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Trajectory-Tracking and Path-Following of
Underactuated Autonomous Vehicles With

Parametric Modeling Uncertainty
A. Pedro Aguiar, Member, IEEE, and João P. Hespanha, Senior Member, IEEE

Abstract—We address the problem of position trajec-
tory-tracking and path-following control design for underactuated
autonomous vehicles in the presence of possibly large modeling
parametric uncertainty. For a general class of vehicles moving in
either 2- or 3-D space, we demonstrate how adaptive switching
supervisory control can be combined with a nonlinear Lya-
punov-based tracking control law to solve the problem of global
boundedness and convergence of the position tracking error to a
neighborhood of the origin that can be made arbitrarily small.
The desired trajectory does not need to be of a particular type
(e.g., trimming trajectories) and can be any sufficiently smooth
bounded curve parameterized by time. We also show how these
results can be applied to solve the path-following problem, in
which the vehicle is required to converge to and follow a path,
without a specific temporal specification. We illustrate our design
procedures through two vehicle control applications: a hovercraft
(moving on a planar surface) and an underwater vehicle (moving
in 3-D space). Simulations results are presented and discussed.

Index Terms—Path-following, supervisory adaptive control, tra-
jectory-tracking, underactuated autonomous vehicles.

I. INTRODUCTION

THE past few decades have witnessed an increased research
effort in the area of motion control of autonomous vehi-

cles. A typical motion control problem is trajectory-tracking,
which is concerned with the design of control laws that force a
vehicle to reach and follow a time parameterized reference (i.e.,
a geometric path with an associated timing law). The degree of
difficulty involved in solving this problem is highly dependent
on the configuration of the vehicle. For fully actuated systems,
the trajectory-tracking problem is now reasonably well under-
stood.
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For underactuated vehicles, i.e., systems with fewer actua-
tors than degrees-of-freedom,1 trajectory-tracking is still an ac-
tive research topic. The study of these systems is motivated by
the fact that it is usually costly and often not practical to fully
actuate autonomous vehicles due to weight, reliability, com-
plexity, and efficiency considerations. Typical examples of un-
deractuated systems include wheeled robots, hovercraft, space-
craft, aircraft, helicopters, missiles, surface vessels, and under-
water vehicles. The tracking problem for underactuated vehi-
cles is especially challenging because most of these systems are
not fully feedback linearizable and exhibit nonholonomic con-
straints. The reader is refereed to [3] for a survey of these con-
cepts and to [4] for a framework to study the controllability and
the design of motion algorithms for underactuated Lagrangian
systems on Lie groups.

The classical approach for trajectory-tracking of underactu-
ated vehicles utilizes local linearization and decoupling of the
multi-variable model to steer the same number of degrees of
freedom as the number of available control inputs, which can
be done using standard linear (or nonlinear) control methods.
Alternative approaches include the linearization of the vehicle
error dynamics around trajectories that lead to a time-invariant
linear system (also known as trimming trajectories) combined
with gain scheduling and/or linear parameter varying (LPV) de-
sign methodologies [5]–[7]. The basic limitation of these ap-
proaches is that stability is only guaranteed in a neighborhood of
the selected operating points. Moreover, performance can suffer
significantly when the vehicle executes maneuvers that empha-
size its nonlinearity and cross couplings. A different approach
is to use output feedback linearization methods, [8]–[10]. The
major challenge in this approach is that a straightforward appli-
cation of this methodology, which in general involves dynamic
inversion, is not always possible because certain involutivity
conditions must hold [11]. In addition, even when dynamic in-
version is possible, the resulting controller may not render the
zero-dynamics stable.

Nonlinear Lyapunov-based designs can overcome some of
the limitations mentioned above. Several examples of nonlinear

1The following definition of underactuated mechanical systems is adapted
from [1], [2]. Consider the affine mechanical system described by

�q = f(q; _q) +G(q)u (1)

where q is a vector of independent generalized coordinates, f a vector field that
captures the dynamics of the system, G the input matrix, and u the vector of
generalized inputs. Equation (1) is underactuated if the rank ofG is smaller than
the dimension of q, i.e., the generalized inputs are not able to instantaneously
set the accelerations in all directions of the configuration space.
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trajectory-tracking controllers for marine underactuated vehi-
cles have been reported in the literature [12]–[19]. Typically,
tracking problems for autonomous vehicles are solved by de-
signing control laws that make the vehicles track pre-specified
feasible “state-space” trajectories, i.e., trajectories that specify
the time evolution of the position, orientation, as well as the
linear and angular velocities, all consistent with the vehicles’
dynamics, [8], [13], [15]–[20], even through in practical appli-
cations one often only needs to track a desired position. This
approach suffers from the drawback that usually the vehicles’
dynamics exhibit complex nonlinear terms and significant un-
certainty, which makes the task of computing a feasible trajec-
tory difficult.

It is relevant to point out that most of the results mentioned
above only solve the problem in the horizontal plane. Only a few
authors have tackled this control problems in 3-D space. The
reason might be that the vehicle’s dynamics become more com-
plex and the number of degree of freedom that are not directly
actuated typically increases, making the control design more in-
volved. For example, for an underactuated underwater vehicle,
the dynamics include sway and heave velocities that generate
nonzero angles of sideslip and attack.

