative with respe
t to xand d2 the exterior derivative with respe
t to r.This will allow the time derivative of �(x; r) beingexpressed by the familiar expression:ddt�(x; r) = d1�(x; r): _x + d2�(x; r): _r= d1�(x; r)( _x � _r) (5)We shall say that the error fun
tion is (uniformly)quadrati
 lower bounded if there is a s
alar b � 0su
h that: �(x; r) � bkd1�(x; r)k2 (6)Note than in abstra
t manifolds this 
onditionmay only hold lo
ally a

ording to the topologyof the manifold.3. TRACKING FOR NONHOLONOMICSYSTEMS3.1 Problem formulationThe goal of this paper is to des
ribe an algorithmto tra
k a desired position referen
e r(t) disre-garding the rigid body orientation. A 
ontrol lawu(g) solves the position tra
king problem if:



� The tra
king error �(t) = �(x(t); r(t)) andthe 
ontrols ui are bounded for all time.� The tra
king error asymptoti
ally de
ays tozero, limt!1 �(t) = 0It is usual to in
lude another requirement whenonly feasible traje
tories are being tra
ked, namelythat �(0) = 0 ) �(t) = 0. However this re-quirement may not be satis�ed if one wishes totra
k traje
tories not feasible by all the statesof the system. Suppose that �(0) = 0 and thatddtr(t) =2 SpanfX1; X2; X3; X4g under this s
e-nario one 
an never guarantee that the error fun
-tion will remain zero.3.2 Regularity and boundedness assumptionsWe shall assume the following regularity andboundedness properties:� �(x; r) 2 C2.� r(t) is twi
e di�erentiable.� supt2R kr(t)k < 1, supt2R k _r(t)k < 1 andsupt2R k�r(t)k <1.We assume that the referen
e traje
tory is twi
edi�erentiable whi
h is not a restri
tive assumptionsin
e it is desirable for the referen
e to be assmooth as possible. Boundedness assumptions onthe referen
e traje
tory are also standard assump-tions.3.3 Intuitive motivationTo a
hieve exponential tra
king of the rigid bodyposition it would desirable that the ve
tor �eldX des
ribing the motion of the rigid body 
ouldbe 
hosen to be X = _r � �(d1�(x; r))T . We usethe metri
 (gij = �I3�3) on R3 to transform the
ove
tor d1�(x; r) in the ve
tor gij(d1�(x; r))j =1� (d1�(x; r))i = 1� (d1�(x; r))T = �(d1�(x; r))T .Therefore, by using V1 = �(x; r) as a 
andidateLyapunov fun
tion one immediately sees that:ddtV1 =d1�(x; r):( _x � _r)= d1�(x; r):� _r � �(d1�(x; r))T � _r�=��d1�(x; r):(d1�(x; r))T (7)whi
h is negative semi-de�nite, negative de�nite-ness is a 
onsequen
e of the quadrati
 nature of�. In fa
t, using the inequality in (6):ddtV1 =��d1�(x; r):(d1�(x; r))T=��kd1�(x; r)k2 � ��b �(x; r) (8)It is not always possible to freely assign the ve
tor�eld _x due to the kinemati
 restri
tions of the

system. However the above observation suggeststhe following approa
h to solve the problem:� Use roll, pit
h and yaw inputs to align theve
tor �eld Xr = �03�3 X01�3 0 � with X4.� Proje
t Xr on X4, to determine the forwardvelo
ity 
ontrol input.This approa
h will now be des
ribed in moredetail.3.4 Orientation 
ontrolTo ensure that Xr belongs to SpanfX1; :::; X4gone must derive a 
ontrol law that stabilizes thesystem in the following set 	 = fg 2 SE(3) : <Xr; X5(g) >g= 0; < Xr; X6(g) >g= 0g. We 
anbuild a 
andidate Lyapunov fun
tion measuringthe \distan
e" to the set 	. Let  i : R � R !R i = 1; 2 be two error fun
tions and 
onsiderthe following Lyapunov 
andidate fun
tion:V2 =  1(< Xr; X5 >; 0) +  2(< Xr; X6 >; 0)(9)After some tedious algebra (Tabuada and Lima,2000), it 
an be shown that its time derivative isgiven by:ddtV2 = d 1�< f0; �r � � ddt (d1�(x; r)jxfixed)T g; X5 >��u4 < �2�(x; r)�xixj X4; X5 >+u1 < Xr; X6 > �u3 < Xr; X4 >�+ d 2�< f0; �r � � ddt (d1�(x; r)jxfixed)T g; X6 >��u4 < �2�(x; r)�xixj X4; X6 >+u2 < Xr; X4 > �u1 < Xr; X5 >� (10)This means that if we 
hoose �(x; r) in su
ha way that < �2�(x;r)�xixj X4; X5 >= 0 and <�2�(x;r)�xixj X4; X6 >= 0 and as long as < Xr; X4 >6=0 we 
an use u2 and u3 to exponentially steer therigid body towards the set 	. Before stating thisresult we will give a more useful 
hara
terizationof the allowed error fun
tions:Proposition 3.1. The requirement< �2�(x;r)�xixj X4; X5 >= 0 =< �2�(x;r)�xixj X4; X6 > is sat-is�ed i� �(x; r) = 12k(r)(x�r)T (x�r), where k(r)is a smooth fun
tion of r.Now we are ready to state the following result.Proposition 3.2. (Exponential stabilization in 	).For all initial 
onditions in the open and denseset � = fg 2 SE(3) : < Xr; X4(g) >g 6=



