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Abstract

Formations of multi-agent systems, such as satellites, aircrafts
and mobile robots require that individual agents satisfy their
kinematic equations while constantly maintaining inter-agent
constraints. In previous work we introduced the concept of
undirected formation graphsanddirected formation graphsto
model such formations and presented conditions to determine
formation feasibility. However the directed formations were
only analyzed in the absence ofcyclesin the formation graph.
In this paper we extend our previous results to accommodate
also the presence of cycles in directed formations. Differential
geometric and algebraic conditions are presented to determine
feasibility of directed formations with possible cycles.

1 Introduction

Advances in communication and computation have enabled the
distributed control of multi-agent systems. This philosophy
has resulted in the next generation of automated highway sys-
tems [10], coordination of aircraft in future air traffic manage-
ment systems [9], as well as formation flying aircraft, satellites,
and multiple mobile robots [3, 4, 5, 6].

The control of multiple homogeneous or heterogeneous agents
raises fundamental questions regarding theformation control
of a group of agents. Multi-agent formations require individual
agents to satisfy their kinematics while constantly satisfying
inter-agent constraints. In typical leader-follower formations,
the leader has the responsibility of guiding the group, while the
followers have the responsibility of maintaining the inter-agent
formation. Distributing the group control tasks to individual
agents must be compatible with the control and sensing capa-
bilities of the individual agents. As the inter-agent dependen-
cies get more complex, a systematic framework for controlling
formations is vital.

In our previous work [8] a framework for formation control of
multi-agent systems was proposed. Formations were modeled
using formation graphswhich are graphs whose nodes cap-
ture the individual agent kinematics, and whose edges repre-
sent inter-agent constraints that must be satisfied. A similar

approach has also been proposed in [6] and in [2] the coordina-
tion between agents is specified by a discrete set of way points
instead of rigid inter agent constraints. We assume kinematic
models for each agent described by drift free control systems.
This class of systems is rich enough to capture holonomic, non-
holonomic, or underactuated agents. The results presentedin
this paper extend the feasibility criteria fordirected formations
with possiblecycles. These criteria are based on the concepts
of undirected formationsanddirected formationsthat were also
introduced in [8].

In this paper we propose a criteria to determine feasibilityof di-
rected formations with possible cycles. The cycles are analyzed
individually and replaced bymacro-verticesconstituting an ab-
straction of the kinematics of the agents linked by the cycle.
After all cycles have been replaced, the resulting acyclic for-
mation graph can be analyzed by the methods described in [8].
The results are illustrated by analyzing a cyclic formationcon-
ceived to model 3 robots transporting a rigid object like a table
or a box.

2 Feasible Formations

In this section we will review the concepts of undirected an
directed formations as well as its feasibility characterizations
that were introduced in [8]. We assume the reader is familiar
with various differential geometric concepts at the level of [1].

Considern heterogeneous agents with statesxi(t) 2 Mi, i =1; : : : ; n whose kinematics are defined by drift free controlled
distributions on manifoldsMi as:�i : Mi � Ui �! TMi�i = Xj Xjuj (1)

whereUi is the control space, and the vector fieldsXj form
a basis for the distribution. The controlled distributionsare
general enough to model nonholonomy and underactuation. A
distribution�i can be equivalently defined by its annihilating
codistribution!Ki defined as [7]:



!Ki = f� 2 T �Mi j �(�) = 0g (2)

The formation of a set of agents is defined by theformation
graphwhich completely describes individual agent kinematics
and global inter-agent constrains.

Definition 2.1 (Formation Graph) A formation graphF =(V;E;C) consists of:� A finite setV of vertices who’s cardinality is equal to the
number of agents. Each vertexvi :Mi �Ui �! TMi is a
distribution�i modeling the kinematics of each individ-
ual agent as described in (1).� A binary relationE � V �V representing a link between
agents.� A family of constraintsC indexed by the setE, C =f
ege2E . For each edgee = (vi; vj), 
e is a possibly time
varying function
e(xi; xj ; t) = 0 describing the�(e) in-
dependent constraints between verticesvi andvj . For a
generic edgee = (vi; vj), 
e is mathematically defined as
e : Mi �Mj � R �! R�(e) , �(e) 2 N 8e2E .

