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Abstract

This paper addresses the stabilization of a class of nonlinear systems in the presence of disturbances, using switching controllers.
To this effect we introduce two new classes of switched systems and provide conditions under which they are input-to-state
practically stable (ISpS). By exploiting these results, a methodology for control systems design - called switched seesaw control -
is obtained that allows for the development of nonlinear control laws yielding input-to-state stability. The range of applicability
and the efficacy of the methodology proposed are illustrated via two non-trivial design examples. Namely, stabilization of
the extended nonholonomic double integrator (ENDI) and stabilization of an underactuated autonomous underwater vehicle
(AUV) in the presence of input disturbances and measurement noise.
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1 Introduction

There has been increasing interest in hybrid control in
recent years, in part due to its potential to overcome
the basic limitations to nonlinear system stabilization
introduced by Brockett’s celebrated result in the area
of nonholonomic systems control (Brockett, 1983). Hy-
brid controllers that combine time-driven with event-
driven dynamics have been developed by a number
of authors and their design is by now firmly rooted
in a solid theoretical background. See for example
(Kolmanovsky and McClamroch, 1996; Tomlin et
al., 1998; Morse, 1995; Hespanha, 1996; Liberzon, 2003)
and the references therein.
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Inspired by progress in the area, the first part of this
paper offers a new design methodology for the stabi-
lization of nonlinear systems in the presence of external
disturbances by resorting to hybrid control. To this
effect, two classes of switched systems are introduced:
unstable/stable switched systems and switched seesaw
systems. The first, as their name indicates, have the
property of alternating between an unstable and a stable
mode during consecutive periods of time. The latter can
be viewed as the interconnection of two unstable/stable
systems such that when one is stable the other is unsta-
ble, and vice-versa. Conditions are given under which
the interconnection is input-to-state practically stable
(ISpS). The results are then used to develop a control
design framework called switched seesaw control design
that allows for the solution of robust (in an appropri-
ately defined sense) control problems using switching.
To illustrate the scope of the new design methodology
proposed, the second part of the paper solves the chal-
lenging problems of stabilizing the so-called extended
nonholonomic double integrator (ENDI) (Aguiar and
Pascoal, 2000) and an underactuated autonomous un-
derwater vehicle (AUV) in the presence of input distur-
bances and measurement noise. These examples were
motivated by the problem of point stabilization, that
is, the problem of steering an autonomous vehicle to a
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point with a desired orientation. The complexity of the
point stabilization problem is highly dependent on the
configuration of the vehicle under consideration. For un-
deractuated vehicles, i.e., systems with fewer actuators
than degrees-of-freedom, point-stabilization is particu-
larly challenging because most of the vehicles exhibit
second-order (acceleration) nonholonomic constraints.
As pointed out by Brockett (Brockett, 1983), nonholo-
nomic systems cannot be stabilized by continuously dif-
ferentiable (or even simply continuous) time invariant
static state feedback control laws. To overcome this basic
limitation, a variety of approaches have been proposed in
the literature. Among the proposed solutions are contin-
uous smooth or almost smooth time-varying (periodic)
controllers (Samson, 1995; Tell et al., 1995; M’Closkey
and Murray, 1997; Godhavn and Egeland, 1997; Morin
and Samson, 2000; Dixon et al., 2000; Morin and
Samson, 2003), discontinuous or piecewise time-
invariant smooth control laws (Canudas-de-Wit and
Sørdalen, 1992; Bloch and Drakunov, 1994; Aicardi
et al., 1995; Astolfi, 1998; Aguiar and Pascoal, 2001),
and hybrid controllers (Bloch et al., 1992; Hes-
panha, 1996; Aguiar and Pascoal, 2000; Aguiar and
Pascoal, 2002; Prieur and Astolfi, 2003; Lizárraga et
al., 2004).
From a practical point of view, the above problem has
been the subject of much debate within the ground
robotics community. However, it was only recently that
the problem of point stabilization of underactuated au-
tonomous underwater vehicles (AUVs) received special
consideration in the literature (Leonard, 1995; Pettersen
and Egeland, 1999; Pettersen and Fossen, 2000; Do et
al., 2004). Point stabilization of AUVs poses consider-
able challenges to control system designers because the
dynamics of these vehicles are complicated due to the
presence of complex, uncertain hydrodynamic terms.
One of the key contributions of the paper is the fact
that the solution proposed for point stabilization of
an AUV addresses explicitly the existence of external
disturbances and measurement errors. In a general set-
ting this topic has only been partially addressed in
the literature and in many aspects it still remains an
open problem. Noteworthy exceptions are e.g., (Morin
and Samson, 2003), where smooth time-varying feed-
back control laws for practical stabilization of driftless
nonlinear systems subjected to known or measured ad-
ditive perturbations are derived by using the transverse
function approach; (Prieur and Astolfi, 2003), where
a hybrid control law is proposed for stabilization of
nonholonomic chained systems that yields global expo-
nential stability and global robustness against a class of
small measurements errors; and (Lizárraga et al., 2004)
that addresses the point stabilization for the extended
chained form in the presence of additive disturbances.

The paper is organized as follows. In Section 2 we in-
troduce and analyze the stability of two new classes of
switched systems: unstable/stable and seesaw switched
systems. The results obtained are then used to derive a

switched seesaw control design methodology that allows
for the development of a new class of nonlinear control
laws yielding input-to-state stability. In Section 3 we il-
lustrate the applicability and the efficacy of the theoret-
ical results derived in the previous section via two non-
trivial design examples. Concluding remarks are given
in Section 4.

Notation and definitions: | · | denotes the standard
Euclidean norm of a vector in R

n and ‖u‖I is the (es-
sential) supremum norm of a signal u : [0,∞) → R

n on
an interval I ⊂ [0,∞). Let a ⊕ b := max{a, b} and de-
note by MW the set of measurable, essentially bounded
signals w : [t0,∞) → W, where W ⊂ R

m. A func-
tion γ : [0,∞) → [0,∞) is of class K (γ ∈ K) if it
is continuous, strictly increasing, and γ(0) = 0 and of
class K∞ if in addition it is unbounded. A function
β : [0,∞) × R → [0,∞) is of class 1 KL if it is contin-
uous, for each fixed t ∈ R the function β(·, t) is of class
K, and for each fixed r ≥ 0 the function β(r, t) decreases
with respect to t and β(r, t) → 0 as t → ∞. A class KL
function β(r, t) is called exponential if β(r, t) ≤ β̂re−λt,
β̂ > 0, λ > 0. We denote the identity function from
R to R by id, and the composition of two functions
γi : R → R; i = 1, 2 in this order by γ2◦γ1. The acronym
w.r.t. stands for “with respect to”.