0g and all the error fun
tions of the form�(x; r) = 12k(r)(x � r)T (x� r) the 
ontrol law:u1 =0 (11)u2 =� �2d 2< Xr; X4 >� < f0; �r � � ddt (d1�(x; r)jxfixed)T g; X6 >< Xr; X4 >u3 = �3d 1< Xr; X4 >+ < f0; �r � � ddt (d1�(x; r)jxfixed)T g; X5 >< Xr; X4 >for �2, �3 > 0 exponentially stabilizes the sys-tem (1) in the set 	.Proof: Consider the Lyapunov 
andidate fun
-tion (9) and its time derivative, given by (10).Substituting the 
ontrol law (11) and taking intoa

ount the spe
ial form of the error fun
tion, onegets: ddtV2 = ��3(d 1)2 � �2(d 2)2 (12)whi
h is negative semide�nite. Negative de�nite-ness is proved with an argument similar to theproof of (7), let b 1 , b 2 be the quadrati
 lowerbounding 
onstants for the fun
tions  1,  2 asde�ned in (6), respe
tively. It follows that:ddtV2 � � �3b 1  1 � �2b 2  2 (13)To show that traje
tories never leave the set � itis enough to 
onsider that _V2 � 0, therefore theproje
tion of Xr overX4 never de
reases and thus
an never be zero.Remarks: The spe
ial form of the error fun
tionis not ne
essary to stabilize the system in the set	, however it is very useful sin
e it de
ouples theorientation 
ontrol from the position 
ontrol. Itwill allow us to 
hose a 
ontrol law for u4 in thenext se
tion without disturbing the orientationkinemati
s. However it redu
es the set of possibleerror fun
tions, forbidding the use of di�erentweights for the error along di�erent dire
tions(one is for
ed to use k(r) in all dire
tions). This
an also be seen as a dire
t 
onsequen
e of theredu
ed set of metri
s 
ompatible with the kine-mati
s 
onne
tion.In 
ontrol law (11) u1 was 
hosen to be zero,implying that it is not ne
essary that the rigidbody possesses roll 
ontrol to stabilize it in 	.In fa
t, similar 
ontrol laws 
ould be developedby 
hoosing u2 or u3 to be zero. Roll 
ontrolis still important if pit
h or yaw 
ontrol fails,
onstituting a useful redundan
y. What is moreuseful in 
ertain situations is to be able to 
hosewhi
h a
tuators to use for optimizing fuel 
on-sumption or other optimality 
riteria during the

mission, however this approa
h will not be furtheraddressed in this paper.Note that 
ontrol law (11) uses the a

elerationof the referen
e traje
tory whi
h is not usual intraje
tory tra
king. This 
an be easily explainedif one realizes that the attitude 
ontrol is tra
kingvelo
ities in trying to align Xr with X4, thereforesin
e (11) 
an be viewed as a generalized PD
ontroller it needs a

eleration information toa

omplish this goal.Unfortunately 
ontrol law 11 does not guarantees
onvergen
e for all initial 
onditions, but only foran open and dense set of SE(3). Nevertheless thisis the best that 
an be a
hieved sin
e SE(3) is nota simply 
onne
ted spa
e.3.5 Position ControlSin
e the orientation of the rigid body is 
onverg-ing to the set 	 by the a
tion of 
ontrol inputs u2and u3, it remains to 
ontrol the forward velo
itythrough 
ontrol input u4. The 
ontrol law foru4 should be proportional to a measure of thealignment between Xr and X4, this 
an triviallybe a
hieved by proje
ting the referen
e ve
tor �eldXr on X4, resulting in:u4 = < Xr; X4 >< X4; X4 > = 1� < Xr; X4 >= � < Xr; X4 > (14)Combining (14) with (11) we 
an asymptoti
allytra
k the desired referen
e. This 
onstitutes themain 
ontribution of the paper and is expressedin the following:Theorem 3.3. (Asymptoti
al position tra
king). Forall initial 
onditions in the set � and all error fun
-tions of the form �(x; r) = 12k(r)(x � r)T (x� r),
ontrol law (11) and (14) makes the system (1)asymptoti
ally tra
k the desired referen
e r(t).In order to prove the result we will need thefollowing standard lemma whose proof 
an befound in (Khalil, 1996) Appendix A.2.Lemma 3.4. Let f(x) : D ! Rn ; D � Rn be alo
ally Lips
hitz ve
tor �eld on D. If the solutionx(t) is bounded and belongs to D for t � 0, thenits positive limit set L+ is a nonempty, 
ompa
t,invariant set. Moreover, x(t)! L+ as t!1.Due to spa
e limitations we present only a sket
hof the proof:Proof: This proof sket
h will 
onsist of the fol-lowing steps: boundedness of system traje
tories,
onvergen
e of traje
tories to the largest invariant



