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Abstract— In this paper, we analyze the convergence prop-
erties of Q-learning using linear function approximation. This
algorithm can be seen as an extension to stochastic control
settings of TD-learning using linear function approximation,
as described in [1]. We derive a set of conditions that implies
the convergence of this approximation method with probability
1, when a fixed learning policy is used. We provide an
interpretation of the obtained approximation as a fixed point
of a Bellman-like operator. We then discuss the relation of
our result with several related works as well as its general
applicability.

I. INTRODUCTION

Reinforcement learning addresses the problem of an agent

faced with a sequential decision problem and using evalua-

tive feedback as a performance measure [2]. Reinforcement

learning methods compute a mapping from the set of states

of the agent to the set of possible actions. Such mapping is

called a policy and it is customary to define a utility-function,

or value-function, estimating the practical utility of each

particular policy. Value-based methods such as TD-learning

[3], Q-learning [4] or SARSA [5] have been exhaustively

covered in the literature and, under mild assumptions, have

been proven to converge to the desired solution [6]–[8].

However, many such algorithms require explicit repre-

sentation of the state-space, and is often the case that the

state-space is unsuited for explicit representation. Instead, the

decision-maker should be able to generalize its action-pattern

from the collected experience. Gerald Tesauro’s backgam-

mon player [9], [10], which was able to learn master-level

play, boosted the interest in the topic of generalization.

In his work, Tesauro combines temporal-difference learning

with neural networks, and the impressive results of his

learning agent have established the applicability of function

approximation in reinforcement learning problems. Other

works on generalization include [11]–[14].

In this paper, we describe Q-learning with linear function

approximation. This algorithm can be seen as an exten-

sion to control problems of temporal-difference learning

using linear function approximation as described in [1].

Convergence of Q-learning with function approximation has

been a long standing question in reinforcement learning.

Our result provides a contribution towards the solution of

this problem. We identify a set of conditions that ensure

convergence of this method with probability 1. We also

provide an interpretation for the obtained approximation

as the fixed-point of a Bellman-like operator. Finally, we

discuss our convergence results in face of those reported

using so different approaches as soft-state aggregation [13]

or interpolation-based Q-learning [14].

In the next section, we describe the framework addressed

throughout this paper. We then present the algorithm and

the main result of the paper, concerning its convergence. We

conclude the paper with some discussion. Details of the proof

are found in the appendix.

II. THE MARKOV DECISION PROCESS

FRAMEWORK

Let X be a compact subspace of Rp and {Xt} a X -valued

controlled Markov chain. The transition probabilities for the

chain are given by a probability kernel

P [Xt+1 ∈ U | Xt = x,At = a] = Pa(x,U),

where U ⊂ X . The A-valued process {At} represents the

control process; At is the control action at time instant t

and A is the finite set of possible actions. The agent aims

at choosing the control process {At} so as to maximize the

infinite-horizon total discounted reward, i.e.,

V ({At} , x) = E

[

∞
∑

t=0

γtR(Xt, At) | X0 = x

]

,

where 0 ≤ γ < 1 is a discount-factor and R(x, a) represents

a random “reward” received for taking action a ∈ A in state

x ∈ X .

We assume throughout this paper that there is a determin-

istic function r : X × A × X −→ R assigning a reward

r(x, a, y) every time a transition from x to y occurs after

taking action a and that

E [R(x, a)] =

∫

X

r(x, a, y)Pa(x, dy).

This simplifies the notation without introducing a great loss

in generality. We further assume that there is a constant R ∈
R such that |r(x, a, y)| < R for all x, y ∈ X and all a ∈ A.1

We refer to the 5-tuple (X ,A,P, r, γ) as a Markov decision

process (MDP).