Motivated by these considerations, we propose a solution to
the trajectory-tracking problem for underactuated vehicles in
both 2- and 3-D spaces. In this paper, we are especially inter-
ested in situations for which there is parametric uncertainty in
the model of the vehicle. Typical parameters for which this un-
certainty is high, include mass and added mass for underwater
vehicles which may be subject to large variations according
to the payload configuration, and friction coefficients that are
usually strongly dependent on the environmental conditions.
The main contribution of the paper is the design of an adap-
tive supervisory control algorithm that combines logic-based
switching [21] with iterative Lyapunov-based techniques such
as integrator backstepping [22]. The classical approach to adap-
tive control relies solely on continuous tuning [22]–[24]. This
approach has some inherent limitations that can be overcome by
hybrid adaptive algorithms based on switching and logic [25].
The basic idea behind supervisory control [21], [26]–[30] is to
design a suitable family of candidate controllers. Each controller
is designed for an admissible nominal model of the process, and
a supervision logic orchestrates the switching among the can-
didate controllers, deciding, at each instant of time, the can-
didate feedback controller that is more adequate. In order to
guarantee stability and avoid chattering, a form of hysteresis
is employed. We prove that the adaptive controller solves the
problem of global boundedness and convergence of the position
tracking error to a neighborhood of the origin that can be made
arbitrarily small in the presence of possible large parametric un-
certainty. The adaptive supervisory controller does not require
persistence of excitation which sets it apart from most param-
eter estimation algorithms. In the control design, we take into
account that the vehicle may have non-negligible dynamics and
may undergo complex motions and exhibit large angles of attack
and sideslip, which prevents us from using simple extensions of
common control designs for wheeled robots where the total ve-
locity vector is aligned with the vehicles main axis. Also, the
desired trajectory does not need to be a trimming trajectory and

can be any sufficiently smooth time-varying bounded curve, in-
cluding the degenerate case of a constant trajectory (set-point).
The class of vehicles for which the design procedure is ap-
plicable is quite general and includes any vehicle modeled as
a rigid-body subject to a controlled force and either one con-
trolled torque if it is only moving on a planar surface or two
or three independent control torques for a vehicle moving in
3-D space. Furthermore, contrary to most of the approaches de-
scribed above, the controller proposed does not suffer from geo-
metric singularities due to the parameterization of the vehicle’s
rotation matrix. This is possible because the attitude control
problem is formulated directly in the group of rotations .
The literature on designing tracking control laws for underac-
tuated vehicles directly in the configuration manifold (avoiding
in this way geometric singularities) is relatively scarce. Note-
worthy examples include [20] and [31].

Another contribution of this paper is the application of these
results to solve the path-following motion control problem. In
path-following, the vehicle is required to converge to and follow
a path that is specified without a temporal law [32]–[36]. Pi-
oneering work in this area for wheeled mobile robots is de-
scribed in [32]. In [34], Samson addressed the path-following
problem for a car pulling several trailers. More recently, Altafini
[36] describes a path-following controller for a trailer ve-
hicle that provides local asymptotic stability for a path of non-
constant curvature. Path-following controllers for aircraft and
marine vehicles have been reported in [6], [9], and [37]–[39].
Using the approach suggested by Hauser and Hindman [37], an
output maneuvering controller was proposed in [39] for a class
of strict feedback nonlinear processes and applied to path-fol-
lowing of fully actuated ships. The underlying assumption in
path-following is that the vehicle’s forward speed tracks a de-
sired speed profile, while the controller acts on the vehicle’s
orientation to drive it to the path. Typically, in path-following,
smoother convergence to the path is achieved and the control
signals are less likely pushed into saturation, when compared to
trajectory-tracking. In fact, in [40] and [41], we highlight a fun-
damental difference between path-following and standard tra-
jectory-tracking by demonstrating that performance limitations
due to unstable zero-dynamics can be removed in the path-fol-
lowing problem. Inspired by these ideas, we solve the path-fol-
lowing problem by decomposing it into two subproblems: i) a
geometric task, which consists of converging the vehicle to and
remaining inside a tube centered around the desired path, and
ii) a dynamic assignment task, which assigns a speed profile to
the path.

In Section II, we describe the dynamic model for the class
of underactuated autonomous vehicles considered in the paper
and formulate the trajectory-tracking and path-following control
problems. As a preliminary material for the subsequent sections,
Section III presents a nonlinear control law to solve the tracking
problem and discusses the stability of the resulting closed-loop.
At this point it is assumed that there is no parametric uncertainty.
Sections IV and V present the main results of the paper. In Sec-
tion IV, a solution to the trajectory-tracking is proposed using
an estimator-based supervisory controller, and in Section V an
extension is made to solve the path-following problem. In Sec-
tion VI, we illustrate our design methodologies in the context
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of two vehicle control applications: a hovercraft (moving on
a planar surface) and an underwater vehicle (moving in 3-D
space). The designs are validated through computer simulations.
The paper concludes with a summary of the results and sugges-
tions for further research.

A subset of the results reported here were presented in
[42]–[44].

Notation: Throughout this paper, given a matrix , de-
notes its transpose, , are the minimum and
maximum eigenvalues of , respectively. Given two vectors

, , we denote by the vector
. The Euclidean norm is denoted by

and the spectral norm by . A piecewise continuous func-
tion , is in , being a positive
integer, if for some constant .

II. PROBLEM STATEMENT

Consider an underactuated vehicle modeled as a rigid body
subject to external forces and torques. Let be an inertial co-
ordinate frame and a body-fixed coordinate frame whose
origin is located at the center of mass of the vehicle. The con-
figuration of the vehicle is an element of the Special Eu-
clidean group , where

is a rotation matrix
that describes the orientation of the vehicle by mapping body
coordinates into inertial coordinates, and is the position
of the origin of in . Denoting by and the
linear and angular velocities of the vehicle relative to ex-
pressed in , respectively, the following kinematic relations
apply:

(2a)

(2b)

where is a function from to the space of skew-symmetric
matrices defined by

We consider here underactuated vehicles with dynamic equa-
tions of motion of the following form:

(3a)

(3b)

where and denote constant symmetric
positive definite mass and inertia matrices; and
denote the control inputs, which act upon the system through a
constant nonzero vector and a constant nonsingular ma-
trix2 , respectively; the terms in (3a) and

in (3b) are the rigid-body Coriolis terms,
and the functions , represent all the remaining

2See Remark 4 for the special case of G 2 .

forces and torques acting on the body. For the special case of
an underwater vehicle, and also include the so-called hy-
drodynamic added-mass and added-inertia matrices, re-
spectively, i.e., , , where
and are the rigid-body mass and inertia matrices, respec-
tively.