2 Dwell-time switching theorems and hybrid
control

This section introduces and analyzes stability related
results for two classes of systems that will be henceforth
called unstable/stable and seesaw switched systems. The
results obtained are key to the derivation of a new hybrid
control methodology for nonlinear system stabilization
in the presence of disturbances.

2.1 Unstable/stable switched system

Consider the switched system

ẋ = fσ(x,w), x(t0) = x0, (1)

where x ∈ X ⊂ R
n is the state, w ∈ MW is a distur-

bance, and σ : [t0,∞) → {1, 2} is a piecewise constant
switching signal that is continuous from the right and
evolves according to

σ(t) =
{

1, t ∈ [tk−1, tk), k odd
2, t ∈ [tk−1, tk), k even

(2)

1 Our definition of KL functions is slightly different from
the standard one because the domain of the second argument
has been extended from [0,∞) to R. This will allow us to
consider the case β(r,−t) which may grow unbounded as
t→ ∞.
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In (2), {tk} := {t1, t2, t3, . . .} is a sequence of strictly in-
creasing infinite switching times in [t0,∞) and t0 is the
initial time. We assume that both fi; i = 1, 2 are locally
Lipschitz w.r.t. (x,w) and that the solutions of (1) lie in
X and are defined for all t ≥ t0.
Let ω : R

n → [0,∞) be a continuous nonnegative real
function called a measuring function. For a given switch-
ing signal σ, system (1) is said to be input-to-state prac-
tically stable 2 (ISpS) on X w.r.t. ω if there exist func-
tions β ∈ KL, γw ∈ K, and a nonnegative constant c
such that for every initial condition x(t0) and every in-
put w ∈ MW such that the solution x(t) of (1) lies en-
tirely in X , x(t) satisfies

ω(x(t)) ≤ β(ω(x(t0)), t− t0) ⊕ γw(‖w‖[t0,t]) ⊕ c. (3)

for all t ≥ t0. When X = R
n, W = R

m, ω(x) = |x| and
c = 0, ISpS is equivalent to the by now classical defini-
tion of input-to-state stability (ISS) (Sontag, 1989).
With respect to (1), assume the following conditions
hold:

1. Instability (σ = 1). For ẋ = f1(x,w), there exist
functions β1 ∈ KL, γw

1 ∈ K, and a nonnegative con-
stant c1 such that for every initial condition x(t0)
and every input w ∈ MW for which the solution
x(t) of (1) lies entirely in X , x(t) satisfies 3

ω(x(t)) ≤ β1

(
ω(x(t0)) ⊕ γw

1 (‖w‖[t0,t])
⊕ c1,−(t− t0)

)
, t ≥ t0. (4)

Notice how the negative term −(t− t0) in the sec-
ond argument of β1 captures the unstable charac-
teristics of the system when σ = 1.

2. Stability (σ = 2). System ẋ = f2(x,w) is ISpS on
X w.r.t. ω, that is, for every initial condition x(t0)
and every input w ∈ MW such that the solution
x(t) of system (1) lies entirely in X , x(t) satisfies

ω(x(t)) ≤ β2(ω(x(t0)), t− t0) ⊕ γw
2 (‖w‖[t0,t])

⊕ c2, t ≥ t0 (5)

where β2 ∈ KL, γw
2 ∈ K, c2 ≥ 0.

2 On a first reading, one can consider that X = R
n. In this

case, the reference to the set X is omitted. However, we will
need the more general setting when we consider applications
to the stabilization of underactuated vehicles.
3 Another alternative is to consider that x(t) satisfies

ω(x(t)) ≤ βx
1

�
ω(x(t0)),−(t−t0)

�⊕βw
1

�‖w‖[t0,t],−(t−t0)
�

⊕ βc
1

�
c1,−(t− t0)

�

with βx
1 , β

w
1 , β

c
1 ∈ KL. There is no loss of generality in

considering (4), because one can always take β1(r,−t) =
βx

1 (r,−t)⊕βw
1 (r,−t)⊕βc

1(r,−t) with the advantage of intro-
ducing a less complicated notation. However, this may lead
to more conservative estimates.

If conditions 1–2 above are met, we call (1)–(2) an un-
stable/stable switched system on X w.r.t. ω. The defini-
tion of a stable/unstable switched is done in the obvious
manner.
The following result provides conditions under which an
unstable/stable switched system is ISpS.

Lemma 1 Consider an unstable/stable switched sys-
tem on X w.r.t. ω. Let ti; i ∈ N be a sequence of strictly
increasing switching times {ti} such that the differences
between consecutive instants of times ∆i := ti− ti−1 sat-
isfy

β2

(
β1(r,−∆k+1),∆k+2

) ≤ (id − α)(r), ∀r ≥ r0 (6)

for k = 0, 2, 4, ..., and for some class K∞ function α(·)
and r0 ≥ 0. Then, system (1)–(2) is ISpS at t = tk,
that is, x(t) satisfies the ISpS condition (3) at t = tk.
Similarly, if

β1

(
β2(r,∆k),−∆k+1

) ≤ (id − α)(r), ∀r ≥ r0 (7)

for k = 2, 4, 6, . . ., and for some class K∞ function α(·)
and r0 ≥ 0, then system (1)–(2) is ISpS at t = tk+1.
If either (6) or (7) hold and the piecewise continuous
function that captures the differences between consecutive
switching times ∆ : [t0,∞) → [0,∞) defined by ∆(t) :=
∆i; t ∈ [ti−1, ti), i ∈ N is bounded, then system (1)–(2)
is ISpS. �

Remark 2 If c1 = c2 = r0 = 0, ω(x) = |x|, X = R
n,

and W = R
m and all the conditions of Lemma 1 are met,

then system (1)–(2) is ISS. �

Remark 3 If (4)–(5) hold with exponential class KL
functions, i.e., βi(r, t) ≤ β̂ire

−λit, i = 1, 2, and α can be
taken as α(r) = α̂r; α̂ ∈ (0, 1), then inequalities (6)–(7)
become independent of r. In particular, (6) and (7) above
degenerate into

∆k+2 ≥ λ1

λ2
∆k+1 +

1
λ2

ln
β̂1β̂2

1 − α̂
; k = 0, 2, 4, ...

and

∆k+1 ≤ λ2

λ1
∆k +

1
λ1

ln
1 − α̂

β̂1β̂2

; k = 2, 4, 6, ...,

respectively. Notice how the first condition sets lower
bounds on the periods of time over which the switching
system (1) is required to be stable. Similarly, the second
condition enforces upper bounds on the periods of time
over which the switching system may be unstable. �

Remark 4 The results above can be extended to sta-
ble/unstable switched systems in the obvious manner. �
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Proof of Lemma 1 Select some switching time tk such
that σ(t) = 1 for all t ∈ [tk, tk+1) (unstable mode). From
(4), we conclude that

ω(x(t−k+1)) ≤ β1

(
ω(x(tk))⊕γw

1 (‖w‖[tk,tk+1))⊕c1,−∆k+1

)
,

where x(t−k+1) denotes the limit from the left. Using (5)
and the continuity of x(t) it follows from the inequality
β2(a⊕ b, c) ≤ β2(b, c) ⊕ β2(a, c) that

ω(x(tk+2)) ≤ β2

(
β1(ω(x(tk)),−∆k+1),∆k+2

)
⊕ β2

(
β1(γw

1 (‖w‖[tk,tk+1)),−∆k+1),∆k+2

)
⊕ β2

(
β1(c1,−∆k+1),∆k+2

)
⊕ γw

2 (‖w‖[tk+1,tk+2)) ⊕ c2.