Given the MDP (X ,A, P, r, γ), the optimal value function

V ∗ is defined for each state x ∈ X as

V ∗(x) = max
{At}

E

[

∞
∑

t=0

γtR(Xt, At) | X0 = x

]

1This assumption is tantamount to the standard requirement that the
rewards R(x, a) have uniformly bounded variance.
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and verifies

V ∗(x) = max
a∈A

∫

X

[

r(x, a, y) + γV ∗(y)
]

Pa(x, dy),

which is a form of the Bellman optimality equation. From

the optimal value function, the optimal Q-values Q∗(x, a)
are defined for each state-action pair (x, a) ∈ X ×A as

Q∗(x, a) =

∫

X

[

r(x, a, y) + γV ∗(y)
]

Pa(x, dy). (1)

From the optimal Q-function Q∗ it is possible to define a

mapping δ∗ : X −→ A as

δ∗(x) = arg max
a∈A

Q∗(x, a),

for all x ∈ X and the control process {At} defined by At =
δ∗(Xt) is optimal in the sense that V ({At} , x) = V ∗(x),
for all x ∈ X . The mapping δ∗ is an optimal policy for the

MDP (X ,A, P, r, γ).
More generally, we define a (stochastic) policy as a

mapping δ : X×A −→ [0, 1] that generates a control process

{At} verifying P [At = a | Xt = x] = δ(x, a), for all t.

Simply stated, δ(x, a) defines the probability of choosing

each action a in state x. Clearly, since δ(x, ·) is a probability

distribution over A, it must satisfy
∑

a∈A δ(x, a) = 1, for

all x ∈ X . In the particular case where, for every x ∈ A,

δ(x, a) = 1 for some a ∈ A, we say that δ is a deterministic

policy and simply denote by δ(x) the action chosen at state x

with probability 1. In this case, a control process is generated

by policy δ if At = δ(Xt) for all t. We write V δ(x) instead

of V ({At} , x) if the control process {At} is generated by a

policy δ.

The optimal control process can be obtained from the

optimal policy δ∗, which can in turn be obtained from Q∗.

Therefore, the optimal control problem is solved once the

function Q∗ is known for all pairs (x, a) ∈ X ×A.

The original Q-learning algorithm [4] uses a stochastic

iterative update to determine the optimal Q-values. The

update-rule for Q-learning is

Qk+1(x, a) = Qk(x, a) + αk

[

R(x, a)+

+ γ max
b∈A

Qk(X(x, a), b) − Qk(x, a)
]

,
(2)

where Qk(x, a) is the kth estimate of Q∗(x, a), X(x, a)
is a X -valued random variable obtained according to the

probabilities defined by Pa and αk are step-sizes verifying
∑

k αk = ∞ and
∑

k α2
k < ∞. Notice that R(x, a) and

X(x, a) can be obtained through some simulation device,

not requiring the knowledge of either P or r.

Q-leaning was originally proposed to deal with MDPs

with finite state-spaces. When X is an infinite set, it is not

possible to straightforwardly apply the update rule (2), since

it explicitly updates the Q-value for each individual state-

action pair and there are infinitely many such pairs.

In this paper we consider a parameterized family Q of

functions Qθ : X ×A −→ R, where θ is a parameter in RM .

We want to determine the point θ∗ in parameter space such

that Qθ∗ is the best approximation of Q∗ in Q, in a sense yet

to be made clear. By defining a suitable recursion for θ, we

reduce the determination of the infinite-dimensional function

Q∗ to the determination of a finite-dimensional vector θ∗.

III. MAIN RESULT

In this section, we establish the convergence properties

of Q-learning when using linear function approximation. As

will be seen, the result derived herein can be seen as a

generalization of other results from the literature (such as

those reported on methods based on discretization [15], soft-

discretization [13] or interpolation [14]).