For an underactuated vehicle restricted to moving on a planar
surface, the same equations of motion (2), (3) apply without
the first two right-hand side terms in (3b). Also, in this case,

, , , , ,
, with all the other terms in (3) having appropriate

dimensions, and the skew-symmetric matrix is given by

. For simplicity, in what follows, we re-

strict our attention to the 3-D case. However, all results are di-
rectly applicable to the 2-D case, as will be illustrated in Sec-
tion VI-A for the control of a Hovercraft.

Remark 1: The vehicle dynamic model (3) does not allow
to depend on . This was done in part to simplify the anal-

ysis and also because in many vehicles this dependance is not
present as is the case of the Hovercraft and the AUV described in
Section VI. The methodology presented here still applies for the
more general case if the dependence on is in the form

, provided that is bounded or
that a suitable rank condition holds. For details see Property 1
in the Appendix and [42], [44].

The problems considered in this paper can be stated as fol-
lows:

Trajectory-tracking problem: Let
be a given sufficiently smooth time-varying desired trajec-
tory with its time-derivatives bounded. Design a controller
such that all the closed-loop signals are bounded and the
tracking error converges to a neighborhood
of the origin that can be made arbitrarily small.
Path-following problem: Let be a desired
path parameterized by and a desired
speed3 assignment. Suppose also that is sufficiently
smooth with respect to and its derivatives (with respect to

) are bounded. Design feedback control laws for , ,
and such that all the closed-loop signals are bounded,
the position of the vehicle converges to and remains in-
side a tube centered around the desired path that can be
made arbitrarily thin, i.e., converges to
a neighborhood of the origin that can be made arbitrarily
small, and the vehicle satisfies a desired speed assignment

along the path, i.e., the speed error can
be confined to an arbitrarily small ball.

III. TRAJECTORY-TRACKING CONTROLLER DESIGN

A. Controller Design

This section proposes a Lyapunov-based control law to solve
the trajectory-tracking problem assuming that there is no para-
metric uncertainty. For the sake of clarity, control-Lyapunov
functions are introduced iteratively borrowing from the tech-
niques of backstepping [22].

3For simplicity of presentation it will be assumed that the speed assignment
v (
) 2 does not depend directly on time t.
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Step 1. Coordinate transformation: Consider the global dif-
feomorphic coordinate transformation

which expresses the tracking error in the body-fixed
frame. The dynamic equation of the body-fixed tracking
error is given by

Step 2. Convergence of : We start by defining the control-
Lyapunov function

and computing its time derivative to obtain

(4)

We can regard as a virtual control that one would use
to make negative. This could be achieved, by setting
equal to , for some positive constant .
To accomplish this we introduce the error variable

that we would like to drive to zero, and re-write (4) as

(5)

Step 3. Backstepping for : After straightforward alge-
braic manipulations, the dynamic equation of the error
can be written as

where

(6)

and
. It turns out that it will not always be pos-

sible to drive to zero. We need to explore the coupling
of the translation dynamics with the rotational inputs. To
this effect, we will drive to a constant design vector

. To achieve this we define as a new
error variable that we will drive to zero and consider the
augmented control-Lyapunov function

The time derivative of can be written as

(7)

where

(8)

In Appendix (cf. Property 1), we show that the matrix B
can always be made full-rank by choosing a suitable .
One can now regard as a virtual control (actually its first
component is already a “real” control) that one would like
to use to make negative. This could be achieved, by
setting equal to

where is a symmetric positive definite matrix.
To accomplish this we set to be equal to the first entry
of , i.e.,

(9)

and introduce the error variable

that one would like to set to zero. We can now rewrite (7),
with given by (9), as

Step 4. Backstepping for : Consider now a third control-
Lyapunov function given by

(10)

Computing its time derivative one obtains

For simplicity, we did not expand the derivative of . If we
then choose

(11)
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where is a symmetric positive matrix, the time
derivative of becomes

Note that although is not necessarily always negative,
this will be sufficient to prove boundedness and conver-
gence of to a neighborhood of the origin.

B. Stability Analysis

We can now prove that all signals will remain bounded, and
that the tracking error converges exponential to an arbitrarily
small neighborhood of the origin.

Theorem 1: Given a sufficiently smooth time-varying desired
trajectory with its time-derivatives bounded,
consider the nonlinear system described by the underactuated
vehicle model (2), (3) in closed-loop with the feedback con-
troller (9), (11).

(i) For every initial condition of , the solution exists glob-
ally, all closed-loop signals are bounded, and the tracking
error satisfies

(12)

where , , and are positive constants. From these, only
depends on initial conditions.

(ii) For a given upper bound on , by appropriate
choice of the controller parameters , any
desired values for and in (12) are possible.

Proof: To prove (i) we use Young’s inequality4 to conclude
that for any

(13)
Suppose now that we choose sufficiently small so that the
matrix is positive definite. In this case we
conclude that there is a sufficiently small positive constant
such that

(14)

and, therefore, it is straightforward to conclude from the Com-
parison Lemma [45] that

(15)

along solutions to . From here we conclude that all signals re-
main bounded and therefore the solution exists globally. More-
over, converges to a ball of radius and therefore

converges to a ball of radius , because of (10).
To prove (ii), we show next that the radius can be

made as small as we want by appropriately choosing the con-

4A special case of the Young’s inequality is ab � (
=2)a + (1=2
)b ,
where a; b � 0, and 
 is any positive constant.

troller parameters. To this effect, suppose we pick a desired ra-
dius and a convergence rate , and we select such that B
is full rank. Such value for may depend on the upper bound of

(see Property 1). We can then define ,
provided that we choose sufficiently large so that

If we then select , , we con-
clude from (13) that (14) indeed holds for the prespecified ,
from which (15) follows. However, now the above choices for
the parameters lead to a radius .

