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Instituto Superior Técnico University of Pennsylvania
1049-001 Lisboa - Portugal Philadelphia, PA 19104

Fax: (351) 21 841 8291 Fax: (251) 573 2068ftabuada,palg@isr.ist.utl.pt pappasg@seas.upenn.edu

Keywords: Hybrid systems, abstractions, timed languages,
scheduling.

Abstract

Large-scale, multi-agent systems are becoming extremely com-
plex due to the rapid advances in computation and communica-
tion. A natural approach to deal with the increased complexity
of such systems is the use ofabstractions: given a complicated
model and some properties of interest, extract simpler models
of the original system that propagate the desired properties to
the abstracted model, while hiding details that are of no inter-
est. In this paper, we review our methodology for extracting
hybrid systems out of continuous control systems while pre-
serving timed languages. This allows us to extract high level
models that can be used for real time scheduling while ensur-
ing that high level plans have feasible implementations at the
lower level model. Our methodology, is then fully illustrated
by a search and rescue case study.

1 Introduction

Complexity reduction in large scale systems is typically re-
duced by imposing a hierarchical structure on the system archi-
tecture. In hierarchical structures, systems of higher function-
ality utilize coarser models as they are unaware of unnecessary
lower level details. Extracting a hierarchy of models at various
levels of abstraction is critical for constructing hierarchies in a
principled way.

The notions ofabstractionor aggregationrefer to grouping the
system states into equivalence classes. Depending on the car-
dinality of the resulting quotient space we may havediscrete
or continuousabstractions. With this notion of abstraction, the
abstracted system is defined as the induced quotient dynamics.
Discrete abstractions of continuous systems have been consid-
ered in [3] as well as [4, 12].

In hierarchical systems, one would also like to ensure that cer-
tain properties propagate from the abstracted model to the orig-
inal system. This would ensure that the higher level model is
aconsistent abstractionof the lower level. Different properties
may require placing different conditions on the quotient maps.

In previous work, we have focused on extractingcontinuous

abstractionsfrom continuous systems. In particular, in [10]
a hierarchical framework for continuous control systems was
formally proposed, and easily checkable characterizations were
obtained for constructing reachability preserving abstractions
of linear control systems. In [11], we extended our hierarchical
approach to a significant class of nonlinear control systemsthat
consists of analytic control systems on analytic manifolds.

In [13], we presented a methodology for extracting hybrid ab-
stractions from hybrid systems while preserving timed lan-
guages. This is a very important problem in various domains.
Consider scheduling air traffic near an airport. For the perspec-
tive of air traffic control, the only aspect of aircraft dynamics
that may be of interest is if the aircraft is at one of finite num-
ber of checkpoints as well as when it will reach them. More
generally, from a scheduling perspective, the desired property
at a higher level can be described as a timed language. Hav-
ing a methodology that abstracts systems while preserving time
languages is critical for the real time scheduling of continuous
processes.

In [13], our approach focused on compressing the continuous
component of the system while being able to generate exactly
the same timed language. Furthermore, compatibility condi-
tions between the abstracting map, and the finite partition of
the state space needed to be imposed. Note that, in general, the
abstracted system may not be a timed automaton ([2]) as we
may need a richer dynamical system in each discrete location
to preserve the timed language. In this paper, we review our
framework and illustrate its complexity reduction properties on
a detailed search and rescue case study.

2 Abstraction Methodology

In this section we will review the hybrid abstraction frame-
work of [13] which builds on top of the continuous abstraction
framework of [10, 11]. We assume that the reader is familiar
with differential geometric concepts at the level of [1].

2.1 Problem Formulation

We start with a continuous control systemFM , affine in control
and defined on a analytic manifoldM :



FM : M � U �! TM(x; u) 7! f(x) + kXi=1 gi(x)ui (1)

whereU is the control space. With this control system we as-
sociate a map	 defined as:	 : M �! Q (2)

whereQ is a finite set of symbols. Thus	 results in afinite
partition of the state space and each discrete symbolqi 2 Q
is associated with a block of the partition. This map defines a
qualitative behavior of control system (1) if regarded as a quan-
tizing or discretizing map of its trajectories. We shall assume
that the partition is topologicallynice without being specific
about what nice means1.