We consider a family of functions Q = {Qθ} parameter-

ized by a finite-dimensional parameter vector θ ∈ RM . We

admit the family Q to be linear in that if q1, q2 ∈ Q, then so

does αq1+q2 for any α ∈ R. Q is therefore the linear span of

a set of M linearly independent functions ξi : X ×A −→ R,

and each q ∈ Q can be written as

q(x, a) =

M
∑

i=1

ξi(x, a)θ(i),

for all pairs (x, a) ∈ X ×A, where θ(i) is the ith component

of the vector θ ∈ RM . Given now a set {ξi, i = 1, . . . ,M}
of linearly independent functions and a vector θ ∈ RM , we

denote interchangeably by Qθ and Q(θ) the function

Qθ(x, a) =

M
∑

i=1

ξi(x, a)θ(i) = ξ⊤(x, a)θ, (3)

where ξ(x, a) is a vector in RM with ith component given

by ξi(x, a) and the superscript ⊤ represents the transpose

operator.

Let δ be a stochastic stationary policy and suppose that

{xt}, {at} and {rt} are sampled trajectories obtained from

the MDP (X ,A, P, r, γ) using policy δ. In the original Q-

learning algorithm, the Q-values are updated according to

(2), using the temporal difference at time t,

∆t = rt + γ max
b∈A

Qt(xt+1, b) − Qt(xt, at).

The temporal difference ∆t works as a 1-step estimation

error with respect to the optimal function Q∗; the update

rule in Q-learning “moves” the estimates Qt closer to the

desired function Q∗, minimizing the expected value of ∆t.

Applying the same underlying idea, we obtain the following

update rule for the vector θt:

θt+1 = θt + αt∇θQθ(xt, at)
(

rt+

+ γ max
b∈A

Qθt
(xt+1, b) − Qθt

(xt, at)
)

=

= θt + αtξ(xt, at)
(

rt+

+ γ max
b∈A

Qθt
(xt+1, b) − Qθt

(xt, at)
)

. (4)

Notice that (4) updates θt using the temporal difference ∆t

as the error. The gradient ∇θQθ provides the “direction” in

which this update is performed. Roughly speaking, (4) can be

seen as a gradient descent update using αt∆t as the step-size,
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and (4) iteratively determines the parameter θ corresponding

to the function in Q minimizing the expected value of ∆t.
2

We show that, under some regularity assumptions on the

Markov chain (X , Pδ) obtained using the policy δ, the trajec-

tories of the algorithm closely follow those of an associated

ODE with a globally asymptotically stable equilibrium point

θ∗. Therefore, the sequence {θt} defined recursively by (4)

will converge w.p.1 to the equilibrium point θ∗ of the ODE.

We also show that this equilibrium point is the fixed-point

of a Bellman-like operator,

θ∗ = PHQ(θ∗), (5)

where P represents a projection and H is the Bellman

operator

(Hq)(x, a) =

Z

X

ˆ

r(x, a, y) + γ max
b∈A

q(y, b)
˜

Pa(x, dy). (6)

We now state our main convergence result. Given a MDP

(X ,A, P, r, γ), let δ be a stationary stochastic policy and

(X , Pδ) the corresponding Markov chain with invariant prob-

ability measure µX . Denote by Eµδ
[·] the expectation w.r.t.

the probability measure µδ defined for every set Z × U ⊂
X ×A as

µδ(Z × U) =

∫

Z

∑

a∈U

δ(x, a)µX(x).

Theorem 3.1: Let (X ,A, P, r, γ) be a Markov decision

process and assume the Markov chain (X , Pδ) to be geo-

metrically ergodic with invariant probability measure µX .

Suppose that δ(x, a) > 0 for all a ∈ A and µX -almost all

x ∈ X .

Let Ξ = {ξi, i = 1, . . . ,M} be a set of M bounded,

linearly independent functions defined on X ×A and taking

values in R. In particular, admit that
∑N

i=1 |ξi(x, a)| ≤ 1 for

all (x, a) ∈ X ×A.

Then, the following hold.