Applying (6) it is straightforward to obtain

ω(x(tk+2)) − ω(x(tk)) ≤ −α(
ω(x(tk))

)
⊕ γ̂w

1 (‖w‖[tk,tk+2)) ⊕ ĉ1,

where γ̂w
1 (r) := (id − α) ◦ γw

1 (r) ⊕ γw
2 (r) and ĉ1 :=

(id−α)(c1⊕γw
1 (r0)⊕r0)⊕c2. It can now be shown that

(3) is satisfied at t = tk; k = 0, 2, 4, .. by using the same
arguments as in (Jiang and Wang, 2001, Lemma 3.5) and
by viewing (with a slight abuse of terminology) ω(·) as a
discrete-time ISS-Lyapunov function. Estimates for γw

and c in (3) can be derived by assuming without loss of
generality that id − α ∈ K (cf. (Jiang and Wang, 2001,
Lemma B.1)) and by choosing any ρ ∈ K∞ such that
id−ρ is of class K. Then, (3) holds with γw(r) := α−1 ◦
ρ−1 ◦ γ̂w

1 (r) and c := α−1 ◦ ρ−1(ĉ1).
To prove (3) at t = tk; k = 2, 4, ... using (7) instead of
(6), select a switching time tk−1 such that σ(t) = 2 for
all t ∈ [tk−1, tk) (stable mode). From (5), a bound on
x(tk) can be written as

ω(x(t−k )) ≤ β2(ω(x(tk−1)),∆k) ⊕ γw
2 (‖w‖[tk−1,tk)) ⊕ c2.

Using the continuity of x(t) and (4) yields

ω(x(tk+1)) ≤ β1

(
β2(ω(x(tk−1)),∆k),−∆k+1

)
⊕ β1

(
γw
2 (‖w‖[tk−1,tk)) ⊕ c2

⊕ γw
1 (‖w‖[tk,tk+1)) ⊕ c1,−∆k+1

)
.

Using (7) it follows that

ω(x(tk+1)) − ω(x(tk−1)) ≤ −α(
ω(x(tk−1))

)
⊕ γ̂w

2 (‖w‖[tk−1,tk+1)) ⊕ ĉ2,

where γ̂w
2 (r) := β1(γw

2 (r) ⊕ γw
1 (r),−∆k+1), and ĉ2 :=

β1(c2 ⊕ c1,−∆k+1) ⊕ (id− α)(r0). Again, using the ar-
guments advanced in (Jiang and Wang, 2001, Lemma
3.5) we conclude that (3) applies, possibly with different
estimates for γw and c. The proof that system (1)–(2)

Table 1
Temporal representation of the switched seesaw system

∆1 ∆2 ∆3 ∆4 · · ·
σ 1 2 1 2 · · ·
ωsu ↘ ↗ ↘ ↗ · · ·
ωus ↗ ↘ ↗ ↘ · · ·

↘ Stable

↗ Unstable

is ISpS (at all times t) if either (6) or (7) hold and ∆(t)
is bounded, is straightforward and follows from simple
algebra. �

2.2 Switched seesaw system

This section introduces the concept of switched seesaw
system. To this effect, consider the switched system (1)–
(2). Given two measuring functions ωsu, ωus and a set
X ⊂ R

n we call (1) a switched seesaw system on X w.r.t.
(ωsu, ωus) if the following conditions hold:

C1. For ẋ = f1(x,w), that is, σ = 1, there exist
β11, β12 ∈ KL, γωus

11 , γωsu
12 , γw

11, γ
w
12 ∈ K, c11, c12 ≥ 0

such that for every solution x(·) ∈ X

ωsu(x(t)) ≤ β11(ωsu(x(t0)), t− t0))
⊕ γωus

11 (‖ωus(x)‖[t0,t]) ⊕ γw
11(‖w‖[t0,t])

⊕ c11, (8)
ωus(x(t)) ≤ β12

(
ωus(x(t0)) ⊕ γωsu

12 (‖ωsu(x)‖[t0,t])
⊕ γw

12(‖w‖[t0,t]) ⊕ c12,−(t− t0)
)
. (9)

C2. For ẋ = f2(x,w), that is, σ = 2, there exist
β21, β22 ∈ KL, γωus

21 , γωsu
22 , γw

21, γ
w
22 ∈ K, c21, c22 ≥ 0

such that for every solution x(·) ∈ X

ωsu(x(t)) ≤ β21

(
ωsu(x(t0)) ⊕ γωus

21 (‖ωus(x)‖[t0,t])
⊕ γw

21(‖w‖[t0,t]) ⊕ c21,−(t− t0)
)
,
(10)

ωus(x(t)) ≤ β22(ωus(x(t0)), t− t0)
⊕ γωsu

22 (‖ωsu(x)‖[t0,t]) ⊕ γw
22(‖w‖[t0,t])

⊕ c22. (11)

In view of the above, the switched seesaw system can
be interpreted as a stable/unstable system w.r.t. ωsu

when ωus(x) and w are regarded as inputs, and an un-
stable/stable w.r.t. ωus when ωsu(x) and w are regarded
as inputs, see Table 1.

The following theorem gives conditions under which a
switched seesaw system is ISpS.

Theorem 5 Consider the switched seesaw system on X
w.r.t. (ωsu, ωus). Let τmin

1 , τmax
1 , τmin

2 , τmax
2 be positive

constants, called dwell time bounds, such that τmax
1 ≥

τmin
1 > 0, τmax

2 ≥ τmin
2 > 0, {tk}, k ∈ N a sequence of
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strictly increasing switching times, and ∆k = tk − tk−1

a sequence of intervals satisfying

∆i ∈ [τmin
1 , τmax

1 ], ∆i+1 ∈ [τmin
2 , τmax

2 ], i = 1, 3, 5, . . .

