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Abstract

Following recent neurophysiological research, one im-
portant role of emotions consists in providing a mechanism
for adequate and efficient response to relevant stimuli. In
this paper we propose a methodology for implementing such
a mechanism, based on a previously presented emotion-
based agent model. This model is founded on a double
knowledge representation paradigm: a stimulus reaching
the agent is processed under two different and simultaneous
perspectives — a simple (termed perceptual) and a complex
(termed cognitive) — from which two differing representa-
tion schemata are derived. This paper addresses a twofold
strategy for the construction of a perceptual representation.
The first one consists in adapting a perceptual metric, with
the goal of approximating it to the cognitive metric. The
second one has the goal of upgrading the perceptual repre-
sentation with additional components (e.g., features). Tech-
niques borrowed from nonmetric Multidimensional Scaling
are used to approach these goals.

1 Introduction

The research presented here is a contribution for the de-
velopment of an emotion-based autonomous agent model,
originally proposed in [3]. Briefly, the agent model is based
on a double-representation of stimuli: a simple representa-
tion termed perceptual image1, designed for fast processing
and immediate response to urgent situations, and a com-
plex representation termed cognitive image, thus slow to
process. These two representations are extracted and pro-
cessed, simultaneously, by the two levels of the architecture:
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1The term image is here utilized in a broad sense (a percept).

the perceptual and the cognitive levels. The parallelism of
the processing is essential, so that quick response to urgent
situations is not compromised by the slow processing of the
cognitive level. These two representations are then stored in
memory, together with a third representation, termed desir-
ability vector. This vector characterizes stimuli according
to a set of dimensions relevant to the agent, such as dan-
gerous/safe, interesting, demanding urgent action, threaten-
ing, and so on. The memory is thus formed by associa-
tions between perceptual and cognitive images, marked by
the corresponding desirability vectors. Once the agent faces
a new situation, it matches the incoming stimulus with the
agent memory, thus retrieving the associated images and the
marking.

This model was inspired by the somatic marker hypoth-
esis of António Damásio [2]. According to this hypothesis,
the brain is able to associate in memory cognitive mental
imagery with representations of incurred bodily changes,
and later, to enact these bodily representations after the rec-
ollection of that mental imagery [2].

The agent model hypothesizes that the representations
matching mechanism proceeds according to two steps. In
the first step, a perceptual image is obtained from the stim-
ulus and matched against the perceptual images in mem-
ory. For the ones yielding a closer match, the agent, in the
second step, matches the cognitive image extracted from
the stimulus with those indexed by the closest perceptual
images. This mechanism is termed indexing. Considering
that the cognitive matching mechanism is an operation more
complex than the perceptual one, this mechanism allows for
a narrowing of the candidate cognitive images, thus provid-
ing an efficient algorithm to find cognitive matches.

This indexing mechanism was previously formulated
and theoretically analyzed, under the assumption that the
matching of the cognitive and perceptual images are per-
formed in metric spaces [4]. Given a stimulus s ∈ S,



the agent extracts two kinds of representations: a percep-
tual image ip ∈ Ip, and a cognitive one ic ∈ Ic. The sets
Ip and Ic contain all possible perceptual and cognitive im-
ages. Each one of them is equipped with a metric function,
denoted by dp : Ip × Ip → R

+
0 and dc : Ic × Ic → R

+
0

respectively, mapping pairs of images to distances, inter-
preted as degrees of mismatch. The memory is assumed
to be formed by pairs2 of cognitive and perceptual images
〈ikc , ikp〉 (k = 1, . . .). The goal of the indexing mechanism
is then to find the memory pair which cognitive image min-
imizes its distance to the one extracted from the stimulus,
employing the perceptual representation to do so in an effi-
cient manner.

The research presented here concerns the following
problem: how to construct a perceptual representation (and
metric) with the goal of optimizing the indexing efficiency.
In other words, the ideal perceptual representation and met-
ric are the ones that yield small perceptual distances iff the
corresponding cognitive distances are also small. To do so,
two strategies are explored. One corresponds to adapting a
perceptual metric, via a set of parameters, such that cogni-
tive proximity implies perceptual nearness:

dc(i1c , i
2
c) < dc(i1c , i

3
c) ⇒ dp(i1p, i

2
p) < dp(i1p, i

3
p) (1)

for all image pairs 〈ikc , ikp〉 (k = 1, 2, 3) obtainable from
stimuli, in a given environment. The second strategy ad-
dresses the improvement of the perceptual representation,
in the following sense. Assuming that the perceptual rep-
resentation is a vector of features extracted from stimuli,
when these features are not sufficiently representative to
satisfy (1), the goal is to upgrade the perceptual repre-
sentation with new, more representative, features. Both
of these strategies are approached here using Multidimen-
sional Scaling (MDS) techniques [1].