1) Convergence

For any initial condition θ0 ∈ RM , the algorithm

θt+1 = θt + αtξ(xt, at)
(

rt+

+ γ max
b∈A

Qθt
(xt+1, b) − Qθt

(xt, at)
) (7)

converges w.p.1 as long as the step-size sequence {αt}
verifies

∑

t

αt = ∞
∑

t

α2
t ≤ ∞.

2) Limit of convergence

Under these conditions, the limit θ∗ of (7) verifies

Qθ∗(x, a) = (PQHQθ∗)(x, a), (8)

where PQ denotes the orthogonal projection operator

on Q defined by

(PQQ)(x, a) = ξ⊤(x, a)Σ−1
Eµδ

[ξ(z, u)Q(z, u)] .

2We remark that this interpretation lacks rigor and aims only at clar-
ifying the underlying working of the algorithm. We refer to [16], where
reinforcement learning is addressed using gradient methods.

and the matrix Σ is given by

Σ = Eµδ

[

ξ(x, a)ξ⊤(x, a)
]

.

Proof: See Appendix I.

To convey a deeper insight on the conditions of the Theo-

rem, we remark that the geometric ergodicity assumption and

the requirement that δ(x, a) > 0 for all a ∈ A and µX -almost

all x ∈ X can be interpreted as a continuous counterpart

to the usual condition that all state-action pairs are visited

infinitely often. In fact, geometric ergodicity implies that all

the regions of the state space with positive µX measure are

“sufficiently” visited [17], and the condition that δ(x, a) > 0
ensures that, at each state, every action is “sufficiently” tried.

On the other hand, geometric ergodicity guarantees that

the Markov chain (X , Pδ) obtained using the learning policy

δ converges exponentially fast to stationarity, and thus the

analysis of convergence of the algorithm can be done in terms

of a “stationary version” of it.3

We also notice that the requirements on the basis functions

ξi simply guarantee (in a rather conservative way) that no

two functions ξi lead to “colliding updates”, as in the known

counter-example in [16].

IV. RELATED WORK

In [1], Tsitsiklis and Van Roy provide a detailed anal-

ysis of temporal difference methods. In the referred work,

the authors establish important results regarding the con-

vergence/divergence of such methods when linear function

approximation is used: the trajectories of TD-learning closely

follow those of an associated globally asymptotically stable

ODE and thus converge to the unique equilibrium point of

such ODE. They also provide error bounds for the obtained

approximation and an interpretation of the limit function as

the fixed point of a composite operator PVT(λ), where PV

is an orthogonal projection into a linear function space V
and T(λ) is a TD operator. The authors remark, however,

that if off-policy updates are used (such as those in Q-

learning) their convergence results no longer hold. More

detailed analysis of this method as well as some variations

can be found in [6], [12], [18].

Least-squares temporal difference learning methods

(LSTD) depart from the same idea and propose an alternative

method to estimate the same approximation used in TD-

learning with function approximation [19]. As established by

Tsitsiklis and Van Roy [1], TD-learning with linear function

approximation converges in the limit to a parameter vector

θ∗ that verifies a linear system of the type

Aθ∗ + b = 0,

where the matrices A and b arise from a “stationary version”

of the algorithm. LSTD estimates directly the matrices A and

b from the sample trajectories of the underlying Markov

chain, thus converging to the same limiting approximation

3In particular, exponential convergence to stationarity ensures that the
analysis of the trajectories of the sequence {θt} can be performed in terms
of the trajectories of an associated ODE.
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and with some extra argued advantages [19]. Although not

exactly in the line of the algorithm described herein, it is

important to mention LSTD as closely related with TD-

learning with function approximation.

Szepesvári and Smart [14] extend the results in [1] to

control settings. In this paper, the authors propose a modified

version of Q-learning that approximates the optimal Q-

values of a given set of sample points and then uses interpo-

lation to approximate Q∗ at any query point. The update rule

for interpolation-based Q-learning uses a spreading function

similar to the one used in multi-state Q-learning [20]. As in

[1], the authors establish convergence w.p.1 of the algorithm

and provide an interpretation of the limit point as the fixed-

point of a composite operator PH, where P is a projection-

like operator and H can be interpreted as a modified TD-

learning operator. Interpolated Q-learning approximates the

value of the optimal Q-function at a previously chosen set

of sample points.