Although our framework allows time-varying constraints, we
shall assume time invariant constraints for the sake of clarity.
We defer the reader to [8] for the full timed version. Two dif-
ferent types of formation graphs will be considered: undirected
formations where(V;E) will be an undirected graph and di-
rected formations where(V;E) will be a directed graph. In
undirected formations, for each edgee = (vi; vj) both agents
are equally responsible for maintaining the associated con-
straint 
e, where as for directed formations the constraint
e
must be maintained by agenti.
2.1 Undirected Formations

In undirected formations each agent is equally responsiblefor
maintaining constraints. Because of this property it will be use-
ful to collect all agent kinematics and constraints on a single
manifold: M = nYi=1Mi (3)

Given an elementx of M the canonical projection on theith
agent: �i :M �!Mi (4)

allow us to denote the state of the individual agents byxi =�i(x). The formation kinematics is obtained by appending in-
dividual kinematics through direct sum, that is:

� :M � U �! TM� = �ni=1�i (5)

whereU is taken to beU = Qni=1 Ui. To lift the individual
constraints
e fromMi �Mj � R, i; j 2 f1; 2; : : : ; ng to the
group manifoldM we defineCe by:Ce : M � R �! R�(e)Ce(x; t) = 
e(�i(x); �j(x); t) (6)

As explained in [8] all the relevant information regarding fea-
sibility can be encoded in a single object. Consider an enumer-
ationf1; 2; : : : ;mg of the edges setE. Based on this enumer-
ation we define the following vector valued form1:!F = 26664dC1

dC2
...

dCm37775 (7)

The kinematics can also be modeled as differential forms by
constructing a vector valued form!K that annihilates control
system (5) (see fore.g. [7]), that is:!K(X) = 0 (8)

By combining the previous differential forms into the single
object: 
 = �!F!K� (9)

we can check for formation feasibility in a single equation as
described in the next proposition:

Proposition 2.2 ([8]) If the formation constraintsC are time-
invariant then the undirected formation is feasible iff

(thought as a pointwise linear map between vector spaces) is
not of full rank.

A solution of equation
(X) = 0 specifies the motion of each
individual agent. When more than one independent solution
exists, a change in the direction of a single agent may require
that all other agents also change their actions to maintain for-
mation. This shows that, in general, solutions for undirected
formations are centralized and require inter-agent communica-
tion for their implementation.

1This definition is independent of the chosen enumeration as can be easily
verified.



2.2 Directed Formations

Another important class of formations can be modeled by di-
rected graphs. A directed graph assigns responsibilities to the
formation members in an asymmetric way. For each edgee = (vi; vj) agenti is responsible for maintaining the con-
straints
e, while agentj is not affected by the constraint of the
edge.

Contrary to the undirected case were the symmetric distribution
of responsibilities led to a single representation for the problem
and its solutions, in the directed case the feasibility problem is
naturally casted into a recursive procedure. This requiresthe
following operators:

Definition 2.3 (Post and Pre)Let F = (V;E;C) be a di-
rected formation graph. ThePostoperator is defined byPost : V �! 2Vvi 7! fvj 2 V : (vi; vj) 2 Eg (10)

Similarly, thePreoperator is defined as:Pre : V �! 2Vvi 7! fvj 2 V : (vj ; vi) 2 Eg (11)

Intuitively, Post(vi) will return the agents that are leading
agenti, while Pre(vi) will return all the agents that are fol-
lowing agenti. Post andPre extend to sets of vertices in
the natural way,Post(P ) = [p2P Post(p) andPre(P ) =[p2P Pre(p).
Definition 2.4 (Leaders) A vertex vi is called a leader iffPost(vi) = ?.

We will assume, for now, that a directed formation graph is
a directed acyclic graph. In the next section we will see how
cycles in formations can also be accommodated in the proposed
framework.

