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Abstract

In this paper, we address multi-agent decision problems where all agents share a common
goal. This class of problems is suitably modeled using finite-state Markov games with identical
interests. We tackle the problem of coordination and contribute a new algorithm, coordinated Q-
learning (CQL). CQL combines Q-learning with biased adaptive play, a coordination mechanism
based on the principle of fictitious-play. We analyze how the two methods can be combined
without compromising the convergence of either. We illustrate the performance of CQL in
several different environments and discuss several properties of this algorithm.

Recent years have witnessed increasing interest in extending reinforcement learning (RL) to
multi-agent problems. However, reinforcement learning methods often require the environment
to be stationary. If a learning agent interacting with an environment where other agents co-exist
can disregard them as part of the environment, there is an implicit violation of the stationarity
assumption that can lead to poor convergence of the learning algorithms. Even if convergence
is attained, the learned policy can be unsatisfactory.

Markov games (also known as stochastic games), understood as extensions of Markov pro-
cesses to multi-agent scenarios, have thoroughly been used as suitable models to address multi-
agent reinforcement learning problems, and several researchers adapted classical RL methods to
this multi-agent framework.

Littman [16] proposed the Minimax-Q algorithm as a possible application of Q-learning
to zero-sum Markov games. Hu and Wellman [12] later proposed Nash-Q, an elaboration on
Minimax-Q that can be applied to general-sum Markov games. They established convergence
of Nash-Q under quite stringent conditions, thus leading to the development of Friend-or-Foe
Q-learning (FFQ) [18]. FFQ requires less stringent assumptions than Nash-Q, while retaining its
convergence properties in several classes of Markov games.

Claus and Boutilier [7] proposed joint-action learners (JAL), combining Q-learning with ficti-
tious play in team Markov games. Uther and Veloso [25] combined fictitious play with prioritized
sweeping to address planning in adversarial scenarios. Gradient-based learning strategies are
analyzed with detail in [4, 22]; Bowling and Veloso [5] propose a policy-based learning method
that applies a policy hill-climbing strategy with varying step, using the principle of “win or
learn fast” (WoLF-PHC). Many other works on multi-agent learning systems can be found in the
literature (see, for example, the surveys [3, 20]).

In this paper, we address finite-state Markov games with identical interests (henceforth re-
ferred as team Markov games). We cast this class of games as a generalization of Markov decision
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processes (in the line of [24]) and describe a straightforward application of Q-learning to such
scenarios. We then tackle the problem of coordination or equilibrium selection. We contribute the co-
ordinated Q-learning algorithm (CQL), combining Q-learning with biased adaptive play (BAP).1 BAP
is a sound coordination mechanism introduced in [26] and based on the principle of fictitious-
play. We analyze how BAP can be interleaved with Q-learning without affecting the convergence
of either method, thus establishing convergence of CQL. We also illustrate the performance of
CQL in several different environments and discuss several properties of the methods (such as its
convergence and rationality).

The paper is organized as follows. We start by describing the framework of Markov games
as an extension of Markov decision processes and matrix games, and describe how Q-learning
can be applied to this class of games. We then address the problem of equilibrium selection
and introduce biased adaptive play, analyzing its main properties. We proceed with the detailed
description of CQL and its convergence properties. We present several results obtained with
the algorithm and conclude the paper with some discussion on the performance algorithm and
future work.

1 Markov games and equilibrium selection

Markov games arise as a suitable framework to address reinforcement learning problems in
multi-agent scenarios. This framework can be seen as a multi-agent extension of Markov decision
processes. In this section, we describe Markov games and some important concepts that concern
it.

1.1 Markov decision processes

Let X be a finite set of states and {Xt} a X -valued controlled Markov chain. The transition
probabilities for the chain are given by a probability function

P [Xt+1 = j | Xt = i, At = a] = Pa(i, j),

where i, j ∈ X and a ∈ A. The A-valued process {At} represents the control process: At is
the control action at time instant t and A is the finite set of possible actions. A decision-maker
aims at choosing the control process {At} so as to maximize the infinite-horizon total discounted
reward

V({At} , i) = E

[
∞

∑
t=0

γtR(Xt, At) | X0 = i

]
,

where 0 ≤ γ < 1 is a discount-factor and R(i, a) represents a random “reward” received for
taking action a ∈ A in state i ∈ X . We assume throughout the paper that there is a deterministic
function r : X × A × X −→ R assigning a reward r(i, a, j) every time a transition from i to
j occurs after taking action a. This simplifies the notation without introducing a great loss in
generality.