Closely related with the method in [14] is the soft-state

aggregation algorithm by [13]. In this work, the authors

propose the use of a “soft”-partition of the state-space: the

state-space is split into “soft” regions (each state x belongs to

region i with a probability pi(x)) and an “average” Q-value

Q(i, a) is defined for each region-action pair. Each of these

regions is then treated as a “hyper-state” and the method uses

standard Q-learning updates to determine the average Q-

values for each region. The function Q∗ is then approximated

for a state-action pair (x, a) as Q∗(x, a) ≈
∑

i pi(x)Q(i, a).
Both interpolated Q-learning and Q-learning with soft-

state aggregation provide important positive convergence re-

sults for Q-learning using function approximation, arising as

encouraging counterparts to the divergent counterexamples

reported in several works [1], [16].

Finally, Atkeson et al. [21] describe the application of local

weighted regression methods to estimate the model (namely

the kernel P and the reward function r) in a continuous-

state reinforcement learning problem and this fundamental

idea is generalized in [22]. In the latter work, the authors

establish convergence in probability and derive the limiting

distribution of the obtained approximation. The authors also

address the bias-variance tradeoff in reinforcement learning

problems.

In the next section we conclude the paper by further

discussing our results in face of some of the aforementioned

works.

V. AN ILLUSTRATIVE EXAMPLE

Consider the indoor environment depicted in Figure 1.

A mobile robot is intended to navigate to the goal region,

signaled with the dashed lines. The environment is a 1 × 1
square, and the state of the robot at each time instant is a pair

(x,y) of coordinates.4 The coordinates of the goal corner are

(1, 1).

4We use boldface symbols x and y to denote the physical coordinates of
the robot to distinguish from the symbols x and y used to denote generic
elements of the state-space X .

Goal

Fig. 1. Simple indoor environment.

The navigation problem can be described by a MDP

(X ,A,P, r, γ), where

• X = [0; 1] × [0; 1];
• A = {N, S, E, W};

• Each action in A moves the robot in the corresponding

direction a random distance between 0 and 0.3;

• The reward function r assigns a reward of +10 for every

transition triplet (x, a, y) such that ‖y − (1; 1)‖ < 0.1
and 0 otherwise.

When the robot reaches the goal region, its position is

randomly reset to any point in the room, independently of

the agent’s action.

We applied Q-learning with function approximation to this

MDP using three different sets of basis functions. The first

set of basis functions was obtained by dividing the state-

space into a uniform grid of 0.1×0.1 rectangles. The second

set was obtained by scaling the four linear surfaces σi, i =
1, . . . , 4, defined at each point (x,y) as

σ1((x,y)) = x; σ2((x,y)) = 1 − x;

σ3((x,y)) = y; σ4((x,y)) = 1 − y.

Finally, the last set of functions considered 4 normalized

gaussian kernels centered around each of the 4 corners of the

rectangle [0; 1]× [0; 1]. All basis functions further considered

an action-dependent component, allowing the robot to learn

different values for each function.5

TABLE I

COMPARATIVE RESULTS FOR Q-LEARNING WITH FUNCTION

APPROXIMATION FOR THE DIFFERENT SETS OF BASIS FUNCTIONS. WE

PRESENT THE AVERAGE TOTAL DISCOUNTED REWARD AND STANDARD

DEVIATION OBTAINED OVER 2′000 MONTE-CARLO RUNS.

Method Q-learning

Grid-based 8.474 ± 1.728
Plane-based 8.221 ± 1.751
Kernel-based 8.554 ± 1.687

For each set of basis functions, the agent was allowed to

explore and learn during 20′000 time steps, and the obtained

policy was then evaluated for 100 time steps. To test the

5In other words, each state-dependent function f(x) led to |A| different
basis functions ξia

, where ξia
(x, u) = f(x)Ia(u) for every (x, u) ∈

X ×A.
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obtained policy we ran 2′000 Monte Carlo independent trials.

