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ABSTRACT
In this work we consider the problem of multiagent planning
under sensing and acting uncertainty with a one time-step
delay in communication. We adopt decentralized partially
observable Markov processes (Dec-POMDPs) as our plan-
ning framework. When instantaneous and noise-free com-
munication is available, agents can instantly share local ob-
servations. This effectively reduces the decentralized plan-
ning problem to a centralized one, with a significant decrease
in planning complexity. However, instantaneous communi-
cation is a strong assumption, as it requires the agents to
synchronize at every time step. Therefore, we explore plan-
ning in Dec-POMDP settings in which communication is
delayed by one time step. We show that such situations can
be modeled by Bayesian games in which the types of the
agents are defined by their last private observation. We will
apply Bayesian games to define a value function QBG on
the joint belief space, and we will show that it is the opti-
mal payoff function for our Dec-POMDP setting with one
time-step delayed communication. The QBG-value function
is piecewise linear and convex over the joint belief space,
which we will use to define QBG-value iteration. Finally,
we will adapt Perseus, an approximate POMDP solver, to
compute QBG-value functions, and we will use it to perform
some proof-of-concept experiments.

1. INTRODUCTION
In this work we consider the problem of multiagent plan-

ning under sensing and acting uncertainty with a one time-
step delay in communication. We adopt a decision-theoretic
perspective, and we employ decentralized partially observ-
able Markov decision processes (Dec-POMDPs) as our plan-
ning paradigm. The problem of computing optimal plans in
Dec-POMDPs is provably intractable (NEXP-complete [2]).
When instantaneous and noise-free communication is avail-
able, agents can instantly share local observations. This
effectively reduces the decentralized planning problem to a
centralized single-agent POMDP [11], with a significant de-
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crease in planning complexity. A large body of literature ex-
ists on exact and approximate POMDP solving exists, which
has been exploited by several Dec-POMDP planning meth-
ods [3, 12, 15].

However, instantaneous communication is a strong as-
sumption, as it requires the agents to synchronize at every
time step. Each agent broadcasts its local observation to the
team, and waits for incoming messages. Only when all ob-
servations from the other agents have arrived, an agent can
decide upon its action. As such, relying on instant observa-
tion sharing can slow down task execution, and we will ex-
plore planning for agents that share local observations with a
one time-step delay. For example, a team of robots are often
linked using a wireless network. When wireless connectivity
is low, messages may have to be retransmitted several times,
leading to significant delays in the online decision making.
Basically, we assume that the time between two time steps
is sufficient for communication to complete.

In particular, when an agent receives an observation at
time t, it will send it to its team members, but it immedi-
ately starts executing an action, without waiting for incom-
ing messages. However, we assume that at time step t + 1
all local observations from t have been received. Each agent
can use the joint observation history up to time t and its
local observation at t + 1 to select its action at time t + 1.
An agent does not know the joint observation received at
time t + 1, but still has to choose an action. Such a situa-
tion can be modeled by using a Bayesian game [10], which
is a strategic game with imperfect information. It allows us
to compute the optimal action for an agent, given its private
knowledge of its local observation at time t+1, and the joint
history up to time t. In this way, we relax the assumption of
instantaneous communication for observation sharing, and
allow for better response times.

Oliehoek and Vlassis [8] have presented a value function
QBG which is based on Bayesian game solutions. It assumes
that agents know the joint action-observation history up to
one time step ago, and is used as an upper bound to the op-
timal Dec-POMDP value function Q∗. We have also shown
that we can define a QBG-value function over joint beliefs,
and that it is piecewise linear and convex (PWLC) over this
joint belief space [9]. Here we will show how it can be used
for planning in Dec-POMDPs with delayed communication.
In particular, we will show that the QBG-value function is
the optimal payoff function for the Bayesian games, and we
show how to perform exact QBG-value iteration. We will
adapt Perseus [14], an approximate POMDP value itera-
tion method, to compute approximate QBG-value functions



more efficiently. We will apply it to perform some experi-
ments that show the viability of QBG-value functions. Our
theoretical results are in accordance with earlier results in
the control literature, and the proposed Bayesian game for-
mulation provides an alternative view of existing solution
techniques [16, 5, 1].