Instead of retaining only the sequence of discrete symbols we
want to retain also the temporal properties associated witheach
symbol, that is we want to propagate the image of control
system (1) trajectories under the map	. These trajectories
can be seen as mapsq : R+0 �! Q or as a family of pairsf(t; q)gt2R+0 2 �(FM ;	) defined as follows:�(FM ;	) = �(t0; q) 2 R+0 �Q : 9u : R�0 �! Uddtx(t) = FM (x(t); u(t)) ; q = 	(x(t0))^ limt�!t0+	(x(t)) 6= limt�!t0�	(x(t))	 (3)

The set�(FM ;	) is called thetimed languagegenerated by the
pair (FM ;	). The timed language abstracts away unnecessary
details regarding the particular value of the solutions, retain-
ing only the time and a qualitative location given by the parti-
tion blocks. This type of trajectory description is sufficient for
many applications where only timing information and a coarse
knowledge of the trajectories is necessary.

Our objective is therefore to abstract the continuous control (1)
into a simplerhybrid systemthat is able to generate the same
timed language�(FM ;	). Furthermore, thishybrid abstraction
should be aconsistentabstraction of (1), in the sense that any
trajectory of the hybrid system can also be generated by (1).

The main idea is to abstract the continuous dynamics in each
element of the partition differently. Depending on how the par-
tition interacts with the continuous system, different abstrac-
tions could be used in different elements of the partition. The
natural way of patching together these new abstracted systems
is by defining an hybrid system with several states, each one
modeling the behavior of the original system inside a partition
element. Before we proceed to hybrid abstractions, we first
review the existing theory for continuous abstractions.

1For example, subanalytic stratifications [7] or partitionsdefinable in o-
minimal theories [8] would suffice.

2.2 Continuous Abstractions

A general methodology for abstracting continuous systems has
been introduced in [10] for linear systems and in [11] for non-
linear systems. We will review some results necessary for our
hybrid abstraction problem. Given a control systemFM on a
analytic manifoldM as in (1) we define a surjective abstracting
map: � : M �! N (4)

whereN is a analytic submanifold ofM . The map�, which
is also assumed to be a submersion, is thequotient mapwhich
performs the state aggregation2. The quotient map will induce
a control systemFN onN referred as theabstraction. In [11],
conditions on the abstracting map were derived to ensure prop-
agation of local reachability ([5], [9]). It is easy to extend these
results to exact time controllability [6]. In order to do so we
need to define some objects. LetDM denote the distribution
associated with control systemFM :DM = [x2M [u2U F (x; u) (5)

If A andB are two distributions onM , define a distribution[A;B℄ by declaring[A;B℄(p) to be the subspace ofTpM gen-
erated by vectors of the form[X;Y ℄(p), whereX ,Y are any
two analytic vector fields inA andB respectively. By resorting
to this constructive method we define also:DM = K [ DM [ [K;DM ℄ [ [K; [K;DM ℄℄ [ : : : (6)

whereK is the distributionKer(T�). DistributionDK allows
us to specify the abstracted control system onN by:DN (q) = T�DM (p) (7)

for anyp 2 ��1(q). Any control systemFN onN with control
distributionDN is said to becanonically�-related toFM . For
constructive cases, the reader is referred to [10, 11].

Let Lieg(FM ) to be the lie algebra generated byfg1(x); g2(x); : : : ; gk(x)g the main result of [11] can
now be extended to the following:

Theorem 2.1 LetFN be canonically�-related toFM and as-
sume thatK � Lieg(FM ) thenFN is exact time controllable
iff FM is.

2Note that any map� gives rise to an equivalence relation by defining statesx andy equivalent iff�(x) = �(y). In order for the resulting quotient space
to have a manifold structure, the equivalence relation mustbe regular [1].



Proof: Similar to [11]

We have all the tools we need to abstract the continuous dynam-
ics while maintaining exact time controllability, in the sense
that if it is possible to go from pointa 2 N to point b 2 N
in T units of time in the abstracted model (FN ), then it is also
possible to go from��1(a) to��1(b) in T units of time in the
original model (FM ).

2.3 Partition Propagation

In order to be able to preserve the timed language, the ab-
stracted system needs to be able to determine when the tra-
jectories cross the partition blocks defined by	. To ensure
that the partition blocks propagate fromM to N , further con-
ditions must be imposed on the abstracting map�. A partition
propagatingabstraction map is defined as follows:

Definition 2.2 An abstracting map� : M �! N propagates
a partition	 iff there exists a partition onN defined by a map	0 such that the following diagram commutes.

M Q-		0����RN6�
(8)

or equivalently iff	(x) = 	0 Æ�(x).
Note that propagating the partitions is a stronger than simply
preserving the partition, since this only requires that	(x1) =	(x2) , 	0 Æ �(x1) = 	0 Æ �(x2) and allows for example
merging two	 blocks into a single block in	0. This is not a
desirable situation since the knowledge of the qualitativeposi-
tion of the initial system is lost.