The results are presented in Table I, corresponding to the

mean and standard deviation of the obtained discounted

reward with the learnt policy. Notice that all approximations

lead to a similar performance. This means that all sets of

basis functions provided an equally accurate approximation.

Figure 2 depicts the policies learnt using each approximation.

We present in Figure 3 a detail of the policy obtained

using Q-learning with a plane-based approximation. This

detail helps to clarify the different patterns observed in the

policy representations of Figure 2. Notice that all policy

representations correspond to similar behavior, which is

moving to the upper right corner (as expected).

0.9 0.92 0.94 0.96 0.98 1 1.02

0.9

0.92

0.94

0.96

0.98

1

x

y

Optimal policy for Q−learning

Fig. 3. Detail of Figure 2 a).

To further illustrate the similarity of the learned functions

for all sets of basis functions, we present in Figure 4 a

representation of the obtained value functions for each of

the different sets of basis functions.

VI. CONCLUDING REMARKS

From all the works described in Section IV, the approach

in [1] is the closest to the one presented here. In [1], the

authors make use of the operator T(λ) that is a contraction

in the 2-norm. In this norm, the orthogonal projection PV is

naturally defined and no additional conditions are required

to ensure that PV is non-expansive.

In this paper, we extend this approach to control settings.

To this end, we are interested in approximating the fixed

point of the operator H defined in (6). This operator is

a contraction in the maximum norm and no orthogonal

projection is naturally defined in a space with such a norm.

However, by requiring that

N
∑

i=1

|ξi(x, a)| ≤ 1 (9)

for all (x, a), we guarantee that the operator H is also a

contraction in θ, which implies the exponential stability of

the associated ODE.

Another interesting remark is that (9) implies that the

functions {ξi, i = 1, . . . ,M} can be used to define a soft-

partition of X . This means that the method presented here

can be cast as a modified version of Q-learning with soft-

state aggregation. Or, in yet another point-of-view, conver-

gence of Q-learning with soft-state aggregation arises as a

consequence of our convergence results.

It is important to emphasize that the condition (9) is not

too restrictive. In fact, given a set of linearly independent

functions Ξ = {ξi, i = 1, . . . ,M}, we can easily ensure such

bound by scaling the functions in Ξ. We further emphasize

that the condition (9) is trivially verified in many com-

mon approximation strategies. For example, approximation

strategies based on state-space discretization [15] or convex

interpolation approximators [14] verify the bound in (9), as

do soft-discretization architectures [13].

We finish with four concluding remarks.

First of all, the conditions of Theorem 3.1 on the Markov

chain are similar to those required in [1] and in [14]. This

places those works as well as this paper in a common line

of work and, basically, leading to concordant conclusions.

We also notice that, although the conditions of Theo-

rem 3.1 are posed as sufficient (and not necessary), the non-

verification of some of the conditions may lead to divergence.

As a simple illustration, in the example of divergence pre-

sented in [16], the functions used in the linear approximation

scheme arenot linearly independent and do not verify the

bound in (9).

Another observation is related with the rate of convergence

of the algorithm presented herein. Our proof of convergence

uses standard results from stochastic approximation algo-

rithms and several known results exist describing the rates

of convergence for this class of methods. These results [23]

lead to the interesting conclusion that the rate of convergence

of our algorithm (which works on infinite state-spaces) is

essentially similar to that of standard Q-learning as described

in [24] (which works on finite state-spaces).

Finally, the method proposed herein is off-policy,

i.e., learns the value of the optimal policy while executing

a different policy during learning. Also, unlike the approach

in [1], we make no use of eligibility traces, which could

improve the overall performance of the algorithm (the use of

eligibility traces guarantees tighter error bounds). Neverthe-

less, there is no formal reason why the algorithm in this paper

cannot be modified so as to accommodate eligibility traces.