We shall abuse notation a represent the distribution�i defin-
ing the kinematics of agentvi by �(vi) and for the set of
agentsPost(vi), �(Post(vi)) = �p2Post(vi) �(p) defined
over�p2Post(vi)Mp. Similarly to the undirected case we de-
fine the following objects for each agenti:!iF = 26664d
1jxj fixed

d
2jxj fixed
...

d
mjxj fixed

37775 !jF = �26664d
1jxi fixed

d
2jxi fixed
...

d
1jxi fixed

37775 (12)

wheref1; 2; : : :mg is an enumeration of the edges set between
agenti and its leaders (Post(vi)). Similarly to the undirected
case we define:


i = �!iF!iK� (13)

where!iK is a vector valued form that annihilates agenti kine-
matic distribution�(vi). This motivates the following result
analogous to the undirected case:

Proposition 2.5 ([8]) A directed formation is feasible iff the
range of
j j�(Post(vi)) is contained in the range of
i for each
agenti.
Since Proposition 2.5 must be true for all agents, an algorithm
can be constructed to determine feasibility.LetL � V be a set
of leaders and denote by(
i)�1(X) the set of preimages ofX
under
i and byR(S) the range of operatorS.

Algorithm 1 (Directed Feasibility)
initialization : V := L
while Pre(V ) 6= ? doV := Pre(V )

for all vi 2 V do�(vi) := 0
if R(
j j�(Post(vi)) * R(
i)

return UNFEASIBLE
STOP

else �(vi) := �(vi) + (
i)�1(R(
j j�(Post(vi))))
end if

end
end

Theorem 2.6 ([8]) LetF = (V;E;C) be an acyclic, directed
formation graph. Algorithm 1 terminates in a finite number of
steps and returns:� Unfeasible if the formation is not feasible.� A distribution per agent specifying the available direc-

tions to maintain formation if the formation is feasible.

3 Cyclic Directed Formations

To determine feasibility of directed formations with cycles, we
analyze each cycle individually to determine its feasibility. In
case all cycles are feasible they are replaced by macro ver-
tices, thereby transforming a directed cyclic formations into
an acyclic one. We start by considering a directed formation
consisting of a single cycle. We propose a concept of solution
and give conditions to determine feasibility of this formation.
When there are several cycles in a formation we analyze each
cycle individually and if solutions exist we replace it by its ab-
straction that we consider as a macro vertex. This procedure
transforms a cyclic directed formation into a acyclic one where
the methods described in the previous section can be appliedto
determine feasibility of the resulting acyclic formation.



3.1 Feasibility of Cycles

Determining a concept of solution for a directed cycle is nota
simple task since the cyclic nature of the graph prevent us from
using the concepts introduced for acyclic graphs. A solution
must respect the distribution of roles dictated by the arrows
in the graph, however it is not clear to say that agent1 is the
only responsible for the constraint between1 and2 since2 may
depend on3 and3 on 1. To set the ideas consider a cycle with
three agents as pictured in 1.

v1 v2

v3

e2
e3

e1

Figure 1: Graph associated with a directed formation consist-
ing of cycle with three agents.

The first requirement that a concept of solution must satisfyis
to be a (not necessarily proper) subset of the set of solutions
of its undirected counterpart graph. Clearly if no undirected
solutions exist, there are also no directed ones. The second
characteristic of a solution of a cycle is based on the following
observation. Suppose that agent1 flows along directionY11
and responding to that, agent3 maintains the constraint associ-
ated with edgee3 by flowing alongY32. Agent2, responsible
for constraint associated with edgee2 chooses to flow alongY22 and finally agent1 to maintain the constraint that links it
with agent2 is forced to flow along a direction different from
the initial one. This process of changing vector fields depend-
ing on the local leaders may repeat undefinitively since there is
no cooperation between agents to negotiate their behavior co-
herently. Ruling out this kind of situations naturally leads to
the following definition:

Definition 3.1 LetF be a directed formation graph consisting
of a single cycle. The formation defined byF is feasible iff it is
feasible as an undirected formation and for every agenti in the
formation the following must hold:

LetXu be an undirected solution ofF and letXe be a solu-
tion of the directed graphFe obtained fromF by removing the
outgoing arrowe from vertexi. If �i(Xu) = �i(Xe) thenXe
must be an undirected solution ofF . If these conditions are
met, the solutions ofF are then given by