We refer to the tuple (X,A, P, r, γ) as a Markov decision process (MDP). Given the MDP
(X,A, P, r, γ), the optimal value function V∗ is defined for each state i ∈ X as

V∗(i) = max
{At}

E

[
∞

∑
k=0

γtR(Xt, At) | X0 = i

]
and verifies

V∗(i) = max
a∈A ∑

i∈X

[
r(i, a, j) + γV∗(i)

]
Pa(i, j),

1We must emphasize that our method, although baring a somewhat related designation, has no relation whatsoever
with the coordinated reinforcement learning algorithms proposed in [11].
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which is a form of the Bellman optimality equation. The optimal Q-values Q∗(i, a) are defined
for each state-action pair (i, a) ∈ X ×A as

Q∗(i, a) = ∑
i∈X

[
r(i, a, j) + γV∗(i)

]
Pa(i, j). (1.1)

If V∗(i) “measures” the total discounted reward obtained during an expectedly optimal tra-
jectory starting at state i, Q∗(i, a) measures the total discounted reward obtained during an
expectedly optimal trajectory starting at state i when the first action is a.

The optimal Q-function can be approximated by a sequence of functions {Qn}, generated
recursively by

Qn+1(i, a) = Qn(i, a) + αn(i, a)
[
R(i, a) + γ max

b∈A
Qn(X(i, a), b)− Qn(i, a)

]
, (1.2)

where X(i, a) is random variable obtained according to the transition probabilities defined by
P and {αn(i, a)} is a sequence of step-sizes verifying ∑n αn(i, a) = ∞ and ∑n α2

n(i, a) < ∞. The
sequence {Qn} will converge to Q∗ as long as each pair (i, a) is “visited” infinitely often [27].
Expression (1.2) is the update equation of Q-learning, a widely known method that we use in our
multi-agent algorithm.

1.2 Matrix games

A matrix game is a tuple (N,A, r), where N is a set of players, A = ×k=1,...,NAk is the set of all
joint actions and r = ×k=1,...,Nrk is a function assigning a utility or payoff r(a) = (r1(a), . . . , rN(a))
to each joint action a ∈ A.2

The game is played as follows. Each player k ∈ N chooses an individual action ak from its
individual set of actions Ak. Then, all N players simultaneously play the corresponding actions
and, according to the resulting joint action a, each player receives a reward rk(a). We denote a
joint action or action profile by a = (ak, . . . , ak) and a reduced action obtained from a by removing
the individual action ak of player k by a−k.

Matrix games can usually be represented by N matrices whose elements define the individual
payoffs of each player for each joint action. Figure 1 represents a possible matrix game with 2
players.

a b

a 5 −10

b −10 0

a b

a 0 −10

b −10 5

Reward for player 1 Reward for player 2

Figure 1: Example of a matrix game. In this game, N = 2 and Ak = {a, b}, k = 1, 2.

An individual strategy σk defines the probability of player k playing each action ak ∈ Ak in
the game. Clearly, ∑ak∈Ak σk(ak) = 1. A strategy σk is a pure strategy if σk(ak) = 1 for some
action ak ∈ Ak and a mixed strategy otherwise. A strategy profile is a vector σ = (σ1, . . . , σN) of
individual strategy profiles and σ(a) represents the probability of playing the joint action a when
all agents follow the strategy σ. We refer to σ−k as a reduced strategy profile or simply as reduced
strategy and is obtained from σ by removing the individual strategy σk of player k.

2We use the notation ×k=1,...,NUk to represent the cartesian product of the sets Uk , k = 1, . . . , N.
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The individual strategy (σk)∗ of player k is a best response to a reduced strategy σ−k if player
k cannot improve its expected reward by using any other individual strategy σk. Formally, this
is stated as

∑
a

(σ−k, (σk)∗)(a)rk(a) ≥ ∑
a

(σ−k, σk)(a)rk(a),

for any individual strategy σk.
A Nash equilibrium is a strategy profile σ∗ = ((σ∗)1, . . . , (σ∗)k) in which each individual

strategy (σ∗)k is a best response for player k to the reduced strategy (σ∗)−k. Every finite matrix
game has at least one Nash equilibrium. In the example of Figure 1, the pure strategies (a, a)
and (b, b) are Nash equilibria.

Matrix games can be classified according to their utility function as zero-sum games, where
N = 2 and r1(a) = −r2(a) for all a ∈ A and general-sum games, otherwise. General sum games
include team games as a particular case. In a team game, r1(a) = . . . = rN(a) for all a ∈ A.
Zero-sum Markov games are also known as fully competitive and team games as fully cooperative.