Furthermore, the convergence result presented can be of use

in the analysis of an on-policy version of the algorithm, by

using results on the stability of perturbed ODEs.

APPENDIX I

PROOF OF THEOREM 3.1

We separately establish each of the three statements in

Theorem 3.1. To prove the Statement 1, we write (7) in the

form

θt+1 = θt + αt+1H(θt, Yt+1),

and use Theorem 17 of [25]: we show that the associated

ODE has a globally asymptotically stable equilibrium point,

which implies the existence of a Lyapunov function U
verifying the requirements of the referred theorem. That

establishes convergence of (7) w.p.1.

To prove Statement 2 of Theorem 3.1, we provide an

interpretation of the equilibrium point of the ODE associated

with algorithm (7) as the fixed point of a composite operator.
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a) Grid-based approximation; b) Linear-based approximation;
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c) Kernel-based approximation.

Fig. 2. Policy learnt by Q-learning with function approximation.
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Fig. 4. Representation of the optimal value-function learnt by Q-learning with function approximation.
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A. Convergence of the iterates

We start by writing (7) as

θt+1 = θt + αt+1H(θt, Yt+1),

where Yt+1 = (Xt, At,Xt+1). Since the chain {Xt} is

geometrically ergodic and δ(x, a) > 0 for µX -almost all

x ∈ X , it follows that so is the chain {Yt}. Let µ̂ be the

corresponding invariant probability measure. On the other

hand, since X is compact and A is finite, {Yt} also lies

in a compact set. Finally, since the functions ξi are clearly

bounded and so are the rewards r(x, a, y), H verifies the

bound

‖H(θ, Y )‖∞ ≤ C(1 + ‖θ‖∞)

for some C > 0. Finally, the geometric ergodicity of {Yt}
and the fact that δ does not depend on θ ensure that the

requirements of Theorem 17 of [25] can be applied, and

convergence of {θt} w.p.1 is established as long as the ODE

θ̇t = h(θt), (10)

with

h(θ) = Eµ̂

[

ξ(x, a)
(

r(x, a, z)+

+ γ max
b∈A

ξ⊤(z, b)θ − ξ⊤(x, a)θ
)

]

,
(11)

has a globally asymptotically stable equilibrium θ∗.

Proposition 1.1: The ODE

θ̇t = h(θt), (12)

where h is defined in (11), has a globally asymptotically

stable equilibrium θ∗ verifying the recursive relation

θ∗ = PHQ(θ∗).

REMARK: The operator H is defined in (6) and

the projection operator P is defined for any real

function q defined on X ×A as

Pq = Σ−1
Eµ̂ [ξ(x, a)q(x, a)] .

Proof: We start by rewriting h as

h(θ) = h1(θ) + h2(θ),

with

h1(θ) = Eµ̂

[

ξ(x, a)
(

r(x, a, z) + γ max
b∈A

ξ⊤(z, b)θ
)

]

and

h2(θ) = Eµ̂

[

ξ(x, a)ξ⊤(x, a)θ
]

.

Some simple calculations lead to the conclusion that

‖h1(θ1) − h1(θ2)‖∞ ≤ γ ‖θ1 − θ2‖∞ (13)

and

‖h2(θ1) − h2(θ2)‖∞ ≤ ‖θ1 − θ2‖∞ . (14)

On the other hand, any equilibrium point θ∗ of (12) must

verify h(θ∗) = 0 or, which is the same,

h(θ) = h(θ) − h(θ∗).