In contrast with most current algorithms for planning in
Dec-POMDP settings, which are based on policy search [7,
3, 4, 15], we consider value-iteration techniques. The first
application of Bayesian games to Dec-POMDPs has been
an approximate policy search technique [3]. However, there
are two main differences with our work: we consider a Dec-
POMDP model with delayed communication, while Emery-
Montemerlo et al. [3] do not consider communication. Fur-
thermore, a heuristic forward search in the joint belief tree
is performed, while we use Bayesian games to perform value
iteration. As such, the QBG-value function has merits be-
yond the delayed-communication setting we consider in this
paper. In particular, several Dec-POMDP methods employ
value functions over joint beliefs: as a heuristic to focus
approximate policy search [3] for instance, or to provide
an admissible heuristic for optimal methods based on A∗

search [15, 8].
The rest of the paper is structured as follows. In Sec-

tion 2 we will briefly present the Dec-POMDP model. In
Section 3 we will define value functions for Dec-POMDPs
with instantaneous or delayed communication, and we will
introduce Bayesian games. Section 4 shows how we can de-
fine finite-horizon and infinite-horizon QBG-value iteration,
and we extend an approximate POMDP solver to compute
approximate QBG-value functions. In Section 5 we will show
a number of experiments, and in Section 6 we discuss our
work.

2. BACKGROUND
We base our work on the decentralized partially observable

Markov decision process (Dec-POMDP) framework [2]. For-
mally, a Dec-POMDP with m agents is defined as a tuple
˙

S,A, T, R,O, O, b0
¸

, where

• S is a finite set of states;

• A = ×iAi is the set of joint actions, where Ai is the
set of actions available to agent i. Every time step,
the agents take one joint action a = 〈a1, ..., am〉, but
agents do not observe each other’s actions.

• The transition probabilities P (s′|s,a) are specified by
the transition function T .

• Similar to the action component of the model O =
×iOi is the set of joint observations. Again, every
time step one joint observation o = 〈o1, ..., om〉 is re-
ceived, from which each agent i only observes its own
component oi.

• O is the observation function, which specifies the prob-
ability of joint observations: P (o|a, s′).

• R is the immediate reward function, which maps states
and joint actions to reals: R(s,a).

• b0 ∈ P(S) is the initial state distribution at time t =
0, where P(S) denotes the infinite set of probability
distributions over the finite set S.

When there is only one agent in a Dec-POMDP, the model
reduces to a POMDP [6].

A tuple of policies π = 〈π1, ..., πm〉 is referred to as a joint
policy. In general, each individual deterministic (pure) pol-
icy πi is a mapping from histories of observations to actions:
πi(

`

o1
i , ..., o

t
i

´

) = ai. Here,
`

o1
i , ..., o

t
i

´

is the sequence of ob-
servations received by agent i up to time step t, which we
refer to as the observation history ~o t

i . We also use a differ-
ent notion of history, namely the action-observation history
~θ t

i , which consists of all observations received and actions

taken up to time step t: ~θ t
i =

`

a0
i , o

1
i , a

1
i ..., a

t−1
i , ot

i

´

. The

corresponding joint histories are denoted respectively as ~o t

and ~θ t.

3. DEC-POMDP MODELS WITH COMMU-
NICATION

We will now focus on computing optimal value functions
for Dec-POMDPs with free and noiseless communication.
First we will treat the case where this communication is
instantaneous, followed by value functions for Dec-POMDPs
with a one time-step delay in communication.