Remark 2: We did not impose any constraints on the desired
trajectory (besides being sufficiently smooth and its derivative
being bounded) and we also did not require that the linear ve-
locity of the vehicle be always nonnull. Consequently, can
be arbitrary, that is, the desired trajectories do not need to sat-
isfy “dynamic” models, and in particular can be constant for all

. In that case, the controller solves the position regulation
problem.

Remark 3: In practice, the vector determines if the vehicle
will follow the desired trajectory backward or forward. To ob-
serve this, define the following two angles:
and , where , , and are the
three components of the body-fixed tracking error . Notice that

and can be seen as the elevation and azimuth angles, respec-
tively. In steady-state (with , ), from (5), it follows
that . Thus, when the first com-
ponent of is negative and larger (in absolute value) than
the other two components, the vehicle will converge to the tra-
jectory with positive surge velocity, and will stay “behind” the
desired trajectory, see examples in Section VI.

Remark 4: When the vehicle is subject to one controlled force
and only two independent control torques, i.e., , but

(and consequently ), one can use, e.g.,
, provided that there exists a

symmetric positive definite matrix such that
(which is the case for the AUV in Section VI). If we then set

the time derivative of becomes

where is a disturbance term that depends on the component
of the state in the null space of . From the above, one
can prove boundedness if this component is bounded. For un-
derwater vehicles, this component typically corresponds to the
roll motion which usually is stable due to the restoring forces.

IV. ESTIMATOR-BASED SUPERVISORY CONTROL

Using the previous results, this section proposes an es-
timator-based supervisory control architecture to solve the
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Fig. 1. Supervisory control architecture.

trajectory-tracking problem in the presence of parametric mod-
eling uncertainty. Let be a vector that contains all
the unknown parameters of the dynamic equations of motion
(3), where denotes the number of unknown parameters. The
following technical assumption is assumed to hold.

Assumption 1: Let be a finite set of candidate parameter
values

The actual parameter belongs to .
In practice, this assumption can be relaxed to being

sufficiently close to an element of , which can be achieved
by taking a fine grid, at the price of increased computational
burden.

The supervisory consists of three subsystems (see Fig. 1)
[21].

multi-estimator—a dynamical system whose inputs are the
process input and its output , and whose outputs are ,

, where each is a suitably defined estimate of
which would be asymptotically correct if was equal to

.
multi-controller—a dynamical system whose inputs are the
output estimate and the estimation errors ,

, and whose outputs are the control signals ,
, where each is generated by a control law that

would be adequate if was equal to .
switching logic—a dynamical system whose inputs are the
estimation errors and whose output is a switching signal

which is used to define the control law .

The underlying decision-making strategy used by the
switching logic basically consists of selecting for , the
candidate controller index for which the corresponding
performance signal (which is a suitably “normed” value
of ) is currently the smallest. This strategy is motivated
by the idea that the nominal process model with the smallest
performance signal is the one that “best” approximates the
actual process, and, thus, the candidate controller associated
with that model can be expected to have a better performance
of controlling the process.

In this paper we assume that the whole state of the process
is available for feedback. Therefore,

, and . Since there
is no uncertainty in (2), we can simply pick and

. We also restrict our attention to state feedback laws and,
therefore, .

A. Multi-Estimator

This section addresses the design of a family of estimators
parameterized by for the underactuated vehicle model
(2), (3). Motivated by Assumption 1 and in view of (3), we con-
sider a family of estimators of the form5

(16a)

(16b)

where , are diagonal positive definite
matrices and for each the scalar positive func-
tions and

satisfy6

(17a)

(17b)

(17c)

for some positive constants , . The functions
and will be defined later (cf. (28a), (28b)). The

multi-estimator has the desirable property that the estimator
error that corresponds to the actual parameter value con-
verges exponentially to zero and satisfies a -like property.

Lemma 1: Let be the actual parameter value. There
exist , , such that for every initial condition of
(2), (3), (16), and continuous signal , there exist
positive constants , , that depend on the initial conditions
such that

(18a)

(18b)

(18c)

5WhenP has a large number of elements, an alternative approach is described
in Section IV-E.

6The existence of � (�) and � (�) follows directly from the fact that
f (�) and f (�) are C .
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for every time in the maximum interval of existence of solution
to the closed-loop , .

Proof: See the Appendix.

B. Multi-Controller

We now design a family of candidate feedback laws
such that for each , would
solve the tracking problem formulated in Section II for a process
model given by (2) and (16), and “sufficiently” small estima-
tion errors , . For a given , we design by con-
structing control-Lyapunov functions iteratively, following the
design procedure proposed in Section III.

Step 1 and 2: Same as in Section III. However, in this case
is redefined as

(19)

and, therefore

Step 3: The dynamic equation of the error is now given
by

where

Thus, is redefined as

where . The time derivative of can be
written as

where

(20)

Following the same line of reason described in Step 3 of
Section III, let

(21)
be a virtual control law for each , where is chosen
such that is nonsingular. Let be equal to the first
entry of , i.e.

(22)

and

(23)

Then

Step 4: The third control-Lyapunov function is now given
by

(24)

Computing its time derivative one obtains

where can be decomposed in two terms:
. Here, , and is defined to be the
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same as , but substituting the arguments , by , ,
respectively. Selecting

(25)

where for each , is a symmetric
positive matrix, the time derivative of becomes

(26)

where

(27)

The last term can be rewritten as
, where

(28a)

(28b)

From (26), although has indefinite terms, it will be ver-
ified that they will be dominated by the negative definite
terms when the estimator errors , are sufficiently
small. This is stated in the following lemma.

Lemma 2: Let , denote the maximum in-
terval of existence of solution to the closed-loop and suppose
that there exists a time such that for all

and

(29)

where the control law is defined in (22) and (25) and

(30)

Given a sufficiently smooth time-varying desired trajectory
with its time-derivatives bounded and any initial

condition of the resulting closed-loop system, the signals ,
, , and are bounded on . Moreover, if

(29) holds with , then, as , the tracking error
converges to a neighborhood of the origin that can

be made arbitrarily small by appropriate choice of the controller
parameters.