1.3 Coordination and Equilibrium selection

When considering finite, fully cooperative games, the method of fictitious play [6] is known to
converge to a Nash equilibrium [19]. However, if there are multiple such equilibria with different
values, there are no guarantees that the attained equilibrium is the one with highest value.

Consider, for example, the fully cooperative game in Fig. 2.

βaγa βaγb βaγc βbγa βbγb βbγc βcγa βcγb βcγc

αa 10 -20 -20 -20 -20 5 -20 5 -20

αb -20 -20 5 -20 10 -20 5 -20 -20

αc -20 5 -20 5 -20 -20 -20 -20 10

Figure 2: Fully cooperative game with multiple equilibria.

In this game, three players α, β and γ repeatedly engage in the matrix game described by the
reward table in Fig. 2 and receive the same reward. Each player has 3 available actions, a, b and
c. In Fig. 2 we represent by xy action y of player x, e.g., αa is action a of player α. The boldface
entries in Figure 2 represent optimal equilibria, (a, a, a), (b, b, b) and (c, c, c). Notice that only if
the whole team coordinates in playing one same optimal equilibrium does each player receive
the maximum payoff. For example, if players α and β decide to play the equilibrium (a, a, a) and
player γ decides to play equilibrium (b, b, b), the resulting action is (a, a, b) yielding a reward of
−20.

On the other hand, the actions (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b) and (c, b, a) are also
Nash equilibria. Even if the team uses a coordination mechanism such as fictitious play, there
are no guarantees that they will cordinate in one of the optimal equilibria.

This problem is known as an equilibrium selection problem in the game theory literature, or as a
coordination problem in the multi-agent systems literature [2]. Even if all players know the game,
it is still necessary to devise some specific mechanism to ensure that, in the presence of multiple
equilibria, all players will commit to the same equilibrium. This mechanism can rely on implicit
assumptions on the way the other players play [15], communication [9], social conventions [8] or
coordination graphs [10, 11, 13, 14].

In this paper we are interested in addressing coordination as a result of interaction among the
agents: coordination should emerge from the interaction among the several players rather than
being “intrinsically implanted” in the players. We also consider that no explicit communication
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takes place. It is possible to find different works in the literature addressing the problem of
emerging coordination in multi-agent systems.

Joint-action learners [7] use fictitious play to estimate the strategies followed by the other play-
ers in team games. This estimate on the other players’ strategy is then used to choose a best
response strategy. Several variations of the fictitious play principle have been proposed to en-
sure convergence to a coordinated equilibrium.

Adaptive play [28] is a variation of fictitious play that sub-samples the history of past-plays.
This sampled-history is then used to estimate the other players’ strategy in a fashion similar
to fictitious player. Biased adaptive play [26] further extends the adaptive play strategy. The ad-
vantage of biased adaptive play over adaptive play is that the former actually converges to a
coordinated equilibrium in any team Markov game, unlike the latter, whose convergence guar-
antees limit to which weakly acyclic repeated games.

Lauer and Riedmiller [15] propose still another strategy to ensure coordination. In this work,
each player optimistically assumes that all players behave greedily. As shown in [15], this ap-
proach converges to an optimal Nash equilibrium even if the joint actions are not observable, as
long as the transitions are deterministic.

1.4 Biased adaptive play

To describe how BAP works, we start with an important definition. Let Γ =
(

N, (Ak), r
)

be a
fully cooperative matrix game and let D be a set containing some of the Nash equilibria in Γ
(and no other joint actions). Γ is a weakly acyclic w.r.t. the bias set D if, given any vertex a in the
best response graph of Γ, there is a directed path to either a Nash equilibrium in D or a strict
Nash equilibrium.

Now, considering a fully cooperative repeated game Γ =
(

N, (Ak), r
)
,3 we construct the

virtual game VG =
(

N, (Ak), rVG
)
, where rVG(a) = 1 if a is an optimal equilibrium for Γ and

rVG(a) = 0 otherwise. Notice that every Nash equilibrium in VG corresponds to an optimal
equilibrium in Γ̂. Therefore, if the players are able to coordinate in a Nash equilibrium in
VG, they will have coordinated in an optimal equilibrium in Γ, as desired [26]. By setting
D = {a ∈ A | rVG(a) = 1}, the game VG is weakly acyclic w.r.t. the set D.