2 Methodology

A good perceptual representation is one which satisfies
the implication (1) for all image pairs encountered by the
agent. Note that this goal is similar to the MDS one, once
one considers the cognitive distances to be the dissimilari-
ties, and the perceptual ones, to be the distances among ob-
jects, in the MDS terminology [1]. However, there are dif-
ferences. In the case of the MDS, the metric is given while
the object coordinates are sought. In the case of the index-
ing, the object coordinates (perceptual images) are given,
while the (perceptual) metric is subject to adaptation.

We propose to perform a gradient descent, within the
framework of the nonmetric MDS, w.r.t. a parameteriza-

2The association with the desirability vector is not considered here,
since it is not an active player in the current formulation of the indexing
mechanism.

tion of the perceptual metric, instead of w.r.t. the point co-
ordinates. Thus, the perceptual metric is assumed to de-
pend on a vector of parameters. For instance, these pa-
rameters can assign a degree of relevance to each feature
of the perceptual representation. Regarding the construc-
tion of additional perceptual features, we propose to append
each perceptual image with a pre-specified amount of addi-
tional components. These components represent the val-
ues that the new features ought to take, for each one of the
perceptual images in the training set. Their values are ran-
domly initialized, and subject to gradient descent as in the
nonmetric MDS. Concerning the obtainment of those added
components for new stimuli, the idea we advance is to uti-
lize the obtained values to construct a regression model.
That regression model can then be used to obtain the new
features values for new stimuli.

Let a perceptual image irp, consisting of the concatena-
tion of q numerical features xr1, . . . , xrq , extracted from a
given stimulus, with p additional components yr1, . . . , yrp,
be denoted by the vector

irp = (xr1, . . . , xrq, yr1, . . . , yrp)T (2)

These additional components correspond to the values that
the new features ought to take for that particular perceptual
image. The perceptual metric employed here is parameter-
ized by q coefficients θ1, . . . , θq , taking the form

drs =

√√√√ q∑
i=1

θ2
i (xri − xsi)2 +

p∑
i=1

(yri − ysi)2 (3)

This parameterization corresponds to assigning a weight
(relevance) to each perceptual feature, before calculating
the Euclidean metric. Moreover, when the algorithm as-
signs a zero weight to a feature, that feature can be deleted
from the perceptual representation, since it is irrelevant
(w.r.t. the cognitive matching). The additional components
are not weighted since it would just add redundant degrees
of freedom.

The cost function employed here is the sum of the MDS
stress, with a regularization term penalizing the absolute
values of the metric parameters. The MDS stress S assesses
the fit of the the perceptual distances {drs} to the ones re-
sulting from the isotonic regression, here denoted as {d̂rs}.

S =

√
S∗

T ∗

S∗ =
∑
r,s

(
drs − d̂rs

)2

T ∗ =
∑
r,s

d2
rs

(4)

The distances {d̂rs} satisfy, by construction, two con-
ditions: (a) it preserves the cognitive distances ordering
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(dc(irc , i
s
c) < dc(irc , i

t
c) ⇒ d̂rs < d̂rt), and (b) it mini-

mizes S∗ above, restricted to (a). The cost function is then
the sum of the MDS stress with the regularization term.

J = S + ξ

q∑
i=1

|θi| (5)

This latter term, weighted by ξ, is included in the cost func-
tion for two reasons. First, if the stress is invariant to a
perceptual component, the stress gradient w.r.t. the corre-
sponding weight would be zero, and therefore the initial
parameter value would stay at the same value during the
descent. The second reason is due to the quadratic contri-
bution of the parameters to the stress: in order to prevent a
slow asymptotic convergence to zero (and therefore never
reaching zero exactly), the gradient of their absolute val-
ues forces them to approach zero faster3. In sum, this term
contributes to reduce the number of non-zero parameters θi,
and therefore to permit the deletion of the components with
zero weights from the perceptual representation.

In order to express the gradient of the stress, one can con-
sider a parameter vector Λ containing all variables subject
to the gradient descent.

Λ = [λ1 · · ·λq+np]
T = [θ1 · · · θq|y11 · · · ynp]

T (6)

The gradient is then obtained from the partial derivative of
the cost w.r.t. each parameter λk

∂J

∂λk
=

∂S

∂λk
+ ξ sgn(λk) (7)

∂S

∂λi
= S

∑
r,s

(
drs − d̂rs

S∗ − drs

T ∗

)
∂drs

∂λi
(8)

As before, the summation above is performed for r =
1, . . . , (n − 1) and s = (r + 1), . . . , n.

If λk corresponds to a metric parameter θl, then

∂drs

∂θk
=

(xrk − xsk)2

drs
θk (9)

otherwise, if it corresponds to a component yui, then

∂drs

∂yui
=

yri − ysi

drs
(δru − δsu) (10)

where δij is the usual Kronecker function (1 iff i = j, 0
otherwise).