Proof: See the Appendix.
Loosely speaking, Lemma 2 states that each candidate con-

troller solves the trajectory-tracking problem formulated in Sec-
tion II provided that the input disturbances due to the estimation
errors have finite energy as defined by the integral (29). The
switching-logic will guarantee that (29) holds by the Scale-In-
dependent Hysteresis Switching Lemma [21] (cf. proof of The-
orem 2).

C. Switching-Logic

Motivated by (29), (30), for each , we start by defining
the performance signal as the state of the dynamic equation

(31)

with the initial values satisfying . Equation (31)
implies that each performance signal is the sum of an expo-
nentially decaying term that depends on initial conditions and
a suitable exponentially weighted “norm” of the corresponding
estimation errors. The control parameter acts as a forgetting
factor in the evaluation of the performance signals, hence
establishing a compromise between adaptation alertness and
switching dither.

The switching logic consider here is the scale-independent
hysteresis switching logic proposed in [21]. Let be a posi-
tive constant called the hysteresis constant. The operation of the
switching logic can be briefly explained as follows: First, we set

. Suppose that at a certain time
the value of has just switched to some . Then, will
be kept fixed until a time such that

at which point we set to .
When the indicated minimum is not unique, a particular value
for among those that achieve the minimum can be chosen ar-
bitrarily. Repeating this procedure, a piecewise constant signal

is generated that is continuous from right everywhere. Set-
ting for all avoids chattering. The switching
signal is used to define the control signal as follows:

(32)

where the candidate control laws are defined by (22) and
(25).
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D. Stability Analysis

We are now ready to prove that all closed-loop signals will
remain bounded, and that the tracking error converges to an ar-
bitrarily small neighborhood of the origin in the presence of pos-
sible large parametric modeling uncertainty.

Theorem 2: Given a sufficiently smooth time-varying de-
sired trajectory with its time-derivatives
bounded, consider the hybrid system described by the
underactuated vehicle model (2), (3) in closed-loop with the
switched multi-controller (32), the multi-estimator (16), and the
switching logic described in Section IV-C.

i) For any initial condition of with ,
, the solution exists globally and all closed-loop signals

are bounded.
ii) Furthermore, there exists a finite time such that

for all (i.e., the switching
stops in finite time) and as the tracking error

converges to a neighborhood of the origin
that can be made arbitrarily small by appropriate choice
of the control parameters.

Proof: Consider the scaled performance signals
, . From (31) we conclude that

(33)

Because of the scale independence property of the switching
logic, replacing by would have no effect on . From
(33) we see that each is nondecreasing. This, the finiteness
of , and the fact that for each guarantee the
existence of a positive number such that , ,

. It is not hard to conclude from the definition of the
switching logic that chattering cannot occur. In fact, there must
be an interval of maximal length on which the solution
of the system is defined, and can only have a finite number of
discontinuities on each proper subinterval of . For details,
see [21]. To prove that the switching stops in finite time, observe
from (33) and (30) that is bounded by virtue of Lemma
1. It follows now that the signals satisfy the hypotheses of
the Scale-Independent Hysteresis Switching Lemma [21] which
enables us to conclude that the switching stops in finite time.
More precisely, there exists a time such that

for all . In addition, is bounded on
. Using (33) with and the boundedness of ,

we see that the integral

is finite (recall that is positive). Therefore, resorting to
Lemma 2, this implies that , , , and are bounded on

.

Next we will prove that and are also bounded on
, where is the actual parameter value. Consider

the following nonnegative function

(34)

Its time derivative satisfies (c.f. Appendix)

(35)

where , , are functions in defined on
, and , are functions in defined on
. Consider now the ordinary differential equation

(36)

Using [46, Lemma 1]] we conclude that for any initial condi-
tion, the solution to (36) exists and is bounded on .
Moreover, when , converges to as .
Thus, applying the Comparison Lemma to (35) it can be con-
cluded that and, consequently, , are bounded on

. Since is bounded by virtue of Lemma 1, it follows
that is bounded on . Com-
bining the boundedness of and with the estimators
(16), it can be seen that the dynamic equations for the quadratic
estimation error , can be expressed (after ap-
plying the Comparison Lemma) as an exponential stable linear
system with bounded inputs. Therefore, this implies that and

are bounded on for each
. Since all signals are bounded in the maximal interval

of existence of solutions, one conclude that the solutions exist
globally, i.e., . The convergence of the tracking error

to a neighborhood of the origin now follows from
Lemma 2.

E. State-Sharing

In the previous sections, we have relied on the fact that the
set was finite, so that the estimators (16). If the set is
infinite or it has a large number of elements, a different ap-
proach is required. One alternative, which leads to a more ef-
ficient design, is to replace the individual estimator equations
by a single system and use it to generate the estimation errors.
In other words, to make the estimators in (16) “share” the same
state. The performance signals can be obtained in a similar
way. To this effect, suppose that the functions , and

are separable on the unknown parameter , i.e,
take the form . In that case, we can define
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and replace the estimators (16) by

(37a)

(37b)

(37c)

(37d)

with outputs

where

Note that and satisfy (16) but with possible larger
and that still satisfy (17). However, the dimension of (37)
is now independent of the number of elements in .

