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Abstract: The problem of tracking a desired trajectory is of fundamental importance
in real applications where some system is required to follow a pre-planned or pre-
specified trajectory. For underactuated systems this problem is not always solvable
since the desired trajectory may not belong to the set of feasible trajectories for the
given system. However real life applications often only require tracking of some of
the variables, the most common example being a unicycle type robot following a
preassigned 2D path. In this paper we study the problem of position tracking for

underactuated rigid bodies on SE(3).
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1. INTRODUCTION

Tracking a desired trajectory is a frequent prob-
lem is control and robotics, where a pre-planned
path representing the accomplishment of certain
goals must be enforced. This pre-specified path
may represent an optimal solution for the prob-
lem, a required maneuver to be executed such
as docking of a vehicle, or the outcome of some
higher-level controller.

For fully actuated systems this problem is now
well understood and solutions are proposed in
standard textbooks on nonlinear control (Isidori,
1996) and (Nijmeijer and van der Schaft, 1990).
On the other hand tracking for underactuated
systems is a challenging problem from the theo-
retical point of view since not all trajectories are
feasible by the system, and the results developed
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for fully actuated systems fail to apply. From the
practical point of view this problem is also of
great importance since the development of sys-
tems with less actuators allows for reductions in
the cost of the overall system and in full actuated
systems represents a valuable safeguard regarding
malfunctioning of some of the available actuators.
In this article we will address a special case of
this problem where the system in only required to
track some of the state variables, more specifically
we will consider underactuated rigid bodies on the
special euclidean group SE(3) where it is only
required that the system tracks a reference posi-
tion in three dimensional space. The importance
of this problem comes from the fact that often
a mission is only specified in terms of a desired
position trajectory and no orientation information
is available.

Traditional approaches to this problem involve
linearization about the reference trajectory and
methods from linear control theory resulting in



a global gain-scheduled control law (Kaminer et
al., 1998) or linear time-varying control (Walsh
et al., 1994). Other approaches include adaptive
and feedback linearization schemes (Fossen, 1994)
or using constant forward speed, thereby re-
ducing the problem to control the attitude of
the rigid body towards the reference trajectory
(Encarnagdo et al., 2000). This approach was
originally introduced in (Samson, 1992; Micaelli
and Samson, 1993) and since then more advanced
techniques have also been applied to planar robots
such as partial feedback linearization and dy-
namic feedback linearization, (d’Abdrea Nolvel et
al., 1995) (Thuillot et al., 1996). A survey of the
various methods of control and trajectory tracking
for mobile robots is given in (de Wit et al., 1997)
and for ocean vehicles in (Fossen, 1994).
Contrary to the described approaches, in this pa-
per we will address the problem from a coordinate-
free perspective, therefore allowing a simpler and
more general understanding and presentation of
the results often obscured by a particular choice
of coordinates. This approach makes use of sev-
eral techniques from differential geometry and
has been strongly influenced by work on tracking
with similar approaches such as (Bullo and Mur-
ray, 1999). A good introduction to nonholonomic
systems in the context of Riemannian manifolds
is given in (Bloch and Crouch, 1995).

2. MATHEMATICAL PRELIMINARIES

We shall assume that the reader is familiar with
several differential geometric concepts at the level
of (Boothby, 1975).

2.1 SE(3), left invariant metrics and kinematic
connections.

In this paper we will consider the left-invariant
kinematic model of an underactuated rigid body
in SE(3) given by:

d
77 = 9.(Xiur + Xous + Xgug + Xqug) (1)

where g € SE(3) and X3, Xs, X5 and X4 are the
basis vectors of the lie algebra se(3) representing
the direction of motion along roll, pitch, yaw and
forward translational velocity, respectively. Note
that the system is underactuated since motion
along the remaining basis vectors of se(3) is not
possible. Instead of writing elements of se(3) in
matrix form we will adopt the following simpler
representation:

0 —Wws3 wo U1
W3 0 —W1 V2
—Wy w1 0 V3
0 0 00

(2)

{(w1,wa,w3), (v1,v2,v3)} <

which allows us to represent a left invariant metric
on SE(3) in the following form:
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with « and ( positive scalars. For a discussion
on the possible metrics on SE(3) and its relation
with the kinematic connection we defer the reader
to (Zefran et al., 1999) and the references therein.
We shall also need the kinematics connection com-
patible with the previously given left-invariant
metric and whose non zero Christofell symbols we
reproduce here for completeness:

3 _12 _1l _
F12_F31_F23_
3 _12 _1l _

F21_F13_F32__

If; = F%G =T =1

1"34 = ng = F?e =-1 (4)

