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This paper presents a terrain following controller for rotorcraft that takes into account

the terrain characteristics ahead of the vehicle as measured by a Laser Range Scanner.

The methodology used to solve the terrain following control problem amounts to posing

it as a discrete time path following control problem where a conveniently defined error

state space model of the plant is augmented with terrain preview data. A piecewise affine

parameter-dependent model representation is used to accurately describe the linearized

error dynamics for a pre-defined set of operating regions. For each region, the synthesis

problem is stated as a state feedback H2 control problem for affine parameter-dependent

systems and solved using Linear Matrix Inequalities (LMIs). An alternative technique

to compute the feed-forward preview gain matrix is proposed that avoids solving LMIs

involving a large number of unknowns. The resulting nonlinear controller is implemented

within the scope of gain-scheduled control theory using the D-methodology. Simulation

results obtained with the full nonlinear helicopter model are presented and discussed.

I. Introduction

Recent advances in sensor technology and the increasing availability of computational capacity are steadily

affording Unmanned Air Vehicles (UAVs) higher degrees of robustness and reliability in challenging and

uncertain operation scenarios. Model-scale helicopters constitute one of the most versatile and cost-effective

UAV platforms with a wide and valuable range of applications, such as crop spraying, fire surveillance, and

bridge and building inspection. Unlike fixed-wing aircraft, helicopters were designed to execute vertical flight

maneuvers, including hovering and vertical take-off and landing (VTOL). Moreover, their ability to perform

agile maneuvers both at high and low speeds does not undermine the good flying qualities displayed in fast
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forward flight. The trade-off for such maneuverability is an inherent complexity that translates into a highly

nonlinear and unstable dynamical system with wide parameter variations over the vehicle’s flight envelope.

In this context, the development of terrain following control systems constitutes both a challenge and a

fundamental requirement for accomplishing of high performance low altitude autonomous flight.

This paper presents a terrain following controller, based on a novel preview control algorithm. Preview

control algorithms have been widely used to improve the overall closed loop performance obtained with

limited bandwidth feedback compensators when future information on the commands or disturbances is

available. A series of papers on application of the Linear Quadratic preview control theory to the design of

vehicle active suspensions can be found in the literature. Special emphasis should be given to the pioneering

work of Tomizuka,1 where the optimal preview control problem is formulated and solved, and the impact

of different preview lengths on the overall suspension performance is discussed. An alternative method is

presented by Prokop and Sharp2 that consists of incorporating the disturbance or reference dynamics into

the design model and then solving the resulting linear quadratic control problem. More recently, Takaba3

addressed the problem of a robust servomechanism with preview action mixed LQ/H∞ design for polytopic

uncertain systems using Linear Matrix Inequalities.

Related work in the area with applications to helicopters can be found in Ref. 4, where authors apply

the Generalized Predictive Control (GPC) algorithm to a rotorcraft terrain-following problem. In this work,

the performance of the resultant controller is compared to that of a conventional compensator in terms of

flight path following, control activity, and control law implementation.

For linear control systems design, the paper exploits the use of a discrete time state feedback H2 preview

control problem for affine parameter-dependent systems. Much of the work in this area is well rooted in

the theory of Linear Matrix Inequalities (LMIs), which are steadily becoming a standard tool for advanced

control system design. In fact, many control problems can be cast as LMI problems that can be solved

efficiently using convex programming techniques. In the approach pursued in this paper, results presented

in Refs. 3, 5, 6 were used to develop the LMI based H2 preview controller synthesis algorithm for affine

parameter-dependent systems. For large preview intervals the technique proposed in the paper leads to

LMI optimization problems involving a large number of variables. To tackle this problem, an alternative

algorithm for computing the feedforward gain matrix is proposed, one which exploits the particular structure

of the augmented preview system.