Explicit calculations now yield

d

dt
‖θt − θ∗‖p = ‖θt − θ∗‖

1−p
p

∑

i

(θt(i) − θ∗(i))p−1·

· (h1(θ)i − h1(θ
∗)i)−

− ‖θt − θ∗‖
1−p
p

∑

i

(θt(i) − θ∗(i))p−1·

· (h2(θ)i − h2(θ
∗)i),

where we denoted by h1(θ)i the ith component of h1(θ)
and similarly for h2. Applying Hölder’s inequality to the

summations leads to

d

dt
‖θt − θ

∗‖
p
≤ ‖h1(θ) − h1(θ

∗)‖
p
− ‖h2(θ) − h2(θ

∗)‖
p
.

Taking the limit as p → ∞ and using (13) and (14) leads

to

d

dt
‖θt − θ∗‖∞ ≤ γ ‖θt − θ∗‖∞ − ‖θt − θ∗‖∞

which, in turn, leads to

d

dt
‖θt − θ∗‖∞ ≤ (γ − 1) ‖θt − θ∗‖∞ . (15)

Let λ = 1 − γ > 0. Upon integration, (15) becomes

‖θt − θ∗‖∞ ≤ e−λt ‖θ0 − θ∗‖∞ ,

which establishes the existence of a globally asymptotically

stable equilibrium point for (12).

It is now clear that h(θ∗) = 0 is equivalent to

Eµ̂

[

ξ(x, a)
(

r(x, a, z) + γ max
b∈A

ξ⊤(z, b)θ
)

]

=

= Eµ̂

[

ξ(x, a)ξ⊤(x, a)θ
]

which in turn leads to

θ∗ = Σ−1
Eµ̂

[

ξ(x, a)
(

r(x, a, z) + γ max
b∈A

ξ⊤(z, b)θ
)

]

and the proof is complete.

The fact that the equilibrium point θ∗ is globally asymptot-

ically stable is sufficient to ensure the existence of a function

U verifying the conditions of Theorem 17 in [25],6 which in

turn establishes the convergence of the sequence {θt} w.p.1.

B. Limit of convergence

We have established that the sequence {θt} generated

by (7) converges w.p.1. The limit point θ∗ is the globally

asymptotically stable equilibrium of the ODE (12), verifying

the following recursive relation:

θ∗ = PHQ(θ∗)

or, more explicitly,

θ∗ = Σ−1
EY [ξ(x, a)(HQθ∗)(x, a)] , (16)

where Q(θ) is the function

Qθ(x, a) = ξ⊤(x, a)θ.

6This guarantee arises from standard converse Lyapunov theorems.
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The purpose of (7) is to approximate the optimal Q-

function Q∗ by an element of the linear space Q spanned

by the basis functions ξi ∈ Ξ. We would like to determine

the element q∗ ∈ Q that, in some sense, “best approximates”

Q∗. One possibility is to consider the orthogonal projection

of Q∗ on Q. Denote the orthogonal projection operator on

Q by PQ.

Finding the projection of Q∗ on Q translates into finding

the function f ∈ Q verifying

f(x, a) = (PQQ∗)(x, a) = (PQHQ∗)(x, a).

However, f thus defined is not a fixed point of any of the

involved operators, and there is not an obvious procedure

to write a stochastic approximation algorithm to find f .

Therefore, we consider the function g verifying

g(x, a) = (PQHg)(x, a). (17)

The function g is a fixed point of the operator PQH and

can easily be implemented using stochastic approximation.

It turns out that the projection PQ can be expressed as

(PQf)(x, a) = ξ⊤(x, a)Σ−1
EY [ξ(z, u)f(z, u)]

for any function f . But this means that, given the limit point

θ∗ of algorithm (7), the corresponding function Qθ∗ verifies

Qθ∗(x, a) = ξ⊤(x, a)(PHQθ∗) =

= ξ⊤(x, a)Σ−1
EY [ξ(z, u)HQθ∗(z, u)] =

= (PQHQθ)(x, a)

where the second equality comes from (16). Finally, this

implies that Qθ∗ verifies the fixed point equation in (17),

which establishes statement (8) of Theorem 3.1.

This concludes the proof of Theorem 3.1.
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