2.2 Error functions

We shall define error functions on R” for the sake
of generality, although we are only interested in
tracking trajectories in R®. For a definition of
error functions on abstract manifolds the reader
is deferred to (Bullo and Murray, 1999). An error
function is a map ¢ : R® x R® — R, such that
¢(z,r) > 0 and ¢(z,r) = 0 iff x = r. We shall
also impose that dy¢p(z,r) = —d;é(z,r) where
d; is the exterior derivative with respect to z
and ds the exterior derivative with respect to r.
This will allow the time derivative of ¢(z,7) being
expressed by the familiar expression:

%qﬁ(:ﬂ, r)=dig(z,r).z + dadp(z, 7)1
=dip(x,7)(F —7) (5)

We shall say that the error function is (uniformly)
quadratic lower bounded if there is a scalar b > 0
such that:

¢(z,r) > blldi(z,r)|]” (6)

Note than in abstract manifolds this condition
may only hold locally according to the topology
of the manifold.

3. TRACKING FOR NONHOLONOMIC
SYSTEMS

3.1 Problem formulation

The goal of this paper is to describe an algorithm
to track a desired position reference r(t) disre-
garding the rigid body orientation. A control law
u(g) solves the position tracking problem if:



e The tracking error ¢(t) = ¢(z(t),r(t)) and
the controls u; are bounded for all time.

e The tracking error asymptotically decays to
zero, lim;_, ¢(t) =0

It is usual to include another requirement when
only feasible trajectories are being tracked, namely
that ¢(0) = 0 = ¢(t) = 0. However this re-
quirement may not be satisfied if one wishes to
track trajectories not feasible by all the states
of the system. Suppose that ¢(0) = 0 and that
4rt) ¢ Span{Xi,X>, X3, X4} under this sce-
nario one can never guarantee that the error func-
tion will remain zero.

3.2 Regularity and boundedness assumptions

We shall assume the following regularity and
boundedness properties:

o ¢(x,r) € C%

e 7(t) is twice differentiable.

o supcg [|7()]] < 00, supeg [|7(t)[] < oo and
supyeg [[7(1)]| < oo.

We assume that the reference trajectory is twice
differentiable which is not a restrictive assumption
since it is desirable for the reference to be as
smooth as possible. Boundedness assumptions on
the reference trajectory are also standard assump-
tions.

3.3 Intuitive motivation

To achieve exponential tracking of the rigid body
position it would desirable that the vector field
X describing the motion of the rigid body could
be chosen to be X = 7 — A(dy¢(x,7))T. We use
the metric (g;; = BI3x3) on R? to transform the
covector dy¢(z,r) in the vector g¥(di¢(z,r)); =
%(dl(ﬁ(xlr))l = %(dlgb(‘rar))T = A(d1¢(x=r))T
Therefore, by using Vi = ¢(z,7) as a candidate
Lyapunov function one immediately sees that:

=dio(z,r).(2 —7)
=dig(z,r). (1 — Mdig(z,r)T —7)
= -Adio(z,r).(d1d(z,r))T (7)

which is negative semi-definite, negative definite-
ness is a consequence of the quadratic nature of
¢. In fact, using the inequality in (6):

v
dt "

%Vl = - ¢(z,7).(dyp(z, )"

= Mot < Sz

It is not always possible to freely assign the vector
field # due to the kinematic restrictions of the

system. However the above observation suggests
the following approach to solve the problem:

e Use roll, pitch and yaw inputs to align the

vector field X, = [%3X3 iﬂ with Xy.
1x3

e Project X, on X4, to determine the forward
velocity control input.

This approach will now be described in more
detail.

3.4 Orientation control

To ensure that X, belongs to Span{Xj,..., X4}
one must derive a control law that stabilizes the
system in the following set ¥ = {g € SE(3) : <
X X5(9) >4=10, < X, X¢(g) >4= 0}. We can
build a candidate Lyapunov function measuring
the “distance” to the set W. Let ¢; : R x R —
R 4 = 1,2 be two error functions and consider
the following Lyapunov candidate function:

V2 = 1,b1(< XT:X5 >30) + ¢2(< XT:Xﬁ >70)
9)
After some tedious algebra (Tabuada and Lima,

2000), it can be shown that its time derivative is
given by:

. d

§V2 dyy (< {0, 7 — Ad—(d1¢($:7‘)\zfized)T}=X5 >

2 ¢(x, r)
Oxizi

Fur < X, Xg > —uz < X, Xy >)

—Auy < X4,X5 >

; d
+ dypa (< {0, 7 — A—(dm(m,r)\xfixed)T},Xa >
2
—duy < 0 ¢($ ’I“) ——= Xy, Xg >
o'z
tuy < Xp, Xy > —uy < X, X5 >) (10)

This means that if we choose ¢(z,r) in such
Do x, X5 >= 0 and <

Oztxl

86‘2(9;]T)X X¢ >=0and as long as < X, X4 >#
0 we can use uy and us to exponentially steer the
rigid body towards the set ¥. Before stating this
result we will give a more useful characterization

of the allowed error functions:

a way that <

Proposition 3.1. The requirement
< Loz x, Xy >=0=< Tz

Ozixi

isfied iff ¢(z, r) = 1k(r)(z—
is a smooth function of r.