In the paper, linear state feedback preview controllers are synthesized for a finite number of piecewise

affine parameter-dependent discrete time plant models. Each of these models consists of the discrete equiv-

alent of the generalized error linearization for each of the helicopter operating regions determined by a

well-defined box in the parameter space (vehicle’s total speed and angle of attack). The adopted error space

is in line with the solutions presented in Refs. 7–9 and exhibits high directionality accuracy, by taking into

account the current vehicle orientation in the definition of the reference velocities.
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The resulting controllers are then switched as function of the scheduling variables that parameterize the

helicopter operating regions. The final implementation of the non-linear gain scheduled controller is obtained

using the D-methodology presented in Ref. 10, which guarantees a fundamental linearization property and

avoids the need to feedforward the values of the state variables and inputs at trimming.

A key question underlying the design of sensor based terrain following control systems is computation

of the terrain elevation data from sensor measurements. In this paper, the technique adopted exploits the

sensor geometry to efficiently build the terrain profile ahead of the vehicle.

The controller design and performance evaluation of the overall closed loop system relies on an ac-

curate self-contained helicopter dynamic model, derived from first-principles, that is specially tailored for

model-scale helicopters.11 The simulation model, implemented in Matlab, using Simulink and CMEX-file

S-functions, includes rigid body, main rotor flapping, and Bell-Hiller stabilizing bar dynamics and is param-

eterized for the case of the Vario X-Treme acrobatic helicopter.

The paper is organized as follows. In Section II, a nonlinear dynamic model for model-scale helicopters

is presented. Section III introduces the path-dependent error space used to describe the vehicle dynamics.

Section IV states the preview control problem. Section V describes the methodology adopted for H2 linear

controller design where an LMI synthesis technique is applied to affine parameter-dependent systems. Sec-

tion VI presents the reconstruction technique used to build the reference path from Laser Range Scanner

measurements. Section VII focuses on implementation of the nonlinear terrain following controller for the

Vario X-treme helicopter. Finally, simulation results obtained with the full nonlinear dynamic model are

presented in Section VIII.

II. Helicopter dynamic model

Figure 1. Vario X-treme model-scale helicopter.
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Figure 2. Block diagram of the non-linear model.

The helicopter dynamic model presented here was the basis for development of a simulator, named

SimModHeli ,11 implemented in Matlab, using Simulink and C MEX-file S-functions, which is freely available

to the scientific community. This simulator is completely parameterizable and describes the dynamics of

helicopters with any number of blades, with or without a Hiller or Bell-Hiller stabilizing bar. The simulation

model is specially tailored for model-scale helicopters, such as the one depicted in Figure 1. In this paper, for
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controller design purposes, a simplified model adequate for low speed flight regimes is adopted. The analysis

leading to this simplified model is discussed in Ref. 11.

The helicopter dynamics are described using a conventional six degree of freedom rigid body model

driven by forces and moments that explicitly include the effects of the main rotor, Bell-Hiller stabilizing

bar, tail rotor, fuselage, horizontal tailplane, and vertical fin. The main rotor is the primary source of lift

and propulsion, generating forces and moments that enable control of the aircraft position, orientation and

velocity. The Bell-Hiller stabilizing bar improves the stability characteristics of the helicopter. The tail

rotor, located at the tail boom, provides the moment needed to counteract the torque generated by the

aerodynamic drag forces at the rotor hub. The remaining components have less significant contributions

and can be described by simpler models. In short, the fuselage produces drag forces and moments and the

horizontal tailplane and vertical fin act as wings in forward flight, increasing flight efficiency. A detailed

description of the helicopter dynamic model can be found in Ref. 11.

The equations of motion were derived using the following notation:

{I} - inertial coordinate frame;

{B} - body-fixed coordinate frame, with origin at the vehicle’s center of mass;

pB = [x, y, z]T - position of the vehicle’s center of mass, expressed in {I};

λB = [φB, θB, ψB]T - Z-Y-X Euler angles that locally parameterize the orientation of the vehicle relative

to {I};

vB = [u, v, w]T - body-fixed linear velocity vector;

ωB = [p, q, r]T - body-fixed angular velocity vector.