Let K and m be two integers such that 1 ≤ K ≤ m and let Ht be a vector with the last m joint
plays at the tth play of the game. We refer to any set of K samples randomly drawn from Ht
without replacement as a K-sample and denote it as K(Ht). A player k following BAP draws a
K-sample K(Ht) from the history of the m most recent plays and checks if

1. There is a joint action a∗ ∈ D such that, for all the actions a ∈ K(Ht), a−k = (a∗)−k;

2. There is at least one action a∗ ∈ D such that a∗ ∈ K(Ht).

If these conditions are verified this means that, from the sample K(Ht), all players (except k)
appear to have coordinated in an optimal action a∗ ∈ D. Therefore, if conditions 1 and 2 are
met, player k chooses its best response (a∗)k such that

a∗ = max
τ≤t

{aτ | aτ ∈ K(Ht) and aτ ∈ D} .

If either 1 or 2 (or both) do not hold, then player k uses the K-sample to estimate the strategies
of the other players as

EPk
t (ak) = ∑

a−k∈A−k

r(a−k, ak)
NK(a−k)

K
,

3A repeated game is simply a matrix game that is played repeatedly and in which the players “remember” the past
plays of the game.



Technical Report RT-601-07, February 2007 7

where NK(a−k) denotes the number of times that the reduced action a−k appears in the K-sample
K(Ht). It then chooses its action randomly from the best response set

BRk
t =

{
ak | ak = arg max

bk∈Ak
EPt(bk)

}
.

It has been shown that BAP ensures coordination w.p.1 as t → ∞ as long as m ≥ K(N + 2)—see
Theorems 1 and 3 and Lemma 4 in [26].

We conclude this section with one important observation, concerning the application of BAP
to fully cooperative Markov games. Although these method was presented for a repeated game
framework, it is possible to apply it mutatis mutandis to the Markov game framework. In fact, as
we show next, the Q-values for an optimal Nash equilibrium define for each state of the Markov
game a fully cooperative, weakly acyclic matrix game to which BAP can be applied, as long as
every state x is visited infinitely often [26].

1.5 Markov games

Once again, let X be a finite set of states and {Xt} a X -valued controlled Markov chain. The
transition probabilities for the chain are given by a probability function

P [Xt+1 = j | Xt = i, At = a] = Pa(i, j),

where i, j ∈ X and a ∈ A. As in MDPs, the A-valued process {At} represents the control
process, where A is the finite set of possible actions. However, and unlike MDPs, each At is now
a joint control action arising from N independent decision-makers (which we henceforth refer to
as players). Therefore, At is a tuple (A1

t , . . . , AN
t ), where Ak

t is the individual action for player k
and takes values in the set of player k’s individual actions, Ak. The set A is the cartesian product
of the N sets of individual actions, A = ×N

k=1A
k, and is the joint action set. Suppose also that

there is a function r defined in X ×A× X but taking values in RN . It is therefore possible to
write

r(i, a, j) =
(
r1(i, a, j), . . . , rN(i, a, j)

)
,

each rk defined on X ×A×X and taking values in R.
A Markov game is thus a generalized Markov decision process (X,A, P, r, γ) in which the set

A and the reward function r are as described above. There are N independent decision-makers
(the players), each choosing the value of one individual control parameter Ak

t . Each transition
(i, a, j) grants player k with a reward rk(i, a, j. This leads to the following definition.

Markov Game

A Markov game is a tuple
(

N,X , (Ak), P, (rk), γ
)
, where

• N is the set of players in the game;

• X is the set of game-states;

• A = ×N
k=1A

k is the cartesian product of the individual action sets Ak;

• P represents the transition probability kernels. In the simplest case where X is finite,
each Pa is a matrix with xyþentry given by

Pa(i, j) = P [Xt+1 = j | Xt = i, At = a] ;
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• r = (r1, . . . , rN) is the reward function, assigning a reward rk(i, a, j) to player k each
time a transition from i to j occurs “under” the joint action a.

In this paper, we focus on a particular class of Markov games, team Markov games. Team
Markov games, also known as fully cooperative Markov games, arise when all players have
common interests. This is translated in terms of the reward function by setting all agents to
receive a common reward. A team Markov game is thus a tuple

(
N,X , (Ak), P, r, γ

)
, where N

is the number of players, X is the set of states, A = ×N
k=1A

k is the set of joint actions and
P : X ×A×X −→ R is the transition probability function. As in MDPs, we assume that there is
a deterministic function r : X ×A×X −→ R assigning a reward r(i, a, j) every time a transition
from i to j occurs after taking the joint action a.

In team Markov games all players share the same goal, which is to maximize the total ex-
pected reward over all admissible control sequences {At}, defined as

V({At} , i) = E

[
∞

∑
t=0

γtR(Xt, At) | X0 = i

]

with i ∈ X and R(i, a) the random reward received by all players for taking the joint action a in
state i.