3.1 Instantaneous communication
A natural approach to alleviate the burden of the com-

plexity result is to consider communication. Pynadath and
Tambe proved that, in the case of free, instantaneous and
noiseless communication, sharing local observations at each
time step is optimal [11]. In this case the problem reduces
to a POMDP: the agents can communicate their individ-
ual observations, which effectively means they observe the
joint observation. This allows each agent to maintain a joint

belief b
~θ t

. The optimal value function for a POMDP is
based on these joint beliefs and satisfies the following Bell-
man equation:

Q
∗
P(b

~θ t

,a) = R(b
~θ t

,a) +
X

o

P (o|b
~θ t

,a) max
π

t+1

P
(b

~θ t+1
)

Q
∗
P(b

~θ t+1

, π
t+1
P (b

~θ t+1

)), (1)

where R(b
~θ t

,a) =
P

s R(s,a)b
~θ t

(s) is the expected immedi-

ate reward, and b
~θ t+1

is the joint belief resulting from b
~θ t

by
action a and joint observation o. This resulting joint belief
can be calculated by Bayes’ rule:

∀s′ b
~θ t+1

(s′) = P (s′|b
~θ t

,a,o)

=
P (o|a, s′)

P (o|b~θ t
,a)

X

s

P (s′|s,a)b
~θ t

(s). (2)

The joint policy at the next time step πt+1
P is a mapping

from beliefs to joint actions πt+1
P : P(S) → A. This means

that the maximization operator in (1) selects the maximiz-
ing joint action. Solving (1) is not trivial as the space of
beliefs is continuous. If one assumes that the initial belief
state is given, one option is to generate all possible beliefs
and then perform standard value iteration. Rather, most
POMDP solvers exploit the fact that (1) is piecewise-linear
and convex (PWLC) [13].

3.2 Delayed communication
In the previous section, we discussed how the Bellman

equation for POMDPs characterizes the optimal Q-value



θ2 o2 ō2

θ1 a2 ā2 a2 ā2

o1
a1 +0.1 +2.2 +0.4 −0.2
ā1 −0.5 +2.0 +1.0 +2.0

ō1
a1 +0.4 −0.2 +0.7 −2.6
ā1 +1.0 +2.0 +2.5 +2.0

Figure 1: A Bayesian game modeling the uncer-

tainty regarding the last observation. Each of the

2 agents has 2 observations and 2 actions. The pay-

off function Q(θ, a) specifies the entries. The proba-

bility distribution over joint types here is uniform:

P (o1, o2) = P (o1, ō2) = ... = P (ō1, ō2) = 0.25. Given this

distribution, the highlighted entries indicate the op-

timal solution that has an expected value of +2.0.

function in the case of instantaneous communication of ob-
servations. In this section we will do the same for communi-
cated observations that arrive with a delay of one time step.
Receiving communicated observations with a one time-step
delay means that, at a particular time step t, each agent i

will know the previous joint observation history ~o t−1 and
its last individual observation ot

i, but is uncertain regarding
the last joint observation o

t. The agents can also deduce
~θ t−1, assuming that they know each other’s pure policy.

The uncertainty regarding the last observation can be
modeled using a Bayesian game (BG) [10]. A BG is a
strategic game with imperfect information. In particular,
each agent i has some individual information which defines
the agent’s type θi ∈ Θi. In this case the type of agent i cor-
responds to its last observation θi ≡ ot

i. Θ = ×iΘi is the
set of joint types, in this case corresponding with the set
of joint observations O, over which a probability function

P (Θ) is specified, in this case P (θ) ≡ P (ot|b
~θ t−1

,at−1).
Finally, the BG also specifies a payoff function Q(θ,a) that
maps joint types and actions to rewards. In general each
agent can have its own payoff function, but because in the
Dec-POMDP model the agents receive the same rewards,
the Bayesian game also specifies identical payoffs. Fig. 1
show an example of the BG in the case of two agents that
both have two actions and two observations.

A policy in a BG for agent i maps its types, in this
case individual observations, to its actions βi : Oi → Ai.
E.g., in Fig. 1, the optimal BG-policy for agent 1 specifies
{o1 → ā1, ō1 → ā1}. The solution of a BG with identical
payoff is given by the optimal joint BG-policy β∗:

β
∗ = arg max

β

X

θ∈Θ

P (θ)Q(θ, β(θ)), (3)

where β(θ) = 〈β1(θ1), ..., βm(θm)〉 is the joint action spec-
ified by joint BG-policy β for joint type θ. Unfortunately,
there is no other method known to optimally solve (3) than
brute force search. For larger action and observation sets,
approximate solution methods such as alternating maximiza-
tion can be employed [7, 3].

