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Keywords: Multi-Agent systems, formations, cyclic graphs. approach has also been proposed in [6] and in [2] the coordina

tion between agents is specified by a discrete set of waygoint
Abstract instead of rigid inter agent constraints. We assume kiniemat

models for each agent described by drift free control system
Formations of multi-agent systems, such as satellitesadts  This class of systems is rich enough to capture holonomie, no
and mobile robots require that individual agents satisiirth holonomic, or underactuated agents. The results presented
kinematic equations while constantly maintaining intgeiat this paper extend the feasibility criteria fdirected formations
constraints. In previous work we introduced the concept wfith possiblecycles These criteria are based on the concepts
undirected formation graphanddirected formation grapht  of undirected formationanddirected formationshat were also
model such formations and presented conditions to determintroduced in [8].

formation feasibility. However the directed formationsree In this paper we propose a criteria to determine feasitoligi-

only analyzed in the absence gfclesin the formation graph. rected formations with possible cycles. The cycles areyaedl

”} th'sh paper we ex;end Iour. p:jgwous dr;asults .to acg?frpég)dmaividually and replaced bsnacro-verticegonstituting an ab-
also the presence of cycles in directed formations. DI straction of the kinematics of the agents linked by the cycle

geometric and algebraic conditions are presented to determyq .. cycles have been replaced, the resulting acydie f

feasibility of directed formations with possible cycles. mation graph can be analyzed by the methods described in [8].
The results are illustrated by analyzing a cyclic formation-
1 Introduction ceived to model 3 robots transporting a rigid object likeldda

or a box.
Advances in communication and computation have enabled the

distributed control of multi-agent systems. This phildspp ) )
has resulted in the next generation of automated highway sgs Feasible Formations
tems [10], coordination of aircraft in future air traffic nege-
ment systems [9], as well as formation flying aircraft, daés,
and multiple mobile robots [3, 4, 5, 6].

In this section we will review the concepts of undirected an
directed formations as well as its feasibility charactatians
that were introduced in [8]. We assume the reader is familiar
The control of multiple homogeneous or heterogeneous ageith various differential geometric concepts at the levie] 1.

rilses fund?mental ql\ljlels'glons re?ardmgfthrmatlo_n gonf[rt_)ll Considem heterogeneous agents with state§) € M;, i =
ofagroup of agents. Multi-agent formations require indal ;=\ 5se kinematics are defined by drift free controlled

agents to satisfy their kinematics while constantly sgitigf distributions on manifolda/; as:
inter-agent constraints. In typical leader-follower fations, L

the leader has the responsibility of guiding the group, etiike
followers have the responsibility of maintaining the irégrent
formation. Distributing the group control tasks to indival

agents must be compatible with the control and sensing capa- A; 1 M xU; — TM;
bilities of the individual agents. As the inter-agent degem A; = ZXJ'“J' (1)
cies get more complex, a systematic framework for contrglli F

formations is vital.

In our previous work [8] a framework for formation control of

multi-agent systems was proposed. Formations were modeltereU; is the control space, and the vector fields form

using formation graphswhich are graphs whose nodes capa basis for the distribution. The controlled distributicare

ture the individual agent kinematics, and whose edges +epgeneral enough to model nonholonomy and underactuation. A

sent inter-agent constraints that must be satisfied. A aimitistributionA; can be equivalently defined by its annihilating
codistributionwg, defined as [7]:



wrg, ={aeT*M; | alA)=0} 2 A:MxU—TM
A =3 A (5)
The formation of a set of agents is defined by fbemation
graphwhich completely describes individual agent kinematiGghere’ is taken to b/ = [T, U;. To lift the individual
and global inter-agent constrains. constraints:, from M; x M; x R, i,5 € {1,2, ... ,n} to the
group manifold} we defineC. by:
Definition 2.1 (Formation Graph) A formation graphF =
(V, E, C) consists of:
Cc. : MxR— R
¢ Afinite setV of vertices who's cardinality is equal to the Colz,t) = co(mi(x),mj(x),t) (6)
number of agents. Each vertex: M; x U; — T M, is a

distribution A; modeling the kinematics of each individ- . ; . . .
ual agent as described in (1). As explained in [8] all the relevant information regardiregf

sibility can be encoded in a single object. Consider an emume

e Abinary relationE C V x V representing a link betweenation{1,2,...,m} of the edges sef. Based on this enumer-
agents. ation we define the following vector valued fotm

e A family of constraintaC indexed by the sel, C =

{ce}ecr. FOreach edge = (v;,v;), c. is a possibly time dc,

varying functiorc, (z;, z;,t) = 0 describing thep(e) in- dc,

dependent constraints between vertiogsindv;. For a wp = . (7
generic edge = (v;, v;), ¢, is mathematically defined as .