Assume there exist αi ∈ K∞; i = 1, 2 such that

β21

(
β11(r, τmin

1 ),−τmax
2

) ≤ (id − α1)(r), ∀r ≥ r0,
(12)

β22

(
β12(r,−τmax

1 ), τmin
2

) ≤ (id − α2)(r), ∀r ≥ r0,
(13)

for some r0 ≥ 0 and

γ̄ωsu
2 ◦ γ̄ωus

1 (r) < r, ∀r > r̂0, (14)
γ̄ωus
1 ◦ γ̄ωsu

2 (r) < r, ∀r > r̂0, (15)

for some r̂0 ≥ 0, where

γ̄ωus
1 (r) := α−1

1 ◦ ρ−1
1 ◦ β21

(
γωus
11 (r) ⊕ γωus

21 (r),−τmax
2

)
,

(16)
γ̄ωsu
2 (r) := α−1

2 ◦ ρ−1
2 ◦ [

(id − α2) ◦ γωsu
12 (r) ⊕ γωsu

22 (r)
]
,

(17)

and ρi ∈ K∞; i = 1, 2 are arbitrary functions such that
id − ρi ∈ K. Then, the seesaw switched system (1) is
ISpS on X w.r.t. to ωsu ⊕ ωus. �

Remark 6 If the KL functions βij are exponential, that
is, if βij(r, t) ≤ β̂ijre

−λijt, with β̂ij > 1, and the αi

can be taken as αi(r) = α̂ir; α̂ ∈ (0, 1), then inequalities
(12)–(13) with τ1 := τmin

1 = τmax
1 , τ2 := τmin

2 = τmax
2

are equivalent to the linear matrix inequality (LMI)

Λτ ≥ b (18)

where Λ =
[

λ11 −λ21
−λ12 λ22

]
, τ = (τ1, τ2)′, and b = (b1, b2)′ is

a positive vector, i.e., b1, b2 > 0. This LMI together with
the fact that τ > 0 imply the necessary condition

λ12

λ11

λ21

λ22
< 1.

The above expression sets an upper bound on the ratio of
λ12λ21 (product of the rates of explosion) versus λ11λ22

(product of the rates of implosion). �

Proof of Theorem 5 We start to compute the evo-
lution of ωus(x(tk)); k = 2, 4, 6, . . . Condition (13) and
Lemma 1 yield

ωus(x(tk)) ≤β̄2(ωus(x(t0)), tk − t0) ⊕ γ̄ωsu
2 (‖ωsu(x)‖[t0,tk])

⊕ γ̄w
2 (‖w‖[t0,tk]) ⊕ c̄2 (19)

where γ̄ωsu
2 is defined in (17), c̄2 := α−1

2 ◦ ρ−1
2 ((id −

α2)(c12 ⊕ γωsu
12 (r0)⊕ γw

12(r0)⊕ r0)⊕ c22), and β̄2 and γ̄w
2

are KL and K functions respectively, the form of which
is not relevant. In a similar manner, consider the evolu-
tion of ωsu(x(tk)). Condition (12) and a straightforward
reformulation of Lemma 1 for stable/unstable switched
systems yield

ωsu(x(tk)) ≤β̄1(ωsu(x(t0)), tk − t0) ⊕ γ̄ωus
1 (‖ωus(x)‖[t0,tk])

⊕ γ̄w
1 (‖w‖[t0,tk]) ⊕ c̄1 (20)

where γ̄ωus
2 is defined in (16), c̄1 := α−1

1 ◦ ρ−1
1 (β21(c11 ⊕

c21, τ
max
2 ) ⊕ (id − α2)(r0)), and β̄2 and γ̄w

2 are KL and
K functions, respectively. Notice in (19) and (20) the
existence of a cross-coupling term from ωsu(·) to ωus(·).
A straightforward application of the small-gain theorem
(Jiang et al., 1994; Jiang and Wang, 2001) implies that
(1) is ISpS w.r.t. ωsu ⊕ωus at t = tk, k = 2, 4, . . . if (14)
is satisfied. The proof that (1) is ISpS w.r.t. (ωsu, ωus)
for all t ≥ t0 follows from the fact that ∆(t) defined in
Lemma 1 is uniformly bounded. �

2.3 Seesaw control systems design

Equipped with the mathematical results derived, this
section proposes a new methodology for the design of
stabilizing feedback control laws for nonlinear systems
of the form

ẋ = f(x, u, w), (21)
where x ∈ X ⊂ R

n is the state, u ∈ U ⊂ R
m is the

control input, and w ∈MW , W ⊂ R
nw is a disturbance

signal. In particular, we seek to derive a switching con-
trol law for u that will render the resulting closed-loop
system ISpS w.r.t. ω(x) = |x|.
The first step consist of finding two measuring functions
ωsu(x), ωus(x) that satisfy the following detectability
property: if ‖ωsu(x)⊕ωus(x)‖ and ‖w‖ converge to zero
as t → ∞, then |x(t)| tends also to zero as t → ∞.
More precisely, (21) associated with the outputs ωsu(x)
and ωus(x), must be input-output-to-state stable (IOSS)
(Sontag and Wang, 1997) with respect tow, that is, there
must exist a class KL function β and class K function γ
such that 4

|x(t)| ≤ β(|x(t0)|, t− t0)
⊕ γ(‖ωsu(x) ⊕ ωus(x)‖[t0,t] ⊕ ‖w‖[t0,t]). (22)

The choices of ωsu(x) and ωus(x) are strongly motivated
by the physics of the problem at hand, as the examples

4 In fact, since we will only prove ISpS of the closed-loop
system, it is sufficient that (21) be input-output-to-state
practically stable (IOSpS) with respect to w, that is, that
there exist a class KL function β, a class K function γ, and a
nonnegative constant c such that |x(t)| ≤ β(|x(t0)|, t− t0)⊕
γ(‖ωsu(x) ⊕ ωus(x)‖[t0,t] ⊕ ‖w‖[t0,t]) ⊕ c.
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in Section 3 reveal. It will be later seen that in general
ωsu(x) and ωus(x) are not functions of all the state x,
but rather of disjoint, yet complementary collections of
the elements of x.
The next step involves the design of two feedback laws
α1(x), α2(x), such that (21) together with the switching
controller

u = ασ(x), σ ∈ {1, 2}
becomes a switched seesaw system w.r.t. ωsu ⊕ ωus. It
is then easy to show that if σ(t) is chosen such that the
conditions of Theorem 5 hold and if the IOSS condition
applies, then the closed-loop system

ẋ = f(x, ασ(x), w),

is ISpS w.r.t. ω(x) = |x|.
The methodology proposed brings together tools from
Lyapunov-stability and switching system analysis. Its
rationale can be explained in simple terms, if one com-
pares the strategy proposed against that of “classical”
nonlinear controller design by resorting to a single Lya-
punov function, a task that can be impossible or ex-
tremely difficult at best. Instead, the initial stabiliza-
tion problem is somehow broken up into two separate,
simpler problems. This is done by viewing the two mea-
suring functions ωsu(x), ωus(x) as candidate Lyapunov
functions defined over two different collections of the ele-
ments of the original state. With a proper choice of these
functions, the task of finding the Lyapunov-based con-
trol laws α1(x), α2(x) becomes simple, as the examples
in Section 3 will show. Switching between the control
laws is the final ingredient that will yield overall ISpS of
the complete system w.r.t. ω(x) = |x|.