Given the game
(

N,X , (Ak), P, r, γ
)
, the optimal value function V∗ is defined for each state

i ∈ X as

V∗(i) = max
{At}

E

[
∞

∑
t=0

γtR(Xt, At) | X0 = i

]
.

As in MDPs, the optimal value function verifies

V∗(x) = max
a∈A ∑

i∈X

[
r(i, a, j) + γV∗(j)

]
Pa(i, j).

and we define the optimal Q-values Q∗(i, a) as

Q∗(i, a) = ∑
i∈X

[
r(i, a, j) + γV∗(j)

]
Pa(i, j).

As in matrix games, an individual strategy for player k is a mapping σk
t : X ×A −→ [0, 1] such

that the individual control sequence
{

Ak
t

}
generated by σk

t verifies

P
[

Ak
t = ak | Xt = i

]
= σk

t (i, a). (1.3)

A strategy σk
t is a pure strategy if, for each i ∈ X , σk(i, ak) = 1 for some action ak ∈ Ak and

a mixed strategy otherwise. If σk
t does not depend on t, it is said to be a stationary strategy and

simply denoted by σk.
A joint strategy or strategy profile is a vector σt = (σ1

t , . . . , σN
t ) of individual strategies and

defines the probability of the team playing each joint action in A in each state of the game. A
strategy profile σt generates a control sequence {At}, where each At is a N-tuple (A1

t , . . . , AN
t )

and each Ak
t verifies (1.3). We write Vσt(i) instead of V({At} , i) whenever the control sequence

{At} is generated by the strategy profile σt, and refer to Vσt as being the value function associated
with strategy σt. A strategy profile is stationary/pure if it is composed of stationary/pure
individual strategies. The tuple

σ−k
t = (σ1

t , . . . , σk−1
t , σk+1

t , . . . , σN
t )
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is a reduced joint strategy or simply a reduced strategy, and we write σt = (σ−k
t , σk

t ) to indicate that
the individual strategy of player k in the joint strategy σt is σk

t .
Two important remarks are now in order. First of all, if the definition of V∗ and the existence

of an optimal joint control strategy arise immediately from the corresponding results for MDPs,
the fact that the decision process in team Markov games is distributed implies that coordination
must be addressed explicitly [1].

On the other hand, we note that the function Q∗ defines, at each state x ∈ X , a fully co-
operative strategic game Γx =

(
N, (Ak), Q∗(x, ·)

)
, that we refer as a stage game. If the players

coordinate in an optimal Nash equilibrium in each stage game Γx, they coordinate in an optimal
Nash equilibrium for the team Markov game [2]. This means that, if Q∗ is known and every
state x ∈ X is visited infinitely often, each agent can keep a record of the last m plays in each
state and apply BAP to each stage game. In the continuation, we address the situation in which
the agent must learn Q∗ while coordinating.

2 The CQL algorithm

In our description of the CQL algorithm, we consider two essential components: (1) learning
the game; and (2) learning to coordinate. Learning the game consists in estimating the optimal
Q-function; learning to coordinate consists in agreeing upon an optimal Nash equilibrium.

2.1 Learning the game

In CQL, each player uses the Q-learning update rule described in (1.2) to learn the optimal
Q-values. Since all players receive the same reward and each player admittedly observes the
actions played by the remaining players (a posteriori), all players maintain, at each time instant,
a common estimate Qt of Q∗. As long as every state-action pair (i, a) is visited infinitely often,
the sequence {Qt} converges to Q∗ with probability 1, independently of the policy used to sample the
game. This result is standard and can be found in numerous references in the literature, e.g., [17].

On the other hand, it is important to ensure sufficient exploration as the players coordinate.
In fact, it is important to ensure sufficient visits to every state-action pair, even as the players
coordinate. The use of exploration policies that become greedy in the limit has been shown to
settle the issue of exploration vs. exploitation in a satisfactory way, for the purposes of this
paper. Such policies, known as greedy in the limit with infinite exploration (GLIE) were thoroughly
studied in [21] and their application to multi-agent scenarios in [17, 26]. Examples of GLIE
policies include Boltzmann exploration with decaying temperature factor and ε-greedy policies
with decaying exploration coefficient (ε). In this work, we adopt a Boltzmann-greedy policy that
explores with a probability given by a Boltzmann distribution.