)X , Xg > is sat-
Y (2 —r), where k(r)

Now we are ready to state the following result.

Proposition 3.2. (Exponential stabilization in ¥).
For all initial conditions in the open and dense
set ¥ = {g € SE@B) :< X,,Xulg) >,#



0} and all the error functions of the form
¢(z,r) = 1k(r)(@ — r)" (z — r) the control law:

u; =0 (11)
y = — p2dip
<X, X4>
< {OJ; - A%(dlﬁb(xa'r”mfimed)TLXﬁ >
B <X, X4 >
ug = p3dir
<X, Xy>
N < A{0,7 = AL (d1d(z, ) afivea) T}, X5 >
< X, Xy >

for pa, p3 > 0 exponentially stabilizes the sys-
tem (1) in the set W.

Proof: Consider the Lyapunov candidate func-
tion (9) and its time derivative, given by (10).
Substituting the control law (11) and taking into
account the special form of the error function, one
gets:

%% = —ps(dn)? — po(dipn)®  (12)

which is negative semidefinite. Negative definite-
ness is proved with an argument similar to the
proof of (7), let b¥1, b¥2 be the quadratic lower
bounding constants for the functions 1, ¥ as
defined in (6), respectively. It follows that:

d

%Vz < —:73111)1 - ;7221#2 (13)
To show that trajectories never leave the set X it
is enough to consider that Vy < 0, therefore the
projection of X, over X, never decreases and thus
can never be zero.

Remarks: The special form of the error function
is not necessary to stabilize the system in the set
¥, however it is very useful since it decouples the
orientation control from the position control. It
will allow us to chose a control law for u4 in the
next section without disturbing the orientation
kinematics. However it reduces the set of possible
error functions, forbidding the use of different
weights for the error along different directions
(one is forced to use k(r) in all directions). This
can also be seen as a direct consequence of the
reduced set of metrics compatible with the kine-
matics connection.

In control law (11) u; was chosen to be zero,
implying that it is not necessary that the rigid
body possesses roll control to stabilize it in W.
In fact, similar control laws could be developed
by choosing us or usz to be zero. Roll control
is still important if pitch or yaw control fails,
constituting a useful redundancy. What is more
useful in certain situations is to be able to chose
which actuators to use for optimizing fuel con-
sumption or other optimality criteria during the

mission, however this approach will not be further
addressed in this paper.

Note that control law (11) uses the acceleration
of the reference trajectory which is not usual in
trajectory tracking. This can be easily explained
if one realizes that the attitude control is tracking
velocities in trying to align X, with Xy, therefore
since (11) can be viewed as a generalized PD
controller it needs acceleration information to
accomplish this goal.

Unfortunately control law 11 does not guarantees
convergence for all initial conditions, but only for
an open and dense set of SE(3). Nevertheless this
is the best that can be achieved since SE(3) is not
a simply connected space.

3.5 Position Control

Since the orientation of the rigid body is converg-
ing to the set ¥ by the action of control inputs us
and wg, it remains to control the forward velocity
through control input wuys. The control law for
u4 should be proportional to a measure of the
alignment between X, and Xy, this can trivially
be achieved by projecting the reference vector field
X, on X4, resulting in:

< X, Xy > 1
=St Z DX, X >
<X47X4> 6 " !

=A< X, Xy > (14)

Uy

Combining (14) with (11) we can asymptotically
track the desired reference. This constitutes the
main contribution of the paper and is expressed
in the following;:

Theorem 3.3. (Asymptotical position tracking). For

all initial conditions in the set ¥ and all error func-
tions of the form ¢(z,r) = 1k(r)(z — r)T(z — 1),
control law (11) and (14) makes the system (1)
asymptotically track the desired reference r(¢).

In order to prove the result we will need the
following standard lemma whose proof can be
found in (Khalil, 1996) Appendix A.2.

Lemma 3.4. Let f(z) : D - R*, D C R" be a
locally Lipschitz vector field on D. If the solution
x(t) is bounded and belongs to D for ¢t > 0, then
its positive limit set LT is a nonempty, compact,
invariant set. Moreover, z(t) — LT as t — oc.