3 Stabilization of underactuated vehicles

The present section focuses on control system design
and provides the insight that goes into the choice of
the switching control laws referred to before. This is
done by addressing the non-trivial problem of under-
actuated underwater vehicle stabilization in the pres-
ence of disturbances and measurement noise. For the
sake of clarity, the illustrative example proceeds in two
steps. First, the techniques are applied to the stabiliza-
tion of so-called extended nonholonomic double integra-
tor (ENDI), which captures the kinematic and dynamic
equations of a wheeled robot. The methodology adopted
is then extended to deal with an underwater vehicle by
showing that its dynamics can be cast in a form similar
to (but more complex than) that of the ENDI.

3.1 The Extended nonholonomic double integrator

The nonholonomic integrator introduced in (Brockett,
1983) captures (under suitable state and control trans-
formations) the kinematics of a wheeled robot, displays

all basic properties of nonholonomic systems, and is of-
ten quoted in the literature as a benchmark for control
system design, e.g., (Bloch and Drakunov, 1994; Hes-
panha, 1996; Astolfi, 1998). However, to tackle the real-
istic case where both the kinematics and dynamics of a
wheeled robot must be taken into account, the nonholo-
nomic integrator model must be extended. In (Aguiar
and Pascoal, 2000), it is shown that the dynamic equa-
tions of motion of a mobile robot of the unicycle type
can be transformed into the system

ẍ1 = u1, ẍ2 = u2, ẋ3 = x1ẋ2 − x2ẋ1, (23)

where x := (x1, x2, x3, ẋ1, ẋ2)′ ∈ R
5 is the state vector

and u := (u1, u2)′ ∈ R
2 is a two-dimensional control

vector. System (23) will be referred to as the extended
nonholonomic double integrator (ENDI).
The ENDI falls into the class of control affine nonlinear
systems with drift and cannot be stabilizable via a time-
invariant continuously differentiable feedback law [cf.,
e.g., (Aguiar, 2002)].

3.1.1 Seesaw control design

We now solve the problem of practical stabilization of
the ENDI system (23) subject to input disturbances v ∈
MV , V := {v ∈ R

2 : ‖v‖[0,∞) ≤ v̄} and measurement
noise n ∈ MN , N := {n ∈ R

5 : ‖n‖ ≤ n̄}, where v̄ and
n̄ are finite but otherwise arbitrary. To this effect, the
dynamics of (23) are first extended to

ẍ1 = u1 + v1, ẍ2 = u2 + v2, ẋ3 = x1ẋ2 − x2ẋ1,
(24)

y = x+ n (25)

where y ∈ R
5 is the vector of state measurements cor-

rupted by noise n. Following the procedure described in
Section 2.3 we first introduce the measuring functions

ωsu := z2, z := ẋ3 + λ1x3, λ1 > 0 (26)
ωus := x2

1 + ẋ2
1 + x2

2 + ẋ2
2. (27)

and the feedback laws

α1(x) :=
[ −k2ẋ1

−k2ẋ2− k3
x1

z

]
, α2(x) :=

[
−k2ẋ1−k1(x1−κ)

−k2ẋ2−k1x2

]
,

(28)

where κ, k1, k2, k3 > 0. Notice that in order for the first
control law to be well defined, x1 must be bounded away
from 0. This justifies the need to required that all tra-
jectories lie in some specific set X ⊂ {x ∈ R

5 : |x1| ≥ δ}
for some δ > 0, as explained later. To provide some in-
sight into (26)–(28), observe that ωsu and ωus can be
viewed as positive semi-definite Lyapunov functions of
z and (x1, ẋ1, x2, ẋ2)′, respectively, the time-derivatives
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of which are given by

ω̇su = 2z
[
x1(u2 + v2 + k2ẋ2) − x2(u1 + v1 + k2ẋ1)

]
,

(29)
ω̇us = 2ẋ1(x1 + u1 + v1) + 2ẋ2(x2 + u2 + v2).

(30)

In the absence of input disturbances and measurement
noise, it is straightforward to conclude that with the con-
trol law u = α1(x), the measuring function ωsu satisfies
ω̇su = −2k3ωsu as long as x1 �= 0. This in turn implies
that ωsu converges exponentially fast to zero during the
intervals of time in which u = α1(x) is applied. In a sim-
ilar vein, consider the evolution of ωus under the influ-
ence of the control law u = α2(x). Simple computations
show that

ẍ1 = −k2ẋ1 − k1(x1 − κ), ẍ2 = −k2ẋ2 − k1x2

and therefore ωus converges exponentially fast to κ2 dur-
ing the intervals of time in which u = α2(x) is applied.
We now proceed with the seesaw control design as ex-
plained in Section 2.3. For clarity of exposition all the
proofs related to this example are at the end of this sec-
tion. Following the procedure described in Section 2.3,
the first step is to show that the measuring functions
satisfy the IOSS detectability property.

Proposition 7 The ENDI system together with the
measuring functions ωsu(x) and ωus(x) of (26) and
(27), respectively as outputs, is IOSS. �

The next step consists in showing that the closed-loop
system described by the ENDI system and the control
law

u = ασ(x+ n) (31)
defined in (28) verifies the seesaw conditions C1 and C2.

Proposition 8 Consider the ENDI system subject to in-
put disturbances and measurement noise and the control
law (31). For every δ > n̄ ≥ 0, there are control gains
such that the closed-loop system

ẋ = f(x, ασ(x+ n), w),

with w = (v, n) verifies the seesaw conditions C1 and C2
w.r.t. ωsu ⊕ ωus on X ⊂ {x ∈ R

5 : |x1| ≥ δ}. �

It is now easy to conclude that if the switched seesaw
controller (31) is applied to the ENDI system and a suit-
able selection of the dwell times τ1, τ2 is made such that
conditions (12)–(15) hold, then the resulting closed-loop
system is ISpS as long as |x1(t)| ≥ δ. It remains to state
conditions under which |x1| is indeed bounded away from
zero.

Proposition 9 Consider the closed-loop system that
consists of (24)–(25) and the feedback control law (28),
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Fig. 1. Time evolution of state variables x1(t), x2(t), and
x3(t).