2.2 Learning to coordinate

In CQL, each player uses biased adaptive play to converge in behavior to an optimal Nash
equilibrium. In particular, the players use BAP in each stage-game, thus coordinating in an
optimal Nash equilibrium (as shown in [2]). However, the players do not know the function Q∗

but rather an approximate estimate Qt of Q∗ that they must use to coordinate.
To achieve coordination, biased adaptive play considers a sequence {VGt} of virtual games

built from the estimates Qt by making use of the concept of ε-optimality. Each virtual game VGt
is thus defined as a tuple VGt =

(
N, (Ak), rt

)
, where the payoff function is

rt(a) =

{
1 if a ∈ optεt(i);
0 otherwise.
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We denoted by optεt(i) the set of εt-optimal actions with respect to Qt at state i. Notice that, as
εt → 0, all suboptimal actions are eliminated from the virtual games VGt. Therefore, to ensure
that BAP is still able to coordinate using the estimates Qt, we need only guarantee that εt → 0
more slowly than Qt → Q∗. This statement is formally established in Lemma 2.1.

Consider a function ρ : N −→ R such that, w.p.1,

‖Qt − Q∗‖ ≤ K0ρ(t),

where K0 is some positive constant. The following result is a generalization of Lemma 6 in [26].

Lemma 2.1. For any team Markov game, let ΛT be the event that, for t > T, VGt = VG. If εt decreases
monotonically to zero and

lim
t→∞

ρ(t)
εt

= 0,

then limt→∞ P [ΛT ] = 1.

Proof The proof closely follows the proof of Lemma 6 in [26].
Let i ∈ X be some fixed state and let λT be the event that, for all t > T,

max
a∈A

∣∣∣Qk
t (i, a)− Q∗(i, a)

∣∣∣ <
εt

2
.

Since, by assumption,

lim
t→∞

ρ(t)
εt

= 0,

it holds that

lim
t→∞

K1ρ(t)
εt

= 0,

for any positive constant K1. Therefore, and since∥∥∥Qk
t − Q∗

∥∥∥ ≤ K0ρ(t)

w.p.1, given any ξ0 > 0 there is a time instant T0(ξ0) > 0 such that, for all t > T0,

P [λt] > 1− ξ0. (2.1)

Take now two actions a, b ∈ A such that a ∈ opt(i) and b verifies

b = arg max
u/∈opt(i)

Q∗(i, u),

where we used the compact notation opt(i) to represent opt0Q∗(i, ·). Let ξ1 = |Q∗(i, a)− Q∗(i, b)|.
By assumption, εt → 0 and, therefore, there is a time instant T1 such that, for all t > T1,

εt <
ξ1

2
. (2.2)

Let T = max {T0, T1}. For all t > T it holds with probability p > 1− ξ0 that, given any action
b /∈ opt(i),

Qt(i, b) + εt < Q∗(i, b) +
εt

2
+ εt <

< Q∗(i, b) +
ξ1

2
+

ξ1

4
≤

≤ max
u∈A

Q∗(i, u)− ξ1

4
<

< max
u∈A

Qt(i, u). (2.3)
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The first inequality arises from (2.1); the second inequality arises from (2.2); the third inequality
arises from the definition of δ and the last inequality arises from (2.1) once again. On the other
hand, for all t > T it holds with probability p > 1− ξ0 that, given any action a ∈ opt(i),

Qt(i, a) + εt > Q∗(i, a) +
εt

2
> max

u∈A
Qt(i, u), (2.4)

where the inequalities arise from (2.1) and from the fact that Q∗(i, a) > Q∗(i, b) for any a ∈
opt(i).

Now joining (2.3) and (2.4), it holds with probability p > 1− ξ0 that, for all t > T,

Qt(i, b) < max
u∈A

Qt(i, u)− εt

Qt(i, a) > max
u∈A

Qt(i, u)− εt,

for any actions a ∈ opt(i) and b /∈ opt(i). The first expression implies that, for any t > T, no
suboptimal action belongs to optεt(i); the second expression implies that all optimal actions do
belong to optεt(i). This means that, for all t > T, VGt = VG with probability p > 1− ξ0 and,
therefore, P [ΛT ] > 1− ξ0. The conclusion of the theorem follows. 2

We present in Figure 3 the complete CQL algorithm in pseudo-code.
The following result establishes the conditions under which CQL (coordinated Q-learning) is

able to learn the optimal Q-function and coordinate in an optimal Nash equilibrium.