Cot My x M; xR — R g(e) €N Voep. dCr

Although our framework allows time-varying constraintse wrihe kinematics can also be modeled as dif_ferential forms by
shall assume time invariant constraints for the sake oftglar constructing a vector valued fo_rmx( that annihilates control
We defer the reader to [8] for the full timed version. Two difSystem (5) (see fae.g. [7]), thatis:

ferent types of formation graphs will be considered: untted

formations whergV, E') will be an undirected graph and di-

rected formations wher@/, E) will be a directed graph. In wr(X)=0 (8)
undirected formations, for each edge= (v;,v;) both agents o ) _ ) ) _

are equally responsible for maintaining the associated c&¥ combining the previous differential forms into the siagl
straintc,, where as for directed formations the constraint object:

must be maintained by agent [

w
o ©
2.1 Undirected Formations

In undirected formations each agent is equally respongile We can check for formation feasibility in a single equatien a
maintaining constraints. Because of this property it wéliuse- described in the next proposition:
ful to collect all agent kinematics and constraints on alsing

manifold: Proposition 2.2 ([8]) If the formation constraint§' are time-
invariant then the undirected formation is feasible ¥
(thought as a pointwise linear map between vector spaces) is
not of full rank.
M =] Mm; (3)
A solution of equatiorf)(X) = 0 specifies the motion of each
Given an element of A the canonical projection on théh individual agent. When more than one independent solution
agent: exists, a change in the direction of a single agent may requir
that all other agents also change their actions to maintain f
mi s M — M; (4)  mation. This shows that, in general, solutions for undedct
formations are centralized and require inter-agent conicadn
allow us to denote the state of the individual agentscpy= tion for their implementation.

7"1(@ Th_e formf_ition kinemat.ics is Obtained_by appending in- 17hs definition is independent of the chosen enumeratioraase easily
dividual kinematics through direct sum, that is: verified.




2.2 Directed Formations

Another important class of formations can be modeled by di- Qi = [w}:} (13)
rected graphs. A directed graph assigns responsibiliti¢iset Wi

formation members in an asymmetric way. For each edge

e = (v;,v;) agenti is responsible for maintaining the conwherew?, is a vector valued form that annihilates agékine-
straintsc., while agent is not affected by the constraint of thematic distributionA(v;). This motivates the following result
edge. analogous to the undirected case:

Contrary to the undirected case were the symmetric digtoibu
of responsibilities led to a single representation for trabfem Proposition 2.5 ([8]) A directed formation is feasible iff the
and its solutions, in the directed case the feasibility rohis  range of2’ A p,s¢(v)) IS contained in the range 61" for each
naturally casted into a recursive procedure. This requires agent.
following operators:
Since Proposition 2.5 must be true for all agents, an algorit
Definition 2.3 (Postand Pre)Let F' = (V,E,C) be a di- can be constructed to determine feasibility.LeC V be a set
rected formation graph. Theostoperator is defined by of leaders and denote §?) ~!(X) the set of preimages of
underQ’ and byR(.S) the range of operatd.

Post:V — 29V Algc_arl.thm. 1 (Directed Feasibility)
initialization: V := L
v; = {v; eV : (v,v;) € E} (10) while Pre(V) # & do

o ] i V := Pre(V)

Similarly, thePreoperator is defined as: forall v; € V do
A(Uz) =0
if R(Qj‘A(Post(v,')) ,@ R(QZ)

Pre:V — 2V return UNFEASIBLE
v; = {v; eV : (vj,v) € E} (11) STOP

else ’ '

Intuitively, Post(v;) will return the agents that are leading A(v;) := Avy) + () (R | A(post(vi))))

agenti, while Pre(v;) will return all the agents that are fol- end if

lowing agenti. Post and Pre extend to sets of vertices in end

the natural wayPost(P) = Upep Post(p) and Pre(P) = end
Upep Pre(p).

Theorem 2.6 ([8]) Let F' = (V, E, C) be an acyclic, directed
Definition 2.4 (Leaders) A vertexv; is called aleaderiff formation graph. Algorithm 1 terminates in a finite number of
Post(v;) = . steps and returns:

We will assume, for now, that a directed formation graph is 4 nfeasible if the formation is not feasible.
a directed acyclic graph. In the next section we will see how

cyclesin formations can also be accommodated in the prdposee A distribution per agent specifying the available direc-
framework. tions to maintain formation if the formation is feasible.