(31). Given any δ > n̄ ≥ 0, there exists µ > 0 such
that under a suitable choice of the controller gains,
for every initial condition x(t0) ∈ S0 := {x ∈ R

5 :
|(x1 − κ, ẋ1)| ≤ µ}, the resulting solution x(·) lies in
X ⊂ {x ∈ R

5 : |x1| ≥ δ}. �

From Propositions 7–9 and Theorem 5 we finally con-
clude

Theorem 10 Consider the ENDI system subject to in-
put disturbances and measurement noise, together with
the switching control law (28), (31). Assume the condi-
tions of Theorem 5 hold and let the initial conditions of
the closed-loop system be in S0, defined in Proposition 9.
Then, the switching controller stabilizes the state around
a neighborhood of the origin, that is, it achieves ISpS of
the closed-loop system on X w.r.t. ω(x) = |x|.

Remark 11 It is always possible to make sure that x
starts in S0 by applying u = α2(y) during a finite amount
of time before the normal switching takes over. In fact,
from (24),(28) it is clear that with u = α2(y), (x1, ẋ1)
reaches in finite time S0. From the particular evolution
of (x1, ẋ1), ωus, ωsu during this time interval, Proposi-
tion 7, and Theorem 10 we can also conclude that with
the procedure adopted, the resulting switching controller
achieves ISpS of the closed-loop system on R

n w.r.t.
ω(x) = |x|. �

Remark 12 We have eschewed the general problem of
deriving a procedure to choose the dwell time bounds (if
they exist) that satisfy the conditions of Theorem 5. For
the example considered, however, this turns out to be
simple because all the KL functions are exponential and
the K functions are linear (see also Remark 6). �
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Fig. 2. Time evolution of measuring functions ωsu(t), ωus(t),
and the switching signal σ(t).

3.1.2 Simulation results

Numerical simulations were done to illustrate the per-
formance of the switching controller proposed, when ap-
plied to the ENDI. Figures 1 and 2 show the time evolu-
tion of state variables x1, x2, x3 and signals ωsu, ωus, σ,
respectively in the presence of measurement noise and
input disturbances. In the simulations, the measurement
noise is a zero mean uniform random noise with ampli-
tude 0.1, and the input disturbances are v1 = 0.1 sin(t)
and v2 = 0.1 sin(t+π/2), in the appropriate units. With
the dwell-time constants set to τ1 = τmin

1 = τmax
1 =

1.0 s and τ2 = τmin
2 = τmax

2 = 5.0 s, the assumptions of
Theorem 10 were verified to hold. Notice how the state
variables converge to a small neighborhood of the origin.
Fig. 2 shows clearly, during the first switching intervals,
how the behavior of ωsu and ωus capture the successive
“stable/unstable” and “unstable/stable” cycles, respec-
tively.

3.1.3 Proofs

Proof of Proposition 7 Let x = (x1, ẋ1, x2, ẋ2, x3)′.
From (26) using the variation of constant formula and
taking norms, x3 can be bounded as

|x3(t)| ≤ e−k2(t−t0)|x3(t0)| + 1
k2

√
‖ωsu(x)‖[t0,t).

Therefore,

|x(t)| =
√
ωus(x(t)) + x2

3(t) ≤
√
ωus(x(t)) + |x3(t)|

≤ β(|x(t0)|, t− t0) ⊕ γ(‖ωsu(x)‖[t0,t] ⊕ ‖ωus(x)‖[t0,t])

with β(r, t) := 2e−k2tr and γ(r) := 2( 1
k2

+ 1)
√
r thus

satisfying (22). �

Proof of Proposition 8 We start by showing that C1
is observed when σ = 1. In the presence of measurement
noise, the control input u = α1(x+ n) is given by

u1 = −k2(ẋ1 + n4),

u2 = −k2(ẋ2 + n5) − k3

x1 + n1
(z + nz),

where nz = x1n5 +n1ẋ2 +n1n5 −x2n4 −n2ẋ1 −n2n4 +
k2n3 which, from the fact that ‖n‖[0,∞) ≤ n̄, satisfies
|nz| ≤ 4n̄

√
ωus + 2n̄2 + λn̄. For |x1| > δ > n̄, a bound

for ωsu is determined by computing the time-derivative
of ωsu as

ω̇su = −2
k3

1 + n1
x1

z2 + 2zx1[−k2n5 − k3

x1 + n1
nz + v2]

− 2zx2[−k2n4 + v1]

≤ −λ11ωsu +
λ11

3
γ̂ωus
11 ωus +

λ11

3
c11; θ1, θ2 > 0

where λ11 = 2
[

k3
1+ n̄

δ
− k3

1− n̄
δ

θ1
2 − n̄k2 − θ2v̄

]
, λ11

3 γ̂ωus
11 =

2 k3
1− n̄

δ

16
θ1
n̄2+n̄k2+ 1

θ2
v̄, and λ11

3 c11 = 2 k3
1− n̄

δ

1
θ1
n̄2(2n̄+λ)2.

Therefore, 5

ωsu(t) ≤ 3ωsu(t0)e−λ11(t−t0) ⊕ γ̂ωus
11 ‖ωus‖[t0,t] ⊕ c11.

(32)

Notice the absence of the term γw
11 due to the fact that

the disturbances and noise are assumed to be bounded
and their bounds are known in advance 6 . We now es-
tablish a bound for ωus. Computing its time-derivative
yields 7

ω̇us = 2(ẋ1x1 + ẋ2x2) − 2k2(ẋ2
1 + ẋ2

2) + 2ẋ1(−k2n4 + v1)

+ 2ẋ2(−k2n5 + v2) − 2ẋ2
k3

x1 + n1
(z + nz)

≤ λ12ωus + λ12γ̂
ωsu
12 ωsu + λ12γ

v
12(|v|) + λ12c12

where λ12 = 2 + k3
δ−n̄ + 4n̄ + θ3

2 , λ12γ̂
ωsu
12 = k3

δ−n̄ ,

λ12γ
v
12(r) = 2r2, and λ12c12 = 4k2

2n̄
2 + k3n̄2

δ−n̄
(2n̄+k2)

2

2θ3
.

Therefore, ωus satisfies

ωus(t) ≤ 4
(
ωus(t0) ⊕ γ̂ωsu

12 ‖ωsu‖[t0,t]

5 We exploit the fact that for every class K function α and
arbitrary positive numbers r1, r2, . . . , rk we have α(r1+ · · ·+
rk) ≤ α(kr1) + · · · + α(krn).
6 To simplify the control algorithm, we use explicitly in
advance the fact that the disturbances and noise are bounded
by ‖v‖[0,∞) ≤ v̄ and ‖n‖[0,∞) ≤ n̄, respectively. It is possible
to avoid this at the cost of introducing the K function γv

11(r)
and making γωsu

12 (r) a quadratic function.
7 We have used the fact that |ẋ2||nz| ≤ 4n̄ωus+ n̄2(2n̄+k2)2

2θ3
+

ωus
θ3
2

, θ3 > 0.
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⊕ γv
12(‖v‖[t0,t]) ⊕ c12

)
eλ12(t−t0). (33)

From (32) and (33), we can now conclude that condition
C1 holds by identifying w in C1 with the input distur-
bance v.
Similarly, we check that condition C2 is satisfied when
σ = 2. In this case, the control input u = α2(x + n) is
given by

u1 = −k2(ẋ1 + n4) − k1(x1 + n1 − κ),
u2 = −k2(ẋ2 + n5) − k1(x2 + n2).