V. PATH-FOLLOWING CONTROLLER DESIGN

In this section, inspired by [39], the results described in Sec-
tion IV are utilized to solve the path-following problem. Let

be a desired geometric path parameterized by a vari-
able and a desired speed assignment. Contrary
to trajectory-tracking, in path-following we have the freedom to
select a timing law for . In particular, we can regard
as an additional control input. In this paper, we actually regard

as the additional input, because this will necessarily pro-
duce a differentiable . Let us define the position body-fixed
path-following error

and the speed error . Following the same steps
described in Section III and IV-B, and defining [see (19)]
as

where , we obtain

Notice also that

where

and , . Therefore, using
(21)–(23), we obtain

where

Notice that can be decomposed as .
Thus, if we then choose

(38)

the time derivative of becomes
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where , , is defined to be the same
as , but substituting , by , , and

Introduce now a forth control Lyapunov function given by

Computing its time derivative, we get

Selecting the following update law for :

(39)
where is a positive constant, we obtain

An extension of Theorem 2 to the path-following then follows.
Theorem 3: Given a sufficiently smooth (with respect to )

desired path with its derivatives (with respect
to ) bounded, and a desired assignment speed ,
consider the hybrid system described by the underactu-
ated vehicle model (2), (3) in closed-loop with the switched
multi-controller (22), (38), (39), the multi-estimator (16), and
the switching logic described in Section IV-C.

i) For any initial condition of with ,
, the solution exists globally and all closed-loop signals

are bounded.
ii) There exist a finite time such that

for all (i.e., the switching stops in finite time).
Moreover, as , the position error
and the speed error converge to neigh-
borhoods of the origin that can be made arbitrarily small
by appropriate choice of the control parameters.

Proof: The proof is not given since it is a simple application
of the arguments used in the previous theorems.

VI. APPLICATION TO SPECIFIC VEHICLES

This section illustrates the application of the previous results
to two vehicles: a hovercraft (moving on a planar surface) and
an underwater vehicle (moving in 3-D space).

A. Trajectory-Tracking of an Underactuated Hovercraft

Consider the Caltech MVWT vehicle described in [43], [47]
consisting of a platform mounted on three low-friction, omni-
directional casters, with two attached high-performance ducted
fans. Let be the Cartesian coordinates of the
vehicle’s center of mass and its orientation. Assuming
that the friction and moment forces can be modeled by viscous
friction, the equations of motion are

where is the mass of the vehicle and
is the rotational inertia. The starboard

and portboard fan forces are denoted and , respectively,
and denotes the moment arm of the forces.
The geometric and mass centers of the vehicle are assumed
to coincide. The coefficient of viscous friction is 5.5
Kg/s and the coefficient of rotational friction is 0.41 Kg
m/s. Expressing the equations of motion in the body fixed
frame, yields (2) and (3) with , ,

, , ,

, , ,
, , , , and

. In this case the matrix B introduced in (8) is

given by with . The reader is

referred to [43] for a detailed coverage of the trajectory-tracking
controller with experimental results.

We now describe two simulation results that illustrate the per-
formance of the proposed tracking controller with and without
supervisory control. The objective of the first experiment is to
force the hovercraft to track the “virtual” kinematic unicycle ve-
hicle

which starts at and moves with
velocities and . The initial
conditions for the hovercraft are ,

, . For simplicity, only the coefficient
of viscous friction is unknown, but assumed to belong to the
set . The control parameters were
selected as follows: , , , and

for all . The hysteresis constant for
the switching logic was set to , the forgetting factor
to , and the multi-estimator gains to and

. The functions and introduced in (16) are
given by .

To illustrate the benefits derived from the supervisory con-
trol scheme proposed in Section IV, we show in Fig. 2(a) the
closed-loop trajectory for the (nonadaptive) trajectory-tracking
controller presented in Section III when the value of the coef-
ficient of viscous friction assumed by the control system was
set to 10% of the real value. It can be seen that although the
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Fig. 2. First experiment. Trajectory of the hovercraft in the xy-plane and ref-
erence trajectory performed by a unicycle vehicle using the trajectory-tracking
controller presented in Section III [diagram (a)] and the estimator-based super-
visory controller for trajectory-tracking [diagram (b)]. Time evolution of the
tracking error in x-direction, in y-direction, and the switching signal � for the
estimator-based supervisory controller [diagram (c)].

closed-loop is still stable, the parameter error affects consider-
ably the closed-loop performance. In contrast, Fig. 2(b) shows

the closed-loop trajectory for the supervisory controller where,
as expected, the hovercraft converges to a small neighborhood
of the “virtual” unicycle vehicle, in spite of the uncertainty in .
Fig. 2(c) shows the time evolution of some relevant variables. In
steady-state the vehicle is not aligned with the direction of the
tangent velocity of . Contrary to what happens for wheeled
mobile robots (with inherent lateral drag coefficient )
in the hovercraft case we cannot force the orientation to con-
verge to the direction of the tangent velocity .

To further illustrate the usefulness of the adaptive scheme and
test its robustness with respect to sensor noise, a second experi-
ment is described. In this case, all the initial conditions and con-
trol parameters are as in the first experiment, but now the “vir-
tual” unicycle vehicle moves with linear velocity
and angular velocity such that

Zero mean uniform random noise was introduced in every
sensed signal: the measured velocities , and ; the orientation
angle ; and the and positions. The amplitude was set
to (0.05, 0.05), 0.05, 0.1, 0.1, and 0.1, respectively. We also
consider the situation where the Hovercraft moves between
two surfaces characterized by distinct friction coefficients (e.g.,
from water to land). To simulate this effect, we set the value
of the coefficient of viscous friction to while
the Hovercraft is in the region and

, otherwise. We can see in Fig. 3(b) that the
hovercraft still converges to a very small neighborhood of the
target unicycle vehicle and its performance is not significantly
affected by the switching in .

B. Trajectory-Tracking and Path-Following of an Underwater
Vehicle in 3-D Space

Consider an ellipsoidal shaped underactuated autonomous
underwater vehicle (AUV) not necessarily neutrally buoyant.
Let be a body-fixed coordinate frame whose origin is
located at the center of mass of the vehicle and suppose that
we have available a pure body-fixed control force in the

direction, and two independent control torques and
about the and axes of the vehicle, respectively. The kine-
matics and dynamics equations of motion of the vehicle can
be written as (2) and (3), where ,

, , , and
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Fig. 3. Second experiment. Trajectory of the hovercraft in thexy-plane and ref-
erence trajectory performed by a unicycle vehicle using the trajectory-tracking
controller presented in Section III [diagram (a)] and the estimator-based super-
visory controller for trajectory-tracking [diagram (b)]. Time evolution of the
tracking error in x-direction, in y-direction, and the switching signal � for the
estimator-based supervisory controller [diagram (c)].