Se2E Xe.
This definition rules out the pathological situations previously
described and admits the following simpler from. Consider an
enumerationfe1; e2; : : : ; eng of the edges set such thatei =(vi; vi+1) for i modn and letS denote the set of undirected
solutions of the formationF . Denote bySei the set of solutions
of the formationFei obtained fromF by removing the edgeei

and satisfying�ei(Sei) = �ei(S). If F is feasible we must
haveSei � S for everyei 2 E. Although we have provided
a characterization of the feasibility of a cycle, this definition
requires solving the undirected counterpart of the cycle aswell
as all the directed acyclic formations induced by the subgraphs
with n � 1 edges andn vertices. A more convenient way to
determine feasibility is given in the next result.

Proposition 3.2 Let F be a directed formation graph con-
sisting of a single cycle ofn agents. F is feasible if
d
ei jxi fixed= �d
ei jxi+1 fixed for all i modn.

The proof of the above result requires the following standard
lemma that we state without proof:

Lemma 3.3 Let !1 and!2 be two constant-rank codistribu-
tions on a smooth manifoldM . Denote by�i the subbundle
of TM annihilated by!i. We have the inclusion�1 � �2 iff!2 � !1.
Lets return to the proof of Proposition 3.2.

Proof: Feasibility of the formationF is by definition equiv-
alent toSei � S for all ei 2 E. The set of solutionsSei
is equivalently described by its annihilating codistribution !ei
given by:!ei = Spanfd
e1 ; d
e2 ; : : : ; d
ei�1 ; d
ei+1 ; : : : ; d
eng+ Spanf!1K; !2K ; : : : ; !nKg+ Span(��i !iS) (14)

where!iS is the codistribution onMi annihilating�i(Xu). By
lemma 3.3 we have thatfd
e1 ; d
e2 ; : : : ; d
en ; !1K ; !2K ; : : : ; !nF g � !ei (15)

and by construction of!ei the last inclusion reduces to d
ei 2Span(!ei). If the condition d
ei jxi fixed = �d
ei jxi+1 fixed for
all i mod n holds straight forward computations show that
d
ei 2 Span(d
ej ), i 6= j and the result is proved.

Proposition 3.2 provides a easily checkable sufficient condition
to determine the cycle feasibility. However under those condi-
tions we have the following result relating the solutions ofthe
cycle formation with an acyclic one.

Proposition 3.4 Let F be a directed formation
graph consisting of a single cycle ofn agents. If
d
ei jxi fixed= �d
ei jxi+1 fixed for all i mod n holds then
the solutions ofF can also be obtained by removing any of the
formation constraints between the agents.

Proof: From the proof of Proposition 3.2 we see that the
condition d
ei jxi fixed = �d
ei jxi+1 fixed for all i modn implies



that d
ei 2 Span(d
ej ), i 6= j meaning that any of the for-
mation constraints can be removed without altering the vector
space spanned byfd
e1 ; : : : ; d
eng. In particular we have thatSei = Sej and thereforeSej = Se2E Se for anyj = 1; : : : ; n.
We have then that the solutionsSei for any fixedi 2 f1; : : : ; ng
equal the solutions of the formationF .

This proposition shows how the feasibility conditions for adi-
rected formation consisting of a single cycle are extremelytight
and suggest that the modeling power offered by them is some-
what reduced.

3.2 Cycles and Macro Vertices

When the directed cycle results in a feasible formation, theso-
lution space of the cycle provides an abstraction of the kinemat-
ics of the agents connected by the cycle. This solution space
can be determined by the methodology described in Section 2.
To compute the abstraction of macro-vertex one determines a
basisfK1;K2; : : : ;Kkg for the solution space. The basis vec-
tors define a controlled distribution onM1�M2�: : :�Mm by
the expression

Pki=1Kiui. The new formation graph is there-
fore obtained fromF = (V;E;C) by introducing the equiva-
lence relation:R � V � V (16)(vi; vj) 2 R iff both vi andvj belong to the cycle

The quotient formation graphF=R = (V=R;E=R;C=R) can
be described by identifying all the vertices inV that belong to
the cycle. The representant of the cycle equivalence class is the
macro-vertex v : N � V �! TN(y; u) 7! kXi=1K(y)iui (17)

whereN =M1 �M2 � : : :�Mm andV = U1 �U2 � : : :�Um. The new edges setE=R is obtained fromE by replacing
all pairs (vi; vj) 2 E such thatvi or vj belong to the cycle
by (v; vj) or (vi; v), respectively and eliminating all the edges
defining the cycle. The family of constraintsC=R is given by
all the constraints inC now associated with edges inE=R.