Substituting the above equations into (29) yields

ω̇su = 2z
[
x1(−k2n5 − k1n2 + v2)

− x2(−k2n4 − k1n1 + k1κ+ v1)
]

≤ λ21ωsu + λ21γ̂
ωus
21 ωus, θ4, θ5 > 0

where λ21 = 2(k2+k1)+k1κ
θ4

+ 2 v̄
θ5

and λ21γ̂
ωus
21 = θ4[(k2 +

k1)n̄+ k1κ] + θ5v̄. Therefore,

ωsu ≤ 2
(
ωsu(t0) ⊕ γ̂ωus

21 ‖ωus‖[t0,t]

)
eλ21(t−t0). (34)

To compute a bound for ωus(t), we first observe that

ωus = |χ1|2 + |χ2|2, (35)

where χ1 := [x1, ẋ1]′, χ2 := [x2, ẋ2]′, and χ1, χ2 satisfy

χ̇i = Aχi +Bdi, i = 1, 2 (36)

with A :=
[

0 1
−k1 −k2

]
, B = [0, 1]′, d1 = −k2n4 − k1n1 +

κ + v1, and d2 = −k2n5 − k1n2 + v2. Let λ > 0 be
an arbitrary constant such that (A + λ

2 I) is Hurwitz.
Further, let P > 0 satisfy

(
A+

λ

2
I
)
P + P

(
A+

λ

2
I
)′ +BB′ ≤ 0. (37)

Define Vi := χ′
iP

−1χi and compute V̇i to obtain

V̇i = χ′
i(P

−1A+A′P−1)χi + 2χ′P−1Bdi

≤ −(λ− θ6)Vi, Vi ≥ |di|2
θ6

, θ6 ∈ (0, λ)

From the above, it follows that Vi(t) ≤ Vi(t0)e−(λ−θ6)(t−t0)⊕
|di|2
θ6

, and therefore

ωus ≤ β̂22ωus(t0)e−λ22(t−t0) ⊕ γv
22(‖v‖[t0,t]) ⊕ c22,

where β̂22 = 3λmax(P )
λmin(P ) , λ22 = (λ−θ6), γv

22(r) = 6r2, and
c22 = 6

[
((k2 + k1)n̄+ k1κ)2 + (k2 + k1)2n̄2

]
. �

Proof of Proposition 9 Let ξ := (ξ1, ξ2)′ := (x1 −
κ, ẋ1)′. For σ = i; i ∈ 1, 2, consider the dynamics

ξ̇ = Aiξ +Bdi, (38)

where A1 :=
[

0 1
0 −k2

]
, A2 :=

[
0 1

−k1 −k2

]
, B = [0, 1]′,

|d1| ≤ k2n̄+|v|, and |d2| ≤ (k2+k1)n̄+|v|. Let λξ1 , λξ2 >

0 be arbitrary constants such that (A1− λξ1
2 I), and (A2+

λξ2
2 I) are Hurwitz. Further let Pi > 0; i = 1, 2 satisfy

(
A1 − λξ1

2
I
)
P1 + P1

(
A1 − λξ1

2
I
)′ +BB′ ≤ 0,

(
A2 +

λξ2

2
I
)
P2 + P2

(
A2 +

λξ2

2
I
)′ +BB′ ≤ 0,

and define Vi = ξ′P−1
i ξ. A reasoning similar to the one

used in the last part of the proof of Proposition (8) shows
that

V1(t) ≤
(
V1(t0) +

|d1|2
λξ1

)
eλξ1 (t−t0),

V2(t) ≤ V2(t0)e−(λξ2−θ7)(t−t0) ⊕ |d2|2
θ7

, θ7 ∈ (0, λξ2).

Therefore, for σ = 1,

|ξ(t)| ≤ 2
[
λ

1/2
max(P1)

λ
1/2
min(P1)

|ξ(t0)|⊕λ1/2
max(P1)‖d1‖[t0,t]

]
e

λξ1
2 (t−t0)

and for σ = 2

|ξ(t)| ≤ λ
1/2
max(P2)

λ
1/2
min(P2)

|ξ(t0)|e−
λξ2

−θ7
2 (t−t0)⊕λ1/2

max(P2)
‖d2‖[t0,t]

θ7

Consider now the switched system with state ξ and ex-
ternal input d = (d1, d2)′ satisfying the two inequalities
above. Since the unstable mode λξ1 can be made arbi-
trarily close to zero, simple but lengthy computations
show that there is always a choice of controller gains k2

and k3 such that the conditions of Lemma 1 are met.
Therefore, the switched system (38) is ISpS. In partic-
ular, ξ(t) satisfies |ξ(t)| ≤ β(|ξ(t0)|, 0) ⊕ γ(‖v‖[t0,t)) ⊕
c ≤ β(µ, 0) ⊕ γ(v̄) ⊕ c, for some β ∈ KL, γ ∈ K,
and c ≥ 0. Therefore, choosing κ large enough, with
κ > β(µ, 0)⊕ γ(v̄)⊕ c⊕ δ, it follows that |x1(t)| > δ for
all t ≥ t0. �

3.2 The underactuated autonomous underwater vehicle

This section addresses the problem of stabilizing an un-
deractuated autonomous underwater vehicle (AUV) in
the horizontal plane to a point, with a desired orienta-
tion. The AUV has no side thruster, and its control in-
puts are the thruster surge force τu and the thruster yaw
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torque τr. The AUV model is a second-order nonholo-
nomic system, falls into the class of control affine non-
linear systems with drift, and there is no time-invariant
continuously differentiable feedback law that asymptot-
ically stabilizes the closed-loop system to an equilib-
rium point (Aguiar and Pascoal, 2001; Aguiar and Pas-
coal, 2002; Aguiar, 2002).