Due to space limitations we present only a sketch
of the proof:

Proof: This proof sketch will consist of the fol-
lowing steps: boundedness of system trajectories,
convergence of trajectories to the largest invariant



set in ¥ and equality between largest invariant set
in ¥ and desired reference r(t).

Boundedness of trajectories. The trajectories of
the rotation matrices (living in SO(3)) are bounded
since SO(3) is a compact space. We only need
to show that position of the rigid body is also
bounded. By using the fact that the trajectories
of the system 2/ = X(2') = # — dy¢(a',r) are
bounded since £¢ < 0 as shown in (7) it can
be shown that trajectories of (1) with control
law (14) and (11) are also bounded.

Convergence to the largest invariant set in ¥. The
system (1) with control laws (11) and (14) is
locally Lipschitz since the boundedness assump-
tions (3.2) on ¢(x,r) and r(t) easily imply that
% is continuous on Y. Therefore on any compact
neighborhood the derivative of ¢ with respect to
g is bounded, implying local Lipschitz continuity.
By applying Lemma 3.4 we conclude that the
positive limit set is an invariant set. From (9) we
know that trajectories approach ¥ asymptotically,
therefore by Lemma 9 they approach the largest
invariant set contained in V.

The largest invariant set in ¥. To study the
largest invariant set in ¥ we start by noting that
g € ¥ = X, =nX, for ascalar n and the position
kinematics is simplified to @ = 7 — A(d;¢(z,7))T.
Therefore the largest invariant set in ¥ is the
desired reference r(t) as shown in (7).

4. SIMULATION RESULTS

In this section some simulations results are pre-
sented for the SE(3) and the SE(2) case. For the
SE(3) the used error functions and gains were
¢(CU,7“) = %(CIZ - T)T(w - 7“), ¢1(a=b) = ¢2(avb) =
1(a —b)*, py = 10 and p, = 10. The metric
scalar 8 was chosen to be unitary. With these
values the desired reference was an helix given
by r(t) = (sin(55), cos(55), 15), t € [0,100]. The
errors between the desired trajectory r(¢) and the
real trajectory z(t) are represented in Figure 1 for
an initial position of 2(0) = (—10,—-30,—5) and
an initial orientation of R = I3x3. Convergence is
very fast and the reference trajectory is tracked
with good precision. This motivates the use of
more challenging references such as:

(t,1) 0<t<30
r(t) =4 (60—t,t) 31<t<60 (15)
(—60+t,t) 61 <t< 100

for the SE(2) case. Note that the reference is
not twice differentiable violating the conditions
of Theorem 3.3. This implies that the system
will lose track of the reference at the points of
non-differentiability as can be seen in Figure 2.
Even in this case the results are very impressive
since the trajectory is retracked very quickly after
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Fig. 1. Tracking error (r(t) — x(t)) for the SE(3)

case, initial position x(0) = (—10,—-30, —5),
initial orientation R = I343.
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Fig. 2. Tracking error (r(t) — z(t)) for the SE(2)

case, initial position z(0) = (20,100), initial
orientation R = —I5yo.
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Fig. 3. Tracking error (r(t) — z(t)), for the SE(2)
case with bounded actuators, initial position
z(0) = (20,100), initial orientation R =
_12><2-

being lost. To turn the simulations more realistic
the same trajectory was simulated with bounded
actuators by restricting the linear and angular
velocities were restricted to the set [—5,5]. The
results are depicted in Figure 3. The convergence



110

100~

90+

80

70F

60

50

a0

30

201

101

L L L L L L L
-40 -20 0 20 40 60 80

Fig. 4. Reference trajectory and vehicle location
for the SE(2) case with bounded actuators,
initial position 2(0) = (20, 100), initial orien-
tation R = —I5ys.

time is much greater and the initial part of the
trajectory is not tracked at all as can be seen
from Figure 4. This was expected since the initial
condition is far from the trajectory, however at
the points of non-differentiability of the reference
the results are very similar with the unrestricted
actuators case, evidencing the good performance
and robustness for situations not explicitly taken
in to account in the theoretical development.

5. CONCLUSIONS

In this paper we have studied the problem of
tracking a desired position for an underactuated
rigid body in the special euclidean group. It is was
shown that the problem is solvable using static
state feedback on a open and dense subset of
SE(3) even if roll control is not possible. The
development of the control law was done in a coor-
dinate free way thereby avoiding the unnecessary
complications often imposed by possible param-
eterizations of SE(3). The need to decouple the
position motion from the orientation motion led to
a reduction of the set of functions measuring the
error between the rigid body desired and actual
position. This is a direct consequence of the also
reduced set of left invariant metrics compatible
with the kinematic connection on SFE(3). Asymp-
totic convergence towards the reference trajectory
was shown and several simulations were included
to shown the algorithm good performance even
with non-differentiable reference trajectories.
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