Figure 2 captures the general structure of a rigid-body helicopter model, which can be written as




mv̇B = f(vB, ωB,u) + m B
I R [0 0 g]T − S (ωB) mvB

IBω̇B = n(vB,ωB,u)− S (ωB) IBωB

ṗB = I
BRvB

λ̇B = Q (φB, θB) ωB,

(1)

where m is the vehicle’s mass, IB is the tensor of inertia about the {B} frame, f and n are the vectors of

external forces and moments respectively, g is the gravitational acceleration, B
I R is the rotation matrix from

{I} to {B}, S (x) is a skew-symmetric matrix, defined such that S (x)y = x × y, and Q(φB, θB) is the

transformation from angular speeds to Euler angle derivatives given by

Q(φB, θB) =




1 sin φB tan θB cosφB tan θB

0 cosφB − sin φB

0 sin φB/ cos θB cos φB/ cos θB




.
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The external force and moment vectors are functions of the vehicle velocities and of the command vector

u = [δ0, δ1c, δ1s, δ0t]
T , which consists of the main rotor collective input δ0, main rotor and flybar cyclic inputs

δ1c and δ1s, and tail rotor collective input δ0t.

III. Error Space

The problem of steering the vehicle along a predefined path, which ultimately allows for definition of a

terrain following controller, can be converted into a regulation problem by expressing the state of the vehicle

in a conveniently defined error space. This definition requires the introduction of two coordinate systems:

the Serret-Frenet frame, {T}, with origin at the point on the path closest to the vehicle and coordinate axes

corresponding to the tangent, normal, and binormal vectors defined at that point; and the desired body

frame, {C}, which defines the reference for orientation at each point on the path. References for the tangent

Figure 3. Coordinate frames: Inertial {I}; Body {B}; Serret Frenet {T}; Desired body {C}.

velocities are also required, with vr = [Vr 0 0]T denoting the desired linear velocity and ωr the desired

angular velocity.

Given these definitions, and according to Ref. 7, an error state vector xe ∈ R11 and output ye ∈ R4 can

be introduced

xe =




ve

ωe

dt

λe




=




vB − B
TRvr

ωB − B
TRωr

Πyz
T
I R (pB − pC)

λB − λC




(2)
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and

ye =




ve + B
TR [0 dT

t ]T

ψe


 , (3)

where Πyz =




0 1 0

0 0 1


, the vectors pB and pC are the origins of {B} and {C} expressed in {I}, and λC

is the vector of Euler angles representing the orientation of {C} with respect to {I}. It is straightforward

to verify that the vehicle follows the path with tangent velocities vr and ωr and orientation λC if and only

if xe = 0.

The output vector ye corresponds to a combination of error vector components expressed on the body

coordinate system, which is added for tracking purposes. By including ve and dt in ye, both the velocity

and position errors are being considered, with the distance vector expressed in the current body frame. The

choice of ψe as the remaining output arises from the specific characteristics of the helicopter. It can be shown

that a helicopter may describe a trimming trajectory, with arbitrary but constant yaw angle relative to the

path being followed, automatically constraining the roll and pitch angles.

Assuming that the reference path satisfies ωr = 0, λ̇C = 0, the error dynamics can be written as




v̇e = v̇B + S (ωe) B
TRvr − B

I R d
dt

(
I
TRvr

)

ω̇e = ω̇B

ḋt = Πyz
T
BRve −Πyz S (ωT )




0

dt




λ̇e = Q(φe + φC, θe + θC)ωe

, (4)

where ωT = T
I R IωT is the angular velocity of {T} relative to {I} expressed in {T}. Further details on the

derivation of the error dynamics can be found in Ref. 7.

A. Error linearization and discretization

For a given straight line path (ωT = 0), linear speed Vr, and orientation λC , define uc as the constant input

vector that satisfies (1) at equilibrium (v̇B = 0, ω̇B = 0), with vB = C
TRvr, ωB = 0, and λB = λC. Then,

the linearization of (4) with output vector ye about the equilibrium point xe = 0, u = uc results in

δẋe = Aeδxe + Beδu, (5)

δye = Ceδxe, (6)

where Ae, Be, and Ce denote the Jacobians evaluated at the equilibrium condition.

The discrete time equivalent of the linear continuous time model (5) is obtained using the zero-order

hold on the inputs technique. Let T be the sampling time and define, with obvious abuse of notation,
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the augmented discrete time state xd(k) = [xe(k)T , xi(k)T ]T , where xi(k) corresponds to the discrete time

integral of ye. Using this notation, the discrete error dynamics can be written as

xd(k + 1) = Axd(k) + Bu(k), (7)

where A =




eAeT 0

Ce I


 and B =




∫ T

0
eAeτdτBe

0


.