Taking into account these considerations, and based on
the standard nonmetric MDS algorithm [1], we propose the
following one:

3Numerically this makes parameters close to zero to oscillate around
zero, so, they are set to zero once they become negative. The implementa-
tion further forces them to stay at zero thereafter.

1. Start with an initial variables vector Λ. For instance,
the metric parameters θk can be initialized to all ones,
and the additional components {yri} randomly dis-
tributed with a uniform distribution;

2. Normalize the metric parameter vector Θ =
(θ1, . . . , θq)T to unit norm, since the stress is invariant
to scaling of this vector. The additional components
{yri} are, however, not normalized4;

3. Compute the distances set {drs} using the parameter-
ized perceptual metric (3);

4. Perform the isotonic regression to obtain the set of dis-
tances {d̂rs};

5. Compute the cost; if its value is below a threshold ε,
stop the algorithm (stopping criterion);

6. Find the gradient of the cost function (5) w.r.t. the vari-
ables vector Λ;

7. Perform a step of the gradient descent method;

8. Go to step 2.

3 Results

To validate the proposed methodology, a simple test-bed
was devised. Random points x ∈ R

c (simulating stim-
uli) were uniformly drawn from an hypercube of unit side
length. The cognitive images ic ∈ R

c were set to the com-
ponents of x multiplied by fixed coefficients [w1, . . . , wc],
randomly chosen between 0 and 2 prior to each run

ic = diag(w1, . . . , wc) x = Wx (11)

These coefficients introduce different degrees of relevance
to the components of ic. The perceptual images were ob-
tained by concatenating two vectors: the p first compo-
nents of x multiplied by a second set of fixed coefficients
[v1, . . . , vc] (for p ≤ c), also randomly chosen between 0
and 2); and n random numbers (noise) between 0 and 1.
Thus, the perceptual images have p + n components.

ip =
(

[diag(v1, . . . , vp)|0] x
u

)
=

(
Vx
u

)
(12)

where 0 stands for a matrix of zeros of appropriate dimen-
sion, and u for the noise vector. The random weights in
W and V, randomly drawn from the [0; 2] interval, together
with the numbers c, p, and n, define a world, represented

4Otherwise it would constrain a priori the relative weights of the ad-
ditional components w.r.t. the original features in (3). Normalizing the
parameters vector prevents its norm from growing or shrinking because of
numerical errors. Moreover, because of (3), the additional components do
not grow/shrink arbitrarily.
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by a tuple 〈c, p, n,W,V〉. The cognitive distances are cal-
culated using the Euclidean distance, while the perceptual
ones employ the metric (3).

In order to evaluate the results, a measure of performance
called eval-order was introduced, aiming at assessing how
well the indexing mechanism would behave, for a partic-
ular perceptual metric. This assessment is performed us-
ing a test set disjoint from the training set employed in the
gradient descent (cross-validation). Inspired by the N-best
indexing algorithm described in [4], the eval-order is de-
fined in the following way: given a cognitive and percep-
tual images pair 〈ic, ip〉, determine all perceptual distances
from it to images in the perceptual memory (i.e., the training
set); then, after sorting all these images w.r.t. the perceptual
distances, determine which n-th image pair 〈ikc , ikp〉 on the
resulting ordered list has the minimum cognitive distance
to 〈ic, ip〉. In the ideal case, it corresponds to the first one,
and thus an eval-order of 1 (one). Higher values correspond
to worse performance.

The features in the perceptual images were all (training
and test sets) normalized to zero mean and unit variance,
prior to any experiment. Unless otherwise stated, the pa-
rameterization Θ of the perceptual metric was initialized to
all ones. The additional components, when used, were ini-
tialized with a uniformly distributed random configuration,
as in the nonmetric MDS algorithm.

In the first phase of experimentation, no additional per-
ceptual components were considered, and the cognitive and
perceptual dimensions were made equal (c = p). The algo-
rithm was run for 100 generated training sets with the same
world parameters, each one containing 100 training patterns
(and thus 4950 dissimilarities among them). The world di-
mensions were c = p = 10 and n = 3. For each training
set, a test set containing 100 patterns was also generated, for
posterior eval-order assessment. Figure 1 shows the results:
for each component index, the first bar represents the re-
spective weight from matrix W (labeled W), while the sec-
ond one corresponds to the mean value of the corresponding
metric parameter along all runs, with standard deviation er-
ror bars (labeled result). Both vectors are normalized to
unit norm, in order to be comparable. Note that the result-
ing weights faithfully represent the relative importance of
the x coordinates in the cognitive metric. The observed ex-
tinguishing of the third weight is due to the combined effect
of its diminished importance (i.e., low value in W), and the
penalization of non-zero weights in (5). Moreover, the last
three components (noise) were all zero, thus showing a suc-
cessful capability of identifying irrelevant features.