In [8] the QBG-value function was introduced as an ap-
proximation for the communication-free Dec-POMDP set-

ting. It is defined as

Q
∗
BG(~θ t

,a) = R(~θ t
,a) +

max
β
〈~θ t,a〉

X

o

P (o|~θ t
,a)Q∗

BG(~θ t+1
, β〈~θ t,a〉(o)), (4)

where β〈~θ t,a〉 =
D

β〈~θ t,a〉,1(o1), ..., β〈~θ t,a〉,m(om)
E

is a tuple

of individual BG-policies β〈~θ t,a〉,i : Oi → Ai, and where

R(~θ t
,a) =

X

s

R(s,a)P (s|~θ t) =
X

s

R(s,a)b
~θ t

(s). (5)

Now we will demonstrate that the QBG-value function, is
the optimal payoff function for the BGs introduced above
for the delayed communication case. For the last time step
t = h− 1, Q should be based on the immediate reward only.
Let us assume the action-observation history at the previous

time step is ~θ h−2. Because the agents know each other’s
policies, they know the last taken joint action and thus

the joint observation probability P (o|~θ h−2,ah−2). Also,
for each joint observation o, they know the resulting joint

action-observation history ~θ h−1 and can calculate the prob-

ability over states b
~θ h−1

it induces using (2). Consequently,
the optimal Q-value function, Q∗

BG, for the last time step is

Q
∗
BG(~θ h−1

,a) = R(~θ h−1
,a). (6)

Given these Q∗
BG-values, β∗

〈~θ h−2,a〉
, the optimal policy for

the last time step given the previous joint history ~θ h−2 and
action a, is given using (3):

β
∗
〈~θ h−2,a〉

=

arg max
β
〈~θ h−2,a〉

X

o∈O

P (o|~θ h−2
,a)Q∗

BG(~θ h−1
, β(o)). (7)

The optimal Q∗
BG value for the before-last time step h −

2 now can be defined as the expected immediate reward
plus the expected future reward, which is the expectation of
β∗

〈~θ h−2,a〉 as specified by the right side of (7)

Q
∗
BG(~θ h−2

,a) = R(~θ h−2
,a) +

max
β
〈~θ h−2,a〉

X

o∈O

P (o|~θ h−2
,a)Q∗

BG(~θ h−1
, β

∗

〈~θ h−2,a〉(o)). (8)

Generalization of this equation yields (4). Given that the
entire Q∗

BG value function as given by (4) is calculated (i.e.,

for all t = 0, ..., h − 1 for all ~θ t and a), the optimal policy
can be extracted and executed as follows. At a time step t,
an arbitrary agent i has received the delayed communication
meaning it can deduce the previous joint action-observation

history ~θ t−1 and joint action a
t. With this information it

can construct and solve the corresponding BG:

β
∗

〈~θ t−1,a〉 = arg max
β

X

o∈O

P (o|~θ t−1
, a)Q∗

BG(~θ t
, β(o)). (9)

Given β∗

〈~θ t−1,a〉 the agent can consider its own component

β∗

〈~θ t−1,a〉,i and execute the optimal individual action for the

observation it actually received a∗
i = β∗

〈~θ t−1,a〉,i(oi).
1

1Of course, (9) has to be evaluated in order to calculate the
entire Q∗

BG-value function (it is part of (4)). Therefore, in



4. QBG-VALUE ITERATION
The previous section explained how QBG-value functions

can be used for Dec-POMDPs with delays in communica-
tion. Here we will discuss how we the QBG-value function
can be computed more efficiently, by employing techniques
used for POMDPs. This is possible because the QBG-value
function for a one time-step delay is piecewise-linear and
convex (PWLC) [9].