3.2.1 Vehicle Modeling

In the horizontal plane, the kinematic equations of mo-
tion of the vehicle can be written as

ẋ = u cosψ − v sinψ, ẏ = u sinψ + v cosψ, ψ̇ = r,

where, following standard notation, u (surge speed) and
v (sway speed) are the body fixed frame components of
the vehicle’s velocity, x and y are the cartesian coordi-
nates of its center of mass, ψ defines its orientation, and
r is the vehicle’s angular speed. Neglecting the motions
in heave, roll, and pitch the simplified dynamic equa-
tions of motion in the horizontal plane for surge, sway
and heading yield (Aguiar, 2002)

muu̇ −mvvr + duu = τu, (39)
mvv̇ +muur + dvv = 0, (40)
mr ṙ −muvuv + drr = τr, (41)

where the positive constants mu = m − Xu̇, mv =
m − Yv̇, mr = Iz − Nṙ, and muv = mu − mv capture
the effect of mass and hydrodynamic added mass terms,
and du = −Xu − X|u|u|u|, dv = −Yv − Y|v|v|v|, and
dr = −Nr −N|r|r|r| capture hydrodynamic damping ef-
fects. The symbols τu and τr denote the external force
in surge and the external torque about the z axis of the
vehicle, respectively. Since there is no thruster capable
of imparting a direct thrust on sway, the vehicle is un-
deractuated.

3.2.2 Coordinate Transformation

Consider the global diffeomorphism given by the state
and control coordinate transformation (Aguiar, 2002)

x1 = ψ

x2 = x cosψ + y sinψ
x3 = −2

(
x sinψ − y cosψ

)
+ ψ

(
x cosψ + y sinψ

)
u1 =

1
mr

τr +
muv

mr
uv − dr

mr
r

u2 =
mv

mu
vr − du

mu
u +

1
mu

τu − u1
x1x2 − x3

2
+ vr − r2z2

that yields

ẍ1 = u1, ẍ2 = u2, ẋ3 = x1ẋ2 − x2ẋ1 + 2v, (42)

and transforms the second order constraint (40) for the
sway velocity into

mvv̇ +mu

(
ẋ2 + ẋ1

x1x2 − x3

2

)
ẋ1 + dvv = 0. (43)

Throughout the paper, q := col(x,v), x := (x1, x2, x3, ẋ1, ẋ2)′
and u = (u1, u2)′ denote the state vector and the input
vector of (42)–(43), respectively.

3.2.3 Seesaw control design

We now design a switching feedback control law for
system (42)–(43) so as to stabilize (in an ISpS sense)
the state q around a small neighborhood of the origin.
We omit many of the details, because the methodology
adopted for control system design follows closely that
adopted for the ENDI. A comparison of (42)–(43) with
the ENDI system (23) shows the presence of an extra
state variable v that is not in the span of the input vec-
tor field but enters as an input perturbation in the x3

dynamics. We also note that since dv

mv
> 0, (43) is ISS

when x is regarded as input. Motivated by these obser-
vations, we select for measuring functions ωsu(·), ωus(·)
the ones given in (26)–(27). Using Proposition 7 and the
fact that v satisfies

|v(t)| ≤ β̂v|v(t0)|e−λv(t−t0) ⊕ γv(‖ωsu‖[t0,t] ⊕ ‖ωus‖[t0,t])

for some β̂v, λv > 0, and γv(r) ∈ K we conclude that
system (42)–(43) with ωsu and ωus as outputs is IOSS.
Before we define the feedback laws α1(·), α2(·) we com-
pute the time-derivatives of ωsu and ωus to obtain

ω̇su = 2z
[
x1(u2 + v2 + k2ẋ2) − x2(u1 + v1 + k2ẋ1 + 2ν)

]
ω̇us = 2ẋ1(x1 + u1 + v1) + 2ẋ2(x2 + u2 + v2),

where ν := v̇ + k2v satisfies the linear bound

|ν| ≤ γ̂v|v| + γ̂ωus
|ωus| + γ̂z|z|, (44)

for some positive constants γ̂v, γ̂ωus
, γ̂z, and assuming

that ‖(x1−κ, ẋ1)‖[0,∞) ≤ µ, for a given µ > 0. Compar-
ing ω̇su, ω̇us with (29)–(30) and using (44) together with
the previous results for the ENDI case, it is straightfor-
ward to conclude that if α1(·), α2(·) are selected as in
(28), then (42)–(43) (with input disturbances v ∈ MV)
in closed-loop with the seesaw controller u = ασ(q+n),
n ∈ MN , N := {n ∈ R

6 : |n| ≤ n̄} is a switched seesaw
system on X ⊂ {q ∈ R

6 : |x1| ≥ δ, |(x1 − κ, ẋ1)| ≤ µ}.
The existence of such a set X can be proved using the
same arguments as in Proposition 9. These results are
summarized in the following theorem.

Theorem 13 Consider the system (42)–(43) subject to
input disturbances and measurement noise, and select
σ such that the assumptions of Theorem 5 hold. Then,
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Fig. 3. Time evolution of the position x, y and orientation ψ.

there exists µ0 > 0 such that for every initial condition
in S0 := {q ∈ R

6 : |(x1 − κ, ẋ1)| ≤ µ0} the closed-loop
system with the seesaw controller u = α(q + n) is ISpS
on X w.r.t. ω(q) = |q|.

Remark 14 As in the ENDI case (see Remark 11), it
is always possible to make sure that q starts in S0 by
applying during a finite amount of time the control law
u = α2(q) before the normal switching takes over. �

3.2.4 Simulation results

Simulations were done using a dynamic model of the
Sirene AUV (Aguiar, 2002). Figure 3 shows the sim-
ulation results for a sample initial condition given
by (x,y, ψ,u,v, r) = (−4m,−4m,π/4, 0, 0, 0). Zero
mean uniform random noise was introduced in ev-
ery sensed signal: the x and y positions, the orien-
tation angle ψ, the linear velocities u,v, and the an-
gular velocity r. The amplitudes of the noise signals
were set to (0.5m, 0.5m, 5π/180, 0.1, 0.1, 0.1). There
is also a small input disturbance: v1 = 10 sin(t),
v2 = 10 sin(t+π/2). The dwell-time constants were set to
τ1 = τmin

1 = τmax
1 = 15 s and τ2 = τmin

2 = τmax
2 = 20 s.

Clearly, the vehicle converges to a small neighborhood of
the target position while the heading angle is attracted
to a neighborhood around zero.

4 Conclusions

A new class of switched systems was introduced and
mathematical tools were developed to analyze their sta-
bility and disturbance/noise attenuation properties. A
so-called seesaw control design methodology was also
proposed that yields input-to-state stability of these sys-
tems using switching. Applications were made to the
stabilization of the extended nonholonomic double inte-
grator and to the dynamic model of an underactuated
autonomous underwater vehicle in the presence of input

disturbances and measurement noise.
Seesaw controllers explore switching between two modes,
each one driving a different sub-component of the closed-
loop state to the origin. Recent work in (Hespanha et
al., 2005) suggests that instead of switching between dif-
ferent modes of operation, one could use the continuous
flow to drive a subset of the state to the origin and in-
stantaneous jumps to drive a complementary subset of
the state to the origin. These ideas were suggested by
one of the anonymous reviewers and provide a promising
direction for future work.
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