Although Definition 2.2 expresses the fundamental property
that the abstracting map should possess it does not character-
ize it directly. This characterization is presented in the next
propositions for both linear an nonlinear systems:

Proposition 2.3 A smooth map� : M �! N between smooth
manifolds preserves a partition	 iff the partition blocks are
invariant under the action of the lie algebraKer(T�).
Proof: See [13].

2.4 Consistent Hybrid Abstractions

Merging all the conditions that must be imposed on the ab-
stracting map we can characterize timed-language propagating
abstraction maps as follows:

Theorem 2.4 An abstraction map� : M �! N propagates
the timed language�(FM ;	) generated by a control systemFM
iff Ker(T�) � Lieg(FM ) and the partition	 is invariant
under the action of the lie algebraKer(T�).

Proof: A direct application of Theorem (2.1) and Proposi-
tion (2.3).

Equipped with Theorem 2.4 a general methodology to extract
hybrid control system generating the timed language�(FM ;	)
can be described as follows:

For each partition blockqi find the largest lie algebraL that
leaves the partition block invariant. Reduce the control sys-
tem through an abstracting map�i such thatKer(�i�) �L\Lieg(FM ). We shall use the usual hybrid automata conven-
tions to define a hybrid control system stateqi by the following
data:� Abstracted control system:FNi .� Invariant:Inv(qi) = �i(	�1(qi)).� Guards:Guardj(qi) = �i�	�1(qj)[�[k=2J	�1(qk)��8j2J J = fj 2 N : qj is neighbor ofqig3.� Transitions: Place an arrow fromqi to qj for all j 2 J .� Resets: For each arrow linkingqi to qj add the corre-

sponding reset mapResetij = �j Æ��1i .

Note that the hybrid control system built according to the above
prescription is nondeterministic since the reset maps can be
set valued. However all possible trajectories are equivalent
with respect to exact time controllability. Equivalently,if it
is possible to go froma 2 Resetij(x) to some pointb in T
units of time then it is also possible to go from any other point
 2 Resetij(x) to b in T units of time. The reader is deferred
to [13] for further details.

The above concepts are illustrated in the following example.

3 A search and rescue example

In case of serious natural catastrophes such as earth-quakes,
tornados or other equally devastating natural phenomena itis
of special importance to perform search and rescue missions.
In such a scenario there are several different locations where
the necessary intervention could be conducted by speciallyde-
veloped robots. However these search and rescue robotic teams
are in limited number and should be distributed through the dif-
ferent emergency areas in the most efficient way possible. This
kind of resource allocation must be carefully coordinated by a
tactical planner that should take into account the specific kine-
matic and dynamic constraints of each individual robot. This
planner will use a simplified model of the differential equations
governing the different robots that preserves the physicalcon-
straints of the robots. Such a model will now be developed
using the abstracting framework presented in the previous sec-
tion.

3Considering that the partition	 is nice the informal descriptionqj is a

neighbor ofqi can be replaced by	�1(qj)\	�1(qi) 6= ?, where the over-
bar represents the topological closure of a set.



Consider the two-dimensional version of the search and rescue
problem for simplicity of presentation. We will consider that
the robotic teams are initially at the head quarters modeledas
a disk, and that there aren = 3 emergency areas where emer-
gency intervention is required. These areas are also modeled
by n = 3 disks on the plane as can be seen in figure 1. Each
disk i is located at(xi; yi) and has a radius ofri.

Head
Quarters

Emergency

Zone 1

Emergency

Zone 3

Emergency

Zone 2

Figure 1: Graphical model of the catastrophe scenario.

By associating a different symbol with each disk and another
symbol with the complement of the union of the disks we nat-
urally define the partition	. The tactical planner is interested
in retaining the timing information associated with crossing of
the disks borders by the robots. This timing information is es-
sential for an effective planning and coordination of the several
teams.