The gravitational and buoyant forces are given by
and , respectively, where is the mass, is
the mass density of the water and is the volume of
the displaced water. The numerical values used for the
physical parameters match those of the Sirene AUV, de-
scribed in [48] and [49]. The matrix B defined in (8)
takes the form , where ,

,
,
,

.
Two simulation results are included to illustrate the dynamic

behavior of the AUV in closed-loop with the trajectory-tracking
controller presented in Section III, and the path-following con-
troller in Section V. Fig. 4(a) displays the vehicle trajectory
using the trajectory-tracking controller in the 3-D-space for the
following desired trajectory

with , , , and .
The initial conditions of the AUV are

, , and . The control pa-
rameters were selected as follows: , , ,
and . Fig. 4(c)
and (e) show the time evolution of the tracking error and the
Euler angles (computed from ), respectively. The damped os-
cillatory behavior of pitch and roll are due to the gravitational
and buoyancy forces. Notice that the initial position of the de-
sired position was deliberately chosen to be almost behind the
initial position of the vehicle. As we can see, the vehicle turns
back in its attempt to be at the given reference position at the
prescribed time, requiring significant control effort and conse-
quently inducing a strong oscillatory behavior. The path-fol-
lowing controller in Section V was used to generate the tra-
jectories in Fig. 4(b), (d), and (f) where the desired path, the
initial conditions and the control gains are the same as in the
experiment for the tracking controller. The guidance gain and
the speed assignment were set to and , re-
spectively. The initial condition for was chosen to be the one
that minimizes the distance between the initial position of the
AUV and the desired path. The convergence of the vehicle to the
path is now much smoother. From these two experiments one
can see that when the primary objective is to steer the vehicle
to converge to and move along a geometric path, the path-fol-
lowing controller offers significant performance improvement.
For simplicity, in these experiments we did not include model
uncertainty.

VII. CONCLUSION

We proposed a solution to the trajectory-tracking and
path-following problem for underactuated autonomous vehi-
cles in the presence of possibly large modeling parametric
uncertainty. For a general class of vehicles moving in either 2-
or 3-D space, we demonstrated how adaptive switching supervi-
sory control can be combined with a nonlinear Lyapunov-based
tracking control law to design a hybrid controller that yields
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Fig. 4. Vehicle trajectory in 3-D space using the trajectory-tracking controller presented in Section III [diagram (a)], and the path-following controller [diagram
(b)]. Time evolution of the position error e = (e ; e ; e ), the roll �, pitch �, and yaw  Euler angles for the trajectory-tracking [diagrams (c), (e)], and the
path-following [diagrams (d), (f)].

global boundedness and convergence of the position tracking
error to a small neighborhood, and robustness to parametric

modeling uncertainty. We illustrated our results in the context
of two vehicle control applications: a hovercraft (moving on
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a planar surface) and an underwater vehicle (moving in 3-D
space). Simulations show that the control objectives were ac-
complished.

An alternative approach to the Lyapunov-based control
scheme proposed in Section III consists in choosing an ad-
equate point linked to the vehicle and then utilize output
feedback linearization to design a simple controller that drives
that point to the reference trajectory. See, for example, [10]
for the case of unicycle-like mobile robots. For general un-
deractuated vehicles, the stability of the zero-dynamics would
have to be established independently. This is an issue for future
research.

A problem that warrants further research is the control of
underactuated vehicles with noise and in the presence of dis-
turbances. Typical disturbances for marine vehicles include the
ones induced by wave, wind, and ocean current.

APPENDIX

Property 1: Let be nonzero and uni-
formly bounded by . Then, there exists a vector that
makes defined in (8) full-rank.

Proof: Pick , where
and is a positive constant to be selected shortly.

Defining , we conclude that

(40)

where we used the fact that the rank of a matrix does not change
when it is multiplied by a nonsingular matrix. From the defi-
nition of [see (6)] we conclude that each element of can
be bounded by . Much tighter bounds
can be obtained for specific class of vehicles. For example, when

then . Assume now that . From
(40), we conclude that B has full-rank if one can find at least one

minor determinant of nonzero. Consider
the one formed by the first, third, and forth columns, i.e.

(41)

where collects all the remaining terms and does not depend
on . It follows now from the fact that each can be ar-
bitrarily small by choosing (and consequently ) sufficient
large, that (41) can be made nonzero and therefore B full-rank.
If , the same conclusion about the full-rank of B can be
made by following the same reasoning but with if

, or for the case .

Lemma 1:
Proof: Throughout this proof, to avoid cumbersome notation,

we will use , , , to denote , , , and , re-
spectively. Note also that corresponds to the nominal
model and therefore is equal to . The same applies for
the other model parameters. Consider the following exponen-
tially weighted Lyapunov-like functions:

where is any positive constant that satisfies

(42)

Computing the time derivative of and along the solutions
of (2b), (3), and (16) for , we obtain

(43a)

(43b)

To prove (18a), consider the Lyapunov function

, which is the same as with . From (43) it
follows that: . Using the
Comparison Lemma [45] one concludes that (18a) holds with

and .
To prove (18b), observe from (43a) and (42) that

Defining and taking an interval
on which , we have

and, therefore

Consequently
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with . On the other hand, if for some
, for all . Therefore

Inequality (18c) can be also concluded by applying the same
arguments to (43b). In that case .