IV. Preview Problem Formulation

Better terrain following performance with limited bandwidth compensators can be achieved by taking

into account, in the control law, the terrain characteristics ahead of the helicopter obtained from measure-

ments of a forward looking laser range scanner. The technique used in this paper to develop a tracking

controller generalizes the results presented in Ref. 12, and amounts to augmenting the discrete time error

space dynamics with a description of the future terrain evolution as seen by the platform.

With the objective of including future path disturbances in the discrete time error space dynamics

(7), assume that the helicopter moves with constant speed and attitude along a given reference path that

results from the concatenation of straight lines. A detailed analysis of the error dynamics (4) suggests the

introduction of the term Iv̇r = d
dt

(
I
TRvr

)
as the perturbation to be previewed. Using this interpretation,

the disturbance signal, as seen from the helicopter, can be modeled as Iv̇r(t) =
∑

i s(ti)δ(t − ti), where

s(ti) represents an intensity vector, δ(t − ti) is the Dirac’s delta function, and ti corresponds to the ith

concatenation point crossing time. From (5) the resulting linear error dynamics can be written as

δẋe = Aeδxe + Beδu + WδIv̇r, (8)

W = [− C

I R T 0]T ,

and the corresponding discretization is given by

xd(k + 1) = Axd(k) + Bu(k) + B1s(k), (9)

where B1 = [(eAeT W )T , 0]T is obtained from the impulse invariant discrete equivalent of the injection

matrix W . It is assumed that the sampling period is sufficiently small to consider the reference path changes

synchronized with the sampling time. Once again with obvious abuse of notation, s(k) ∈ Rs corresponds to

s(k) = Ivr(k + 1)− Ivr(k). (10)

Assuming a preview length of p samples, let xs(k) = [s(k)T , s(k + 1)T , ..., s(k + p)T ]T ∈ R(s(p+1))×1 be

the vector containing all the preview inputs at instant k. The discrete time dynamics of vector xs(k) can be

modeled as a FIFO queue, given by

xs(k + 1) = Dxs(k) + Bss(k + p + 1), (11)
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where

D =




0 I 0 · · · 0

0 0 I · · · 0
...

...
. . . . . .

...

0 0 0
. . . I

0 0 0 · · · 0




, Bs =




0

0
...

I




.

Combining the dynamic representation of the terrain (11) with (9) yields the augmented system

x(k + 1) = Āx(k) + B̄ss(k) + B̄u(k), (12)

where

x(k) =



xd(k)

xs(k)


 , Ā =




A H

0 D


 , B̄s =




0

Bs


 , B̄ =




B

0


 ,

and H = [B1, 0, 0, · · · , 0] represents the injection matrix of the preview signals into the error dynamics.

Notice that the D matrix is stable and therefore the augmented system (12) preserves the stabilizability and

detectability properties of the original plant.

With the present technique, the preview information is retrieved at p points selected along the path,

equally spaced by the distance dp = Vt(k)T . The scalar Vt(k) corresponds to the norm of the projection

of the vehicle’s velocity vector vB on the path, computed at instant k, which can be obtained from Vt =

[1 0 0] T
BRvB. This fact turns out to be of utmost importance, since it allows to naturally redefine the

controller visibility distance as a function of the vehicle’s speed, preserving the size of the preview input

vector. An example of this property is shown in Figure 4, where path preview vectors were obtained for two

different speeds. From the figure, it becomes clear how the vehicle velocity has an impact on the visibility

distance. The limit case vB → 0 results in a pure hovering maneuver where the preview samples are taken

from a fixed point on the path.
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Figure 4. Representation of 40 preview samples over the reference path for different speeds.
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V. Discrete Time Controller Design

This section presents a solution for the discrete time state feedback H2 preview control problem for affine

parameter-dependent systems. In the approach pursued in this paper, results presented in Ref. 3, 5, 6 were

used to develop the LMI based controller synthesis algorithm. Much of the work in this area is well rooted in

the theory of LMIs, which are steadily becoming a standard tool for advanced control system design. In fact,

LMIs provide a powerful formulation framework as well as a versatile design technique for a wide variety of

linear control problems. Since solving LMIs is a convex optimization problem for which numerical solvers

are now available, an LMI based formulation can be seen as a practical solution for many control problems.