In general given a directed formation with cycles, if all thecy-
cles are feasible, they can be replaced by macro vertices and
the remaining acyclic directed formation can be analyzed by
the algorithm described in Section 2.

4 Example

To illustrate the proposed method to analyze cyclic directed for-
mations we will consider a team of 3 robots transporting a rigid

object like a table for example. We will assume a formation
as represented in Figure 1 and consider three nonholonomic
robots with kinematics given by:Xi = 24
os �isin �i0 35ui1 + 2400135ui2 (18)

for i = 1; 2; 3 on manifoldsMi = R2 �S1. Since the table is a
rigid object the formation must also behave as a rigid objectin
order not to drop the object. The natural constraints to associate
with each edge of the formation are:
1 = �x1 � x2 � dx1y1 � y2 � dy1 � 
2 = �x2 � x3 � dx2y2 � y3 � dy2 �
3 = �x3 � x1 � dx3y3 � y1 � dy3 � (19)

wheredx1 , dy1 , dx2 , dy2 , dx3 anddy3 are positive constants repre-
senting the distances (in thex andy directions) to be main-
tained between the robots. To analyze feasibility of the cycle
we need to compute the following differential forms:

d
1jx2 fixed = �dx1dy1� = �d
3jx3 fixed

d
2jx3 fixed = �dx2dy2� = �d
1jx1 fixed (20)

d
3jx1 fixed = �dx3dy3� = �d
2jx2 fixed

The conditions of Proposition 3.2 are clearly satisfied and the
cycle is feasible. To determine the abstraction of this cycle one
computes the vector valued form
 to obtain:


 = 26666666666664
dx1
dy1
dx2
dy2
dx3
dy3sin �1dx1 � 
os �1dy1sin �2dx2 � 
os �2dy2sin �3dx3 � 
os �3dy3

37777777777775 (21)

The corresponding kernel is generated by the vectors:



K1 = 26666666666664
001001001
37777777777775 ; K2 = 26666666666664


os �sin �0
os �sin �0
os �sin �0
37777777777775 (22)

with � = �1 = �2 = �3. The abstracting mega vertexv is
a now control system onM = M1 �M2 � M3 defined byX = K1u1+K2u2. Proposition 3.4 tell us that we can remove
any of the constraints without altering the solutions of thefor-
mation. This is a consequence of the tight conditions given by
Proposition 3.2. To illustrate this fact it is worth to realize that
the constraints:
1 = (x1 � x2)2 + (y1 � y2)2 � (dx1)2 � (dy1)2
2 = (x2 � x3)2 + (y2 � y3)2 � (dx2)2 � (dy2)2
3 = (x3 � x1)2 + (y3 � y1)2 � (dx3)2 � (dy3)2 (23)

cannot be used to specify this cyclic formation. If one removes
the edgee3 a possible configuration for the resulting directed
formation is displayed in Figure 2 which is not a solution ofF if considered as an undirected formation sincevi andv3 no
longer respect
3. However both constraints (19) as well as
constraints (23) produce the same solutions forF as an undi-
rected formation.

V�

V�

V�
E� E�

Figure 2: Possible configuration of the formation obtained
fromF by removing the constraint associated with edgee3.
5 Conclusions

This paper has extended our previous results on feasibilityof
directed formations by addressing the existence of cycles in the
formation. The feasibility of such formations has been charac-
terized in terms of the kernels of the constraints associated with
the cycle edges. However the obtained conditions are very tight
and imply the existence of acyclic formations with the same so-
lutions. This result motivates the need for a better understand-
ing of the relation between directed and undirected formations.
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