4.1 Finite-horizon value iteration
The fact that the QBG-value function is piecewise-linear

and convex in the joint belief space allows to use many tech-
niques from the POMDP literature [6]. Value iteration, for
instance, is a method for solving POMDPs that builds a
sequence of value functions which converge to the optimal
value function for the current task [13]. Analogous to the
POMDP case, we will define how to compute Qt−1

BG from
Qt

BG, i.e., how to extend a QBG value function for horizon h

to horizon h+1. The main idea behind many value-iteration
algorithms for POMDPs is that, given that ∀a Qt(·, a) is rep-
resented by a set of vectors Vt

a
, we can calculate the sets of

vectors Vt−1
a

that represent Qt−1(·, a). In more detail, for
a particular belief b and joint action a, we can compute its
maximizing vector

arg max
v

t−1
a

∈Vt−1
a

b · vt−1
a

, (10)

by performing a so-called backup operation H. For the
POMDP case, such a backup computes the optimal vec-
tor for a given belief b by back-projecting all vectors in the
current horizon value function one step from the future and
returning the vector that maximizes the value of b, see e.g.,
[14]. These back-projected vectors form the basis of both
the POMDP and the QBG backup operators, and for a par-
ticular a,ot+1 and vt+1

a
′ ∈ Vt+1

a
′ they are defined as

g
v

t+1

a
′

a,o (st) =
X

st+1∈S

P (o|a, s
t+1)P (st+1|st

, a)vt+1
a
′ (st+1).

(11)
In the POMDP case, we can define the finite-horizon (not

discounted) backup of a joint belief for a particular joint
action a as

HP(b
~θ t

,a) = Ra +
X

o

arg max
{gi

a,o}i

b
~θ t

· gi
a,o, (12)

where (·) denotes inner product, Ra is an |S|-dimensional
vector, Ra(s) = R(s,a), and i is an index over all vectors
in the next-horizon value function Vt+1

a
′ , ∀

a
′ . Now, in the

QBG backup we use the same back-projected vectors, but
instead of maximizing over all, we only maximize over those
whose next time-step action a

′ is consistent with β〈~θ t,a〉 a

particular BG-policy for the BG for ~θ t,a. This set is defined
as

Ga,o,β
〈~θ t,a〉

≡



g
v

t+1

a
′

a,o | v
t+1
a
′ ∈ Vt+1

a
′ ∧ β〈~θ t,a〉(o) = a

′

ff

.

(13)
The QBG-backup is completed by maximizing over the BG-

practice, the β∗

〈~θ t−1,a〉 will be cached and evaluation of (9)

is not necessary anymore in the online phase.

policies:

HB(b
~θ t

,a) = Ra + max
β
〈~θ t,a〉

X

o
t+1

arg max

g
v

t+1

a
′

a,o ∈G
a,o,β

〈~θ t,a〉

b
~θ t

· g
v

t+1

a
′

a,o .

(14)
At this point we can use HB for value iteration in finite-

horizon settings; next we will extend our work to the infinite-
horizon case.

4.2 Infinite-horizon value iteration
In the infinite-horizon case, there generally is an infinite

number of joint beliefs, therefore the QBG backup for finite
horizon translates to the following backup operator for the
infinite horizon:

HBQ(b,a) = R(b,a) + γ max
β〈b,a〉

X

o

P (o|b,a)Q(bao, β〈b,a〉(o)),

(15)
where bao is the resulting joint belief after taking joint action
a in b and observing o.

This is a contraction mapping, which means that there
is a fixed point, which is the optimal infinite-horizon QBG-
value function Q∗(b,a) [9]. Together with the fact that Q∗

for the finite horizon is PWLC, this means we can approxi-
mate Q∗(b,a) with arbitrary accuracy using a PWLC value
function. Note that when using the infinite-horizon value
function, we will actually have to evaluate (9), as we cannot
cache all maximizing β∗

〈~θ t−1,a〉as in the finite-horizon case.