Lemma 2:
Proof: Taking norms to defined in (20) and using

(17a) we conclude that

Also, from (17b) and (17c), a bound for given in (27) can
be computed as follows:

Using these two bounds in (26) and resorting to Young’s
inequality it follows that for every positive constant ,

, satisfies

where we used the facts that
and

. Therefore, there exist
sufficiently small positive constants , , , and
sufficiently large positive constants , such that

(44)

where in view of (29) and (30), the signals ,
, , are defined

on , and is defined on . Applying
the Comparison Lemma to (44) and using [46, Lemma 1]
we conclude that is bounded on . Moreover, when

, converges to a ball of radius as
. Standard signal chasing arguments can now be applied

to conclude that the signals , , and in
closed-loop system remain bounded. Furthermore, applying the
same arguments described in the proof of item ii) of Theorem
1, one conclude that the tracking error converges
to a neighborhood of the origin that can be made arbitrarily
small.

Derivation of (35): Using (16) for and the fact that
, and ,

the time-derivative of in (34) can be written as

Using the Young’s inequality, after a straightforward but messy
computations, one can conclude that there exist a sufficiently
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small and sufficiently large , such
that for all , (35) holds with
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[38] P. Encarnaçāao and A. M. Pascoal, “3D path following control of au-
tonomous underwater vehicles,” in Proc. 39th Conf. Decision Control,
Sydney, Australia, Dec. 2000.

[39] R. Skjetne, T. I. Fossen, and P. Kokotović, “Robust output maneu-
vering for a class of nonlinear systems,” Automatica, vol. 40, no. 3,
pp. 373–383, 2004.
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non-minimum phase systems removes performance limitations,” IEEE
Trans. Autom. Control, vol. 50, no. 2, pp. 234–239, 2005.

[42] A. P. Aguiar and J. P. Hespanha, “Position tracking of underactuated
vehicles,” in Proc. 2003 Amer. Contr. Conf., Denver, CO, Jun. 2003.

[43] A. P. Aguiar, L. Cremean, and J. P. Hespanha, “Position tracking for
a nonlinear underactuated hovercraft: Controller design and experi-
mental results,” in Proc. 42nd Conf. Decision Control, HI, Dec. 2003.



AGUIAR AND HESPANHA: UNDERACTUATED AUTONOMOUS VEHICLES 1379

[44] A. P. Aguiar and J. P. Hespanha, “Logic-based switching control for
trajectory-tracking and path-following of underactuated autonomous
vehicles with parametric modeling uncertainty,” in Proc. 2004 Amer.
Contr. Conf., Boston, MA, Jun. 2004.

[45] H. K. Khalil, Nonlinear Systems, 2nd ed. Englewood Cliffs, NJ: Pren-
tice-Hall, 1996.

[46] A. S. Morse, “Towards a unified theory of parameter adaptive control:
Tunability,” IEEE Trans. Autom. Control, vol. 35, no. 9, pp. 1002–1012,
1990.

[47] L. Cremean, W. Dumbar, D. van Gogh, J. Hickey, E. Klavins, J.
Meltzer, and R. Murray, “The caltech multi-vehicle wireless testbed,”
in Proc. 41st Conf. Decision Control, Las Vegas, NV, Dec. 2002.

[48] A. P. Aguiar and A. M. Pascoal, “Modeling and control of an au-
tonomous underwater shuttle for the transport of benthic laboratories,”
in Proc. Oceans’97 Conf., Halifax, Nova Scotia, Canada, Oct. 1997.

[49] A. P. Aguiar, “Nonlinear motion control of nonholonomic and under-
actuated systems,” Ph.D. dissertation, Dep. Elect. Eng., Instituto Supe-
rior Técnico (IST), Lisbon, Portugal, 2002.

A. Pedro Aguiar (S’95–A’00–M’02) received the Licenciatura, M.S. and Ph.D.
degrees in electrical and computer engineering from the Instituto Superior Téc-
nico, Technical University of Lisbon, Portugal, in 1994, 1998, and 2002, respec-
tively.

From 2002 to 2005, he was a Postdoctoral Researcher with the Center
for Control, Dynamical-Systems, and Computation, University of California,
Santa Barbara. Currently, he holds an Invited Assistant Professor position with
the Department of Electrical and Computer Engineering, Instituto Superior
Técnico, and a Senior Researcher position with the Institute for Systems and
Robotics, Instituto Superior Técnico (ISR/IST). His research interests include
modeling, control, navigation, and guidance of autonomous vehicles; nonlinear
control; switched and hybrid systems; tracking, path-following; performance
limitations; nonlinear observers; the integration of machine vision with feed-
back control; and coordinated/cooperative control of multiple autonomous
robotic vehicles. Further information related to his research can be found at
http://www.users.isr.ist.utl.pt/~pedro.

João P. Hespanha (S’95–A’98–M’00–SM’02) received the Licenciatura
in electrical and computer engineering from the Instituto Superior Técnico,
Lisbon, Portugal, in 1991 and the M.S. and Ph.D. degrees in electrical engi-
neering and applied science from Yale University, New Haven, CT, in 1994
and 1998, respectively.

He currently holds an Associate Professor position with the Department of
Electrical and Computer Engineering, University of California, Santa Barbara.
From 1999 to 2001, he was an Assistant Professor with the University of
Southern California, Los Angeles. He is the Associate Director for the Center
for Control, Dynamical-Systems, and Computation (CCDC) and an executive
committee member for the Institute for Collaborative Biotechnologies (ICB), an
Army sponsored University Affiliated Research Center (UARC). His research
interests include hybrid and switched systems; the modeling and control of
communication networks; distributed control over communication networks
(also known as networked control systems); the use of vision in feedback
control; stochastic modeling in biology; and the control of haptic devices. He
is the author of more than 100 technical papers and the PI and co-PI in several
federally funded projects. More information about his research can be found
at http://www.ece.ucsb.edu/~hespanha.

Dr. Hespanha is the recipient of Yale University’s Henry Prentiss Becton
Graduate Prize for exceptional achievement in research in Engineering and
Applied Science, a National Science Foundation CAREER Award, the 2005
Automatica Theory/Methodology Best Paper prize, and the Best Paper award
at the 2nd International Conference on Intelligent Sensing and Informa-
tion Processing. Since 2003, he has been an Associate Editor of the IEEE
TRANSACTIONS ON AUTOMATIC CONTROL.