We shall abuse notation a represent the distribufigrdefin- . . .
ing the kinematics of agent; by A(v;) and for the set of 3 Cyclic Directed Formations
agentsPost(vi), A(Post(vi)) = @pepost(v) Alp) defined To determine feasibility of directed formations with cysleve

OVerIlye post(v;) Mp. .S|m|larly to the u.ndlrected case we deémalyze each cycle individually to determine its feadjilin
fine the following objects for each agent

case all cycles are feasible they are replaced by macro ver-
tices, thereby transforming a directed cyclic formationt i
an acyclic one. We start by considering a directed formation

deq e i deq |z, i 7 . .
tle; ffxed b ffxed consisting of a single cycle. We propose a concept of salutio
dC2|zJ- fixed . deo z; fixed K . i e K i
wh = ) Wy = — (12) and give conditions to determine feasibility of this foriat
: : When there are several cycles in a formation we analyze each
deom |z ; fixed de |z, fixed cycle individually and if solutions exist we replace it by #éb-

straction that we consider as a macro vertex. This procedure
where{1,2,...m} is an enumeration of the edges set betwedéransforms a cyclic directed formation into a acyclic onesveh
agenti and its leadersRost(v;)). Similarly to the undirected the methods described in the previous section can be applied
case we define: determine feasibility of the resulting acyclic formation.



3.1 Feasibility of Cycles and satisfyingr., (Se;) = ., (S). If F is feasible we must
o , ) , haveS,, C S for everye; € E. Although we have provided
Determining a concept of solution for a directed cycle is@ot, characterization of the feasibility of a cycle, this defimi
simple task since the cyclic nature of the graph preventam fr 1o qyires solving the undirected counterpart of the cycleels
using the concepts introduced for acyclic graphs. A sofutiqs 5| the directed acyclic formations induced by the syigsa
must respect the distribution of roles dictated by the asroyiih ,, — 1 edges and: vertices. A more convenient way to

in the graph, however it is not clear to say that ager the  geiermine feasibility is given in the next result.
only responsible for the constraint betwdesnd2 since2 may

depend o8 and3 on 1. To set the ideas consider a cycle with " . ¢ . h
three agents as pictured in 1. Proposition 3.2 Let F' be a directed formation graph con-

sisting of a single cycle oh agents. F' is feasible if
dcei z; fixed = —dcei Tig1 ﬁxedfOI’ all i modn.

The proof of the above result requires the following staddar
lemma that we state without proof:

Lemma 3.3 Let w; andw, be two constant-rank codistribu-
tions on a smooth manifold/. Denote byA; the subbundle
of T'M annihilated byw;. We have the inclusioA; C A, iff

Figure 1: Graph associated with a directed formation consis? =

ing of cycle with three agents. -
Lets return to the proof of Proposition 3.2.

The first requirement that a concept of solution must Sat‘-nyProof: Feasibility of the formatiorF’ is by definition equiv-
to be a (not necessarily proper) subset of the set of soltigHent t0Se; € S for all e; € E. The set of solutions,
of its undirected counterpart graph. Clearly if no undieect 1 equivalently described by its annihilating codistribat.w®:
solutions exist, there are also no directed ones. The sec@HgN by:

characteristic of a solution of a cycle is based on the fataow

observation. Suppose that agédntlows along directiont?

and responding to that, agehinaintains the constraint associ- w® = Span{dc.,,dc.,,...,de.,_,,dcc,,,,...,dec., }
ated with edge:; by flowing alongYs». Agent2, responsible + Spanfwk,wk, ... .wi}

for constraint associated with edge chooses to flow along + Span(ntwiS) (14)
Y3, and finally agent to maintain the constraint that links it p i

W|th_ a_g_enlz is forged to flow along a (_j|rect|on dlf_ferent fromyherewis is the codistribution on/; annihilatingr; (X *). By
Fhe initial one. This process of changing yep_tor f|e!ds dePeNemma 3.3 we have that

ing on the local leaders may repeat undefinitively sinceetiger

no cooperatiqn betwee_n agents to negotiate their behawior ¢ {dc,,,dce,, ..., dee, , wh,wi, ..., wr} C w® (15)
herently. Ruling out this kind of situations naturally leai

the following definition: and by construction ab®: the last inclusion reduces ted €

o _ _ - Span(w®). If the condition @, |.; fixed = —dce; |2, fixed O
Definition 3.1 Let F' be a directed formation graph consistingall ; mod n holds straight forward computations show that

of a single cycle. The formation definedBys feasible iffitis dc,, € Span(de,,), i # j and the result is proved. -
feasible as an undirected formation and for every agemthe !
formation the following must hold: Proposition 3.2 provides a easily checkable sufficient itmrd

to determine the cycle feasibility. However under thosedton
tions we have the following result relating the solutionghaf
cycle formation with an acyclic one.