4.3 Approximate QBG-value iteration
Now that we have presented how we can backup joint

beliefs with QBG-value functions, we can adapt POMDP
value-iteration algorithms to compute QBG-value functions.
A major cause of intractability of exact POMDP solution
methods is their aim of computing the optimal action for ev-
ery possible belief point in P (S). A natural way to sidestep
this intractability is to settle for computing an approximate
solution by considering only a finite set of belief points. One
such point-based POMDP method is Perseus [14], which
operates on a large belief set sampled by simulating random
trajectories through belief space. Approximate value itera-
tion is performed on this belief set by applying a number
of backup stages, ensuring that in each backup stage the
value of each point in the belief set is improved; the key ob-
servation is that a single backup, whether HP or HB, may
improve the value of many belief points. Contrary to other
point-based methods, Perseus backs up only a (randomly
selected) subset of points in the belief set, sufficient for im-
proving the value of each belief point in the set. Adapting
Perseus to compute QBG-value functions requires replacing
HP with HB.

5. EXPERIMENTS
We present experiments on two problem domains, as a

proof of concept of our method. The first problem is Dec-
Tiger, a standard test problem for Dec-POMDPs with 2
agents, 2 states, 4 joint observations and 9 joint actions.
A detailed description of Dec-Tiger is provided by Nair et
al. [7]. The second problem is called OneDoor and is de-
picted in Fig. 2(Right). The environment contains two sim-
ulated robots, one of which starts in location A and has to



Problem h VP(b0) VQBG(b0)
Dec-Tiger 5 26.80 10.68
Dec-Tiger 10 60.29 34.59
Dec-Tiger 15 93.59 53.16
OneDoor 10 0.140 0.0796

A B

CD

Figure 2: Left: values of initial belief b0 for sev-

eral problems with horizon h. VP(b0) indicates the

Perseus POMDP value of b0, and VQBG(b0) the

value of b0 for the QBG-value function. Right: the

OneDoor environment, with 7 locations for each

agent.

move to B, and the other starts in location C and has to
reach D. The system receives of reward 1 for each robot that
reaches its goal location, but it is penalized with a reward
of −10 if both robots occupy the same location. The robots
have to learn that one should wait for the other, in order to
avoid bumping into each other. They can move one square
in each direction (|A| = 16), but only with 80% accuracy.
The remaining probability mass is distributed equally over
the other three actions, and when a robot attempts to exit
the environment it remains stationary instead. Each robot
can observe whether there are one or less walls surround-
ing, or two or more (|O| = 4). Its sensors are not noisy,
but the environment is still partially observable, as many
locations map to the same observation, and as each robot
cannot observe the other robot.

We used Perseus to compute QBG-value functions for
these problems, as well as POMDP value functions. In or-
der to compute finite-horizon policies with Perseus, which
essentially is an infinite-horizon technique, we extended the
state description of each problem with the time step of the
decision problem. We also added an absorbing state, to
which the agents always transition when they reach the hori-
zon. They cannot leave the absorbing state, and in which
each joint action gathers zero reward. The discount rate γ

is set to 1 for Dec-Tiger, and to 0.95 for OneDoor. We used
unique beliefs in each belief set, and limited its size to 100.

Fig. 2(Left) shows values of the initial joint belief b0 for
both value functions, which indicates the expected control
quality of the computed policy. As expected, the POMDP
value VP(b0) is higher than the QBG-value VQBG(b0), as the
POMDP solution uses instantaneous observation sharing,
which requires the agents to synchronize at every time step.
However, we can see that the proposed QBG solution pro-
duces adequate results, without requiring the agents to wait
for incoming messages.

Note that given the one-step communication delay, the
Bayesian game solution is optimal, but approximations will
be introduced due to the approximate nature of Perseus.
However, for the Dec-Tiger problem and a horizon of 5,
we were able to compute the exact values of b0 using the
QPOMDP and QBG methods as described in [8]. They are
26.81 resp. 10.68, which are practically identical to the val-
ues reported in Fig. 2(Left). For larger horizons computing
exact solutions quickly becomes impossible due to limited
memory space. This highlights the appeal of approximate
algorithms like Perseus, as they can exploit a sparse joint
belief space.