Theorem 2.2. Let Γ =
(

N,X , (Ak), P, r, γ
)

be a team Markov game with N players. Suppose that the
following conditions hold:

1. The players use the Q-learning update rule in (1.2) to learn the optimal Q-function;

2. The players use BAP with GLIE exploration to coordinate in each stage-game;

3. Each virtual game VGt used in BAP considers εt-optimal strategies;

4. The sequence {εt} decreases monotonically to zero and verifies

lim
t→∞

√
log log(Nt)

Nt

εt
= 0, (2.5)

where Nt is number of visits to the least visited state-action pair at time t;

5. The the lengths of the history Ht and K-sample h, m and K, verify m ≥ K(N + 2);

6. The sequence of step-sizes {αt} verifies

∑
t∈T

αt(i, a) = ∞; ∑
t∈T

α2
t (i, a) < ∞,

and αt(i, a) = 0 if (i, a) 6= (it, at).

Then, the sequence of estimates
{

Qk
t

}
generated by CQL converges to Q∗ w.p.1. Furthermore, all players

in N coordinate in an optimal Nash equilibrium of Γ w.p.1.

Proof Convergence of Qt to Q∗ is immediate, since the GLIE exploration ensures that every
state-action pair is visited infinitely often. Since every state is visited infinitely often, we establish
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Initialization:

1: Set t = 0 and εt = ε0;

2: For all (i, a) set nk
t (i, a) = 1 and Qk

t (i, a) = 0;

3: Set optεt (i) = A and D = A;

Learning coordination: Given current state Xt

4: If t ≤ m, randomly select an action

5: else with GLIE exploitation probability (1− pk
t ) do

a. Update VGk
t as

VGk
t (Xt, a) =

{
1 if a ∈ optεt (Xt);

0 otherwise;

b. Set D =
{

a | VGk
t (Xt, a) = 1

}
;

c. Set h = K-sample(K, Ht(Xt));
d. For all ak ∈ Ak, set

EPk
t (ak) = ∑

a−k∈A−k

VGk
t
(
Xt, (a−k, ak)

) Nh(a−k)
K

;

e. Set BRk
t (Xt) =

{
ak | ak = arg max

bk∈Ak
EPk

t (ak)
}

;

f. If conditions 1 and 2 of Section 1 are met, choose the most recent joint action in
h ∩ D;

g. else randomly choose an action in BRk
t (Xt);

6: else with exploration probability pk
t randomly select an action;

Learning the game: Given current transition triplet (Xt, At, Xt+1)

7: Set nt(Xt, At) = nt(Xt, At) + 1;

8: Update Qk
t according to (1.2), with αt(i, a) = 1

nt(i,a) ;

9: Set t = t + 1 and Nt = mini,a nt(i, a);

10: If εt ≥ ε0ρt,

a. Set εt = ε0ρt;

b. For all i, set optεt (i) =
{

a | Qk
t (i, a) ≥ maxb Qk

t (i, b)− εt

}

Figure 3: The CQL algorithm for player k.
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convergence to a Nash equilibrium in Γ by establishing convergence to a Nash equilibrium in
any state game

(
N, (Ak), Q∗(i, ·)

)
[2].

We start by remarking that the estimates produced by Q-learning have been shown to verify
w.p.1 the following error bound [23]:

max
a∈A

∣∣∣Qk
t (i, a)− Q∗(i, a)

∣∣∣ ≤ ∥∥∥Qk
t − Q∗

∥∥∥ ≤
≤ K0

√
log log(Nt)

Nt
,

for some positive constant K0. By Lemma 2.1, for any ξ1 > 0 there is T1(ξ1) such that VGt = VG
for every t > T1 with probability 1 − ξ1. By convergence of BAP [26], if VGt = VG for all
t > T, given any ξ2 > 0, there is T2(ξ2, T) such that all players coordinate in an optimal Nash
equilibrium for the stage-game

(
N, (Ak), Q∗(i, ·)

)
for any t > T2 with probability 1− ξ2.

All the reasoning so far implies that there is a time instant T3(ξ1, ξ2) such that BAP with GLIE
exploration coordinates in an optimal Nash equilibrium for the stage-game

(
N, (Ak), Q∗(i, ·)

)
with probability (1− ξ1)(1− ξ2) > 1− ξ1 − ξ2. Since ξ1 and ξ2 are arbitrary, the conclusion of
the theorem follows. 2

3 Some illustrative results

We now present illustrative results obtained with the CQL algorithm in several different multi-
agent problems.

The first set of tests considers the 3-player repeated game in Section 1 and analyzes the
behavior of CQL against suboptimal and/or stationary teammates. We tested CQL in the game
of Fig. 2, where 3 players (α, β and γ) repeatedly engage in choosing one of three possible actions
a, b and c.