Let X* be an undirected solution df and letX* be a solu-
tion of the directed grapl#, obtained fromF' by removing the
outgoing arrowe from vertexi. If m;(X*) = m;(X*¢) thenX®

must be an undirected solution &%. If these conditions are

met, the solutions of are then given by, X°. Proposition3.4Let F be a directed formation
graph consisting of a single cycle of agents. If
This definition rules out the pathological situations poengly d¢e:|z: fixed = —0¢c; |z, fixea fOr all i mod n holds then

described and admits the following simpler from. Consider 1€ Solutions of” can also be obtained by removing any of the
enumeration(e;, es, . . ., e, } Of the edges set such that = formation constraints between the agents.

(vi,vi1+1) for i modn and letS denote the set of undirected

solutions of the formatiod’. Denote byS,, the set of solutions Proof:  From the proof of Proposition 3.2 we see that the
of the formationF,; obtained from#” by removing the edge; condition d, |, fixed = —dce; |2,,, fixed fOr all i modn implies




that d., € Span(de,), i # j meaning that any of the for- object like a table for example. We will assume a formation
mation constraints can be removed without altering theorects represented in Figure 1 and consider three nonholonomic
space spanned bde.,, ..., dc., }. In particular we have that robots with kinematics given by:

Se, = Se; and thereforeS,; = (J . Se foranyj = 1,...,n.
We have then that the solutiofis, for any fixedi € {1,...,n}

equal the solutions of the formatidn ]

cosb; ' o]
This proposition shows how the feasibility conditions fadia X = |sinf; | uj + |0] uy (18)
rected formation consisting of a single cycle are extrertight 0 1

and suggest that the modeling power offered by them is some-

what reduced.
fori =1, 2,3 on manifolds}M; = R? x S!. Since the table is a

rigid object the formation must also behave as a rigid obyject
order notto drop the object. The natural constraints tocdst®o
When the directed cycle results in a feasible formationsthe With each edge of the formation are:

lution space of the cycle provides an abstraction of therkite

ics of the agents connected by the cycle. This solution space

can be determined by the methodology described in Section 2. . .

To compute the abstraction of macro-vertex one determines a ¢, = [5”1 R dl} o = [wQ R dﬂ

3.2 Cycles and Macro Vertices

Y Y
basis{ K, K, ..., K} } for the solution space. The basis vec- Y1 —y2 —dy Y2 — Y3 — dy
tors define a controlled distribution dd; x M, x . .. x M,, by o |:£133 -z — dﬂ (19)
the expressimijfz1 K;u;. The new formation graph is there- ’ ys — y1 —dj

fore obtained fron¥ = (V, E, C) by introducing the equiva-

lence relation:

whered?, d¥, d3, d3, d% anddj are positive constants repre-
senting the distances (in theandy directions) to be main-
tained between the robots. To analyze feasibility of thdecyc

C . . .
RCV XV (16) we need to compute the following differential forms:

(vi,v;) € Riff both v; andv; belong to the cycle

The quotient formation grapA/R = (V/R, E/R,C/R) can

be described by identifying all the verticesﬁ’hthat belong to det |, fixed = (;m — —des s fred
the cycle. The representant of the cycle equivalence dakegi L9Y1 ]
macro-vertex [dz5 ]
dea |24 fixed = dyz = —de1 |z, fixed (20)
. ]
v N % V — TN dc3‘$1 fixed = _dy:_ = _dCQ‘QJQ fixed

k

(yow) = Y Ky (17)

i=1 The conditions of Proposition 3.2 are clearly satisfied dned t
cycle is feasible. To determine the abstraction of thiseycie
whereN = My X My X ... x M, andV =U; x Uy x ... x computes the vector valued forfhto obtain:
U... The new edges sét/R is obtained from¥ by replacing
all pairs (v;,v;) € E such that; or v; belong to the cycle
by (v, v;) or (v;, v), respectively and eliminating all the edges

defining the cycle. The family of constrainf§ R is given by ( dz,
all the constraints i’ now associated with edges Ey R. gyl

i
In general given a directed formation with cycles, if all e dyj
cles are feasible, they can be replaced by macro vertices and 0= dzs (21)
the remaining acyclic directed formation can be analyzed by dys
the algorithm described in Section 2. sin @y dz; — cos 6, dy,

sin fydzs — cos f>dys

4 Example Lsin f3dz3 — cos f3dy; |

To illustrate the proposed method to analyze cyclic dirfrie-
mations we will consider a team of 3 robots transporting @rigThe corresponding kernel is generated by the vectors:



I

=
I
HOOR OO MROO

(cos ]
sin 6
0
cosf
Ky = |sinf (22)
0
cosf
sin 6
o]

—

with § = 6; = 6, = #3. The abstracting mega vertexis
a now control system o/ = M; x M, x M; defined by

X = Kyu; + Kous. Proposition 3.4 tell us that we can remove

any of the constraints without altering the solutions offibre
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