We shall illustrate the abstracting methodology for a single
robot, since the process is similar for the others. Considerthe
model of a simple nonholonomic robot given by:

m _v = FI _! = N_x = v 
os �_y = v sin �_� = ! (9)

Thex andy coordinates represent robot position, while the an-
gle� represents its heading angle. The control inputs are given
by the total forceF acting on the robot and the total torqueN ,
both induced by the torques applied on the robot wheels. By
inverting the the massm and the inertiaI we rewrite (9) as:

FM = f(x) + g1(x)u1 + g2(x)u2f(x) = v 
os � ��x + v sin � ��y + ! ���g1(x) = 1m ��vg2(x) = 1I ��! (10)

The partition	 does not depend on the coordinatesv or !,
therefore the partition blocks are invariant under the action of
the vectors��v and ��! . Since these vectors are also contained
in Lieg(FM ) we can define an abstracting map as:�(v; !; x; y; �) = 24xy�35 (11)

This map abstracts away the dynamics retaining only informa-
tion concerning the kinematics of the vehicle. To determinethe
abstracted control system we compute:K = Spanf ��v ; ��!g[ ��v ;DM ℄ = [ ��v ; f(x)℄ = 
os � ��x + sin � ��y[ ��! ;DM ℄ = [ ��! ; f(x)℄ = ��� (12)

thereforeDM and��DM are given by:DM = Spanf ��v ; ��! ; v 
os � ��x + v sin � ��y + ! ��� ;
os � ��x + sin � ��y ; ���g��DM = Spanf v 
os � ��x + v sin � ��y + ! ��� ;
os � ��x + sin � ��y ; ���g (13)

and the new control system is given by:_x = v 
os � + 
os �_y = v sin � + sin �_� = ! + 1 (14)

The variablesv and! are now regarded as control inputs and
by defining new inputs asu1 = v + 1 andv2 = ! + 1 we get
the usual kinematic model for the nonholonomic robot. Further
simplifications are possible by performing another abstraction
defined as: �(x; y; �) = �xy� (15)



Q Descriptionq0 Head-Quartersq1 Emergency Zone 1q2 Emergency Zone 2q3 Emergency Zone 3q4 Remaining territory

Table 1: Labelings associated with the partition	.

and the resulting control system is:_x = u1(
os � � sin �)_y = u1(
os � + sin �) (16)

The variable� is now also a control input so the system can be
rewritten as: _x = u1_y = u2 (17)

by identifyingu1 with u1(
os ��sin �) andu2 with u1(
os �+sin �). When the robot is inside one of the disks its dynamics
can be even further reduced by realizing that the disks are in-
variant under the action of the algebraSpanf(y�yi) ��x�(x�xi) ��yg which suggests the abstracting map:�(x; y) = z = (x� xi)2 + (y � yi)2 (18)

resulting in the abstracted control system_z = u, which is valid
only inside the disks.

To complete the hybrid control system the invariants, guards
and resets are computed according the prescription of Section 2
and table 3. For any diski = 1; 2; 3 the invariant is given by:Inv(qi) = �i�f(x; y) 2 R2 : (x� xi)2 + (y � yi)2 < r2i g�= fz 2 R : z < rg (19)

and the guard by:Guard4(qi) = �i�	�1(q4) [ �[k 6=4	�1(qk)��= �i�M n	�1(qi)�= fz 2 R : z � rg (20)

Finally the reset map is given by:

Reseti4(qi) = �4 Æ��1i (z) (21)= f(x; y) 2 R2 : (x � xi)2 + (y � yi)2 = z2g
Using the same process we get the following data for stateq4:Inv(q4) = R2 n �[i=0;1;2;3 �4 Æ	�1(qi)�Guardi(q4) = �4 Æ	�1(qi) i = 0; 1; 2; 3 (22)Reset4i(q4) = (x� xi)2 + (y � yi)2 i = 0; 1; 2; 3
The resulting hybrid control system is displayed in figure 2.
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Figure 2: Simplified model of the hybrid control automaton.

The abstracting process reduced the initial control system(9)
incorporating dynamics and nonholonomic restrictions to the
trivial control systems_x = u1; _y = u2 and _z = u on a hybrid
control system. The resulting abstraction has therefore reduced
the complexity of the original system to the minimum amount
necessary to generate the same timed language.

4 Conclusions

In this paper a methodology for abstracting control systemsto
simpler hybrid control systems was discussed. The proposed
abstraction framework allows the hybrid control system to gen-
erate the same timed language defined by the original control
system and a finite partition of the state space. More impor-
tant is that the language generated in the hybrid abstraction can
also be generated by the low level model. A detailed example
of application was considered showing the complexity reduc-
tion achieved through the abstracting process. The tight condi-
tions on the abstracting map suggest that more general method-
ologies should be considered for complexity reduction, allow-
ing for example merging several symbols into macro-symbols.
This would allow for complexity reduction in the discrete level
as well as in the continuous level.
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