set in 	 and equality between largest invariant setin 	 and desired referen
e r(t).Boundedness of traje
tories. The traje
tories ofthe rotation matri
es (living in SO(3)) are boundedsin
e SO(3) is a 
ompa
t spa
e. We only needto show that position of the rigid body is alsobounded. By using the fa
t that the traje
toriesof the system _x0 = X(x0) = _r � d1�(x0; r) arebounded sin
e ddt� � 0 as shown in (7) it 
anbe shown that traje
tories of (1) with 
ontrollaw (14) and (11) are also bounded.Convergen
e to the largest invariant set in 	. Thesystem (1) with 
ontrol laws (11) and (14) islo
ally Lips
hitz sin
e the boundedness assump-tions (3.2) on �(x; r) and r(t) easily imply that� _g�g is 
ontinuous on �. Therefore on any 
ompa
tneighborhood the derivative of _g with respe
t tog is bounded, implying lo
al Lips
hitz 
ontinuity.By applying Lemma 3.4 we 
on
lude that thepositive limit set is an invariant set. From (9) weknow that traje
tories approa
h 	 asymptoti
ally,therefore by Lemma 9 they approa
h the largestinvariant set 
ontained in 	.The largest invariant set in 	. To study thelargest invariant set in 	 we start by noting thatg 2 	 ) X4 = �Xr for a s
alar � and the positionkinemati
s is simpli�ed to _x = _r � �(d1�(x; r))T .Therefore the largest invariant set in 	 is thedesired referen
e r(t) as shown in (7).4. SIMULATION RESULTSIn this se
tion some simulations results are pre-sented for the SE(3) and the SE(2) 
ase. For theSE(3) the used error fun
tions and gains were�(x; r) = 12 (x � r)T (x � r),  1(a; b) =  2(a; b) =12 (a � b)2, �1 = 10 and �2 = 10. The metri
s
alar � was 
hosen to be unitary. With thesevalues the desired referen
e was an helix givenby r(t) = �sin( t10 ); 
os( t10 ); t10�, t 2 [0; 100℄. Theerrors between the desired traje
tory r(t) and thereal traje
tory x(t) are represented in Figure 1 foran initial position of x(0) = (�10;�30;�5) andan initial orientation of R = I3�3. Convergen
e isvery fast and the referen
e traje
tory is tra
kedwith good pre
ision. This motivates the use ofmore 
hallenging referen
es su
h as:r(t) =8<: (t; t) 0 < t � 30(60� t; t) 31 < t � 60(�60 + t; t) 61 < t � 100 (15)for the SE(2) 
ase. Note that the referen
e isnot twi
e di�erentiable violating the 
onditionsof Theorem 3.3. This implies that the systemwill lose tra
k of the referen
e at the points ofnon-di�erentiability as 
an be seen in Figure 2.Even in this 
ase the results are very impressivesin
e the traje
tory is retra
ked very qui
kly after
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the same traje
tory was simulated with boundeda
tuators by restri
ting the linear and angularvelo
ities were restri
ted to the set [�5; 5℄. Theresults are depi
ted in Figure 3. The 
onvergen
e
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e traje
tory and vehi
le lo
ationfor the SE(2) 
ase with bounded a
tuators,initial position x(0) = (20; 100), initial orien-tation R = �I2�2.time is mu
h greater and the initial part of thetraje
tory is not tra
ked at all as 
an be seenfrom Figure 4. This was expe
ted sin
e the initial
ondition is far from the traje
tory, however atthe points of non-di�erentiability of the referen
ethe results are very similar with the unrestri
teda
tuators 
ase, eviden
ing the good performan
eand robustness for situations not expli
itly takenin to a

ount in the theoreti
al development.5. CONCLUSIONSIn this paper we have studied the problem oftra
king a desired position for an undera
tuatedrigid body in the spe
ial eu
lidean group. It is wasshown that the problem is solvable using stati
state feedba
k on a open and dense subset ofSE(3) even if roll 
ontrol is not possible. Thedevelopment of the 
ontrol law was done in a 
oor-dinate free way thereby avoiding the unne
essary
ompli
ations often imposed by possible param-eterizations of SE(3). The need to de
ouple theposition motion from the orientation motion led toa redu
tion of the set of fun
tions measuring theerror between the rigid body desired and a
tualposition. This is a dire
t 
onsequen
e of the alsoredu
ed set of left invariant metri
s 
ompatiblewith the kinemati
 
onne
tion on SE(3). Asymp-toti
 
onvergen
e towards the referen
e traje
torywas shown and several simulations were in
ludedto shown the algorithm good performan
e evenwith non-di�erentiable referen
e traje
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