Concerning the eval-order assessment, the results are
shown in table 1. These are consolidated values, obtained
in the following way: for each run, a training set and a test
set were randomly generated, as above-mentioned; then, the
weights obtained in each run were tested against the test
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Figure 1. Weights obtained by the algorithm.

set (cross-validation), calculating the mean, minimum, and
maximum values of the obtained eval-orders for all images
in the test set. The results shown here correspond to the
mean of these means5 (central tendency), the minimum of
all minima, and the maximum of all maxima (worst case of
eval-order). These results show a significant improvement
of the eval-order performance after using the metric weights
found by the algorithm. Namely, the worst case (maximal
eval-order) went down from 92 to just 2. Note that the test
set has 100 image pairs, therefore, the worst possible eval-
order value is 100.

metric mean min max
unweighted 11.4 1 92

weighted 1.00 1 2

Table 1. Obtained eval-order performance val-
ues.

The algorithm was run from several initial conditions, in
order to determine the sensitivity of the solution w.r.t. local
minima. Apart from 11% of outlier runs, the metric weights
converged to the correct values. These outlier runs were
found to be caused by weights initialized close to zero.
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Figure 2. Sampling of the cost (and stress)
values w.r.t. the eval-order.

Because of the lower dimensionality of the parameters
vector, the algorithm still converged to the correct solution
using either about 10 training patterns, or about 0.5% of the
total number of dissimilarities6.

5This is equivalent to a mean over all image pairs, since all test sets
have the same size.

6Random sampling from the 4950 dissimilarities originated by the 100
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Figure 3. Statistics of initial and final costs (vertical axis) w.r.t. the number of new components, for
various world parameters.

The introduction of a strictly monotonic non-linear dis-
tortion function f was also tested by setting the cognitive
distance to dc(i1c , i

2
c) = f

(
‖i2c − i1c‖

)
. The results were not

altered, as expected, by construction of the nonmetric MDS.
The relationship between the cost values and the eval-

order is critical to the success of the approach. The algo-
rithm seeks the reduction of the cost function (5), while
the quality of the result is measured by the eval-order per-
formance metric. For this synthetic world, the relation-
ship between the cost and the eval-order during the gradi-
ent descent was examined. Figure 2 plots a sampling taken
from 25 runs, by sampling randomly 1 out of 5 descent
steps. This illustrates how, in this test-bed, smaller cost val-
ues lead systematically to better generalization in the test
set. This kind of analysis can be useful to assess whether
the method is appropriate for a given world, w.r.t. the gen-
eralization performance.

The second phase of the experimentation comprised the
introduction of new components to the perceptual represen-
tation. To do so, the dimension of the cognitive images was
made higher than the perceptual one, i.e., c > p. Thus, the
perceptual metric is performed with less components than
the cognitive one. The first impact of this is that, without
the introduction of new components, the final cost values
were much higher than before, due to lack of fit (previous
experiments resulted in final costs between 0.02 and 0.03).
Figure 3 shows the obtained initial and final costs, after test-
ing four different generated worlds. The algorithm was run
for several amounts of new components for each one of the
worlds. The plots display the mean and the standard devi-
ation of the initial and final costs, after 100 runs performed
in each world. Error bars denote the standard deviation of
the cost values across all runs. The only difference among
runs sharing the same world parameters is the initial values
for the new dimension coordinates (initialized to random
values, as explained above). The training set contained 20
patterns.

These plots corroborate the idea that, once the number
of new components reaches c − p, the final cost stabilizes
on values close to the ones found in previous experiments.

patterns of the training set.

This observation suggests a methodology for the estima-
tion of how many new components are required for a given
problem of unknown structure: to try successively higher
amounts of new components, until the final cost value sta-
bilizes.

Further experimentation showed more interesting results
(omitted here due to lack of space). In one of them, a single
additional component to the cognitive representation was
considered (c = p + 1). The algorithm showed the abil-
ity to reconstruct, for the perceptual images in the train-
ing set, the values of that component. The reconstruction
power, measured in term of signal-to-noise ratio (SNR) be-
tween the missing component and the recovered dimension
yielded values of about 45dB. In another experiment, a lin-
ear regression model was employed to extract features for
the perceptual representation. The obtained results were
also satisfactory.

4 Concluding remarks

Experimentation have shown interesting results, thus il-
lustrating the proposed methodology on a synthetic world.
However, due to the lack of exploitable structure of the em-
ployed synthetic worlds, whenever the cognitive dimension-
ality exceeds the perceptual one (including any additional
components), the obtained results become significantly de-
graded because of poor fitting. For instance, noise compo-
nents get zero weights (because of their irrelevancy), only
if a good fit is found.
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