6. CONCLUSIONS AND DISCUSSION
In this paper we considered planning under uncertainty

for a multiagent system with delayed communication. In
particular we focused on Dec-POMDP settings with a one
time-step communication delay. It is known that under the
assumption of instantaneous communication this model re-
duces to a standard POMDP, for which many exact and ap-
proximate solution techniques exist, a fact which has been
exploited by several Dec-POMDP planning methods [3, 12,
15]. However, as we discussed, instantaneous communica-
tion is a strong assumption, as it requires the agents to syn-
chronize at every time step. Therefore we explored planning
in Dec-POMDP settings in which communication is delayed
by one time step. It allows an agent to act immediately
when receiving a local observation, and we assume that the
duration of each action is sufficient for the other agents’ ob-
servations to arrive. We showed how this situation can be
modeled by Bayesian games in which the types of the agents
are defined by their last private observation. This is in con-
trast to approaches that model regular (non-communicative)
Dec-POMDPs using BGs [3, 8]: the BGs in those approaches
have types that correspond to entire (action-) observation
histories.

We showed that the QBG-value function is the optimal
payoff function for the BGs resulting from the one time-
step delayed communication. Using the PWLC property of
the QBG-value function, we demonstrated how we can de-
fine value iteration for planning in this delayed communica-
tion Dec-POMDP setting. Next, we discussed that for the
infinite-horizon case, we can approximate the optimal QBG-
value function arbitrarily well with a PWLC value function.
We extended an approximate POMDP solver to compute ap-
proximate QBG-value functions, and used it to demonstrate
the viability of our approach in some experiments.

In [8] we proposed the QBG-value function as an upper
bound to the optimal value function for communication-free
Dec-POMDPs. In this paper, we proved that the QBG-value
function also provides an optimal solution for Dec-POMDPs
with a one time-step communication delay. However, it has
been brought to our attention that in the automatic control
literature the problem of decentralized control in a delayed-
communication setting has also been tackled [16, 5, 1], where
it is known as a one step delay sharing (OSDS) information
pattern2. In particular, it was shown that under OSDS there
is a PWLC value function [16] and that a dynamic program-
ming formulation for the problem exists [5]. We were not
aware of this work, however, we believe that the Bayesian
game perspective presents a unified view for decentralized
decision making with no communication and with one or
more steps of delayed communication. Also, we anticipate
that it allows for several promising extensions, as we will
present shortly.

The techniques that we presented in this paper extend
beyond the delayed-communication setting, as several Dec-
POMDP solution techniques exist that employ a value func-
tion over joint beliefs as a heuristic. Instead of using QMDP

[3, 15, 8] or QPOMDP [12, 8], the QBG-value function will
provide a better approximation of the true optimal Q-value
function of the general Dec-POMDP, although at a higher
computational cost [8].

Future work will consider approximate methods for solv-

2We thank the reviewers for pointing out this related work.



ing the BGs, as optimally solving these can be expensive
for problems with many observations. For instance solv-
ing them using an alternating-maximization approach [7, 3]
would be a logical step. We will also be considering sit-
uations in which the communication is delayed more than
one time step, in which case each agent’s type will be a lo-
cal observation history instead of just the last received local
observation.

Another direction of future research is the situation in
which the agents decide online whether or not to wait for
other the transmitted local observations of the other agents.
By considering the expected value difference between the
POMDP and the QBG value of a belief, each agent can de-
termine at each time step the relative benefit of waiting for
all other local observations. In particular, we can define
a new backup operator that compares the resulting vectors
from HP and HB, and selects which one to use based on their
value difference and a task-dependent penalty for waiting.
The benefit of such an approach would be that, when the
other agents’ observations are not very relevant at a par-
ticular time step (in terms of expected value loss), we act
quickly according to the QBG-value function. However, in
situations that require tight coordination each agent will
choose to wait, and act on the joint observation.
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