Figure 4 depicts the results obtained with 3 learning players in the repeated game of Fig. 2.
The probability of coordination converges to 1 and, as seen in the cumulative reward plot, they
coordinate to an optimal Nash equilibrium (the slope of the curve is 10).
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Figure 4: Probability of coordination and cumulative reward obtained in the game of Fig. 2 with 3 learning
agents. Seconds represent time-steps.

We then trained CQL with two stationary teammates playing suboptimal strategies. In par-
ticular, player β always chose action a and player γ always chose action b. In this situation, as
illustrated in Figure 5, CQL converges to a best response Nash equilibrium (the slope of the
curve after coordination is 5).
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Figure 5: Results obtained in the repeated game of Fig. 2 with 2 stationary players playing, respectively, a and b.

Still in the repeated game of Fig. 2, we trained two CQL agents against one stationary team-
mate playing action a. After coordination, the two CQL players settle once again in an optimal
Nash equilibrium, as seen in Figure 6 (the slope of the curve is, once again, 10).
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Figure 6: Results obtained in the repeated game of Fig. 2 against one stationary teammate playing a.

Start A Start B

End B End A

n

n

Figure 7: Generic n× n grid world.

We then tested the behavior of CQL in several small gridworld problems. We present in
Figures 8 and 9 the results obtained in 2 × 2 and 3 × 3 grid worlds. In both problems, each
of two players must reach the opposite corner (see Figure 7). When both players reach the
corresponding corners, they receive a common reward of 20. If they “collide” in some state,
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they receive a reward of -10. Otherwise, they receive a reward of 0. Each player has 4 possible
actions: N, S, E and W, which makes a total of 16 possible joint actions. Each individual action
moves the player in the intended direction with probability 0.9 and leaves the player’s position
unchanged with probability 0.1.
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Figure 8: Probability of coordination and cumulative reward obtained in the 2× 2 grid game.
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Figure 9: Probability of coordination and cumulative reward obtained in the 3× 3 grid game. The values in the
time scale should be multiplied by 105.

In both grid-world tests both players learned to coordinate using the CQL algorithm. Notice
that the probability of coordination converges to 1 and, as seen in the cumulative reward plot,
they are capable of coordinating in an optimal Nash equilibrium (both curves present positive
slope).

As a final observation, the results obtained in the repeated matrix game illustrate (in a simple
case) two important properties of CQL: convergence to a best response in the presence of station-
ary teammates and convergence in self-play to optimal equilibria. These two properties, labeled
in [5] as rationality and convergence, hold in general by construction, as can easily be shown from
Theorem 2.2.

4 Discussion

To conclude the paper, several important remarks are in order.
First of all, the CQL algorithm presented here is closely related to optimal adaptive learning

(OAL) as described in [26]. While CQL combines Q-learning with biased adaptive play, OAL
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combines model-based learning with biased adaptive play. The only complication in combining
Q-learning with biased adaptive play resides in suitably choosing the sequence εt so as to verify
the bound in Lemma 2.1. This difficulty is resolved by considering the rate of convergence of
Q-learning analyzed in works such as [23]. In the paper we describe the combined algorithm
and suitably establish convergence with probability 1 by providing the required conditions on
εt.

A second remark is related with the problem of coordination in multi-agent learning prob-
lems. As already stated, when considering multi-agent reinforcement learning problems, coordi-
nation should always be explicitly accounted for. The existence of multiple equilibrium strategies
may lead the joint behavior of a group of agents to be arbitrarily poor if no coordination is en-
forced, even if all agents know exactly the game they are playing. If the agents are to learn to
coordinate while learning the game itself, the coordination mechanism must be supported by the
past history of the game. Examples of history-based coordination mechanisms include fictitious
play, adaptive play or biased adaptive play.

One third important remark is related with the use of on-policy algorithms with biased
adaptive play: as we described the Q-learning update mechanism used in CQL to learn the
function Q∗, one could question if an on-policy update mechanism (such as SARSA) could be
used to learn the game, replacing the Q-learning update in CQL.

Alas, the answer to this question is negative. In fact, SARSA converges to the optimal Q-
function only if a GLIE strategy is used for learning; if any other policy is used, SARSA converges
to the corresponding Q-values. In CQL, the bounds on εt imply that coordination occurs only
when the estimates Qt are “sufficiently close” to the true function Q∗. Using a SARSA-like
update, the estimates Qt approach Q∗ only as the learning strategy approximates the greedy
strategy (while still ensuring sufficient exploration). These are two incompatible requirements
and, therefore, it is not generally possible to use an on-policy update mechanism such as SARSA
with BAP.

Future work addressing complex environments (with large/infinite state-spaces) should take
into account the impact of compact representations of the state-space on how coordination can
now be obtained from the history of the process.
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