A. Theoretical background

K

- G(ζ)

¾

--w z

xu

Figure 5. Feedback interconnection.

In what follows, the standard set-up and nomenclature used in Ref. 13 is adopted, leading to the state-

space LFT feedback system represented in Figure 5. Consider the generalized affine parameter-dependent

system G(ζ) as a function of the slowly varying parameter vector ζ. It is assumed that ζ is in a compact

set Θ ∈ Rq. Suppose that the parameter set Θ can be partitioned into a family of regions that are compact

closed subsets Θi, i = 1, . . . , N and that cover the desired helicopter flight envelope. In the ith parameter

region ζ ∈ Θi the dynamic behavior of the closed-loop system satisfies the realization




x(k + 1) = A(ζ)x(k) + Bw(ζ)w(k) + B(ζ)u(k)

z(k) = Cz(ζ)x(k) + E(ζ)u(k)
, u(k) = Kx(k), (13)

where x(k) is the state vector. The symbol w(k) denotes the input vector of exogenous signals (including

commands, disturbances and preview signals), z(k) is the output vector of errors to be reduced during the

controller design process, and u(k) is the vector of actuation signals. Matrices A(ζ), Bw(ζ), B(ζ), Cz(ζ), and

E(ζ) are affine functions of the parameter vector ζ = [ζ1, . . . , ζq]T , e.g. A(ζ) = A(0) + ζ1A
(1) + . . .+ ζqA

(q).

The generalized affine parameter-dependent system G(ζ) consists of the plant to be controlled, together

with appended weights that shape the exogenous and internal signals and the preview dynamics presented

in Section IV.

For a given parameter region ∆ ≡ Θi, assume that the elements that constitute the parameter vector ζ

have their values confined to the interval ζj ∈ [ζ
j
, ζj ], ζj ≥ ζ

j
, j = 1, . . . , q and define ∆0 as the set of the
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m = 2q vertices of the parameter-dependent region

∆0 := {ζ = [ζ1, . . . , ζq]T : ζj ∈ {ζj
, ζj}, j = 1, . . . , q}.

Then ∆ corresponds to the convex hull of ∆0, ∆ = co{∆0}, which is the smallest convex set containing all

the points in ∆0. The following result, which can be found in Ref. 5, is fundamental for affine parameter

dependent systems.

Result 1. Let f : ∆ → R be a convex function where ∆ = co{∆0}. Then f(ζ) ≤ γ, ∀ ζ ∈ ∆, if and only if

f(ζ) ≤ γ, ∀ ζ ∈ ∆0.

Suppose that the feedback system is well-posed, and let Tzw denote the closed loop operator from w to

z. The discrete time state feedback H2 synthesis problem consists of finding (if it exists) a static controller

K that stabilizes the closed loop system and makes the H2 norm ‖Tzw‖2 of the operator Tzw smaller than a

desired bound γ > 0. The technique used for controller design relies on results available in Ref. 5 and Ref. 14,

the most important of which are summarized below after being rewritten for the case of affine parameter-

dependent systems. In the following, tr(L), im(L), and ker(L) denote the trace, image, and kernel of matrix

L, respectively, and Ai, Bi, Czi , Ei and Bwi represent the state space matrices of (13) for the i = 1, . . . , m

points in ∆0.

Result 2. A static state feedback controller guarantees the γ upper-bound for the discrete time H2 norm of

the closed loop operator Tzw(ζ) with ζ ∈ ∆, that is

‖Tzw(ζ)‖2 = ‖(Cz(ζ) + E(ζ)K)
(
zI −A(ζ)−B(ζ)K

)−1
Bw(ζ)‖2 < γ, ∀ζ ∈ ∆ (14)

if and only if there are real matrices P = P T > 0, K and Z such that the following LMI system is satisfied



−P−1 (Ai + BiK) 0

(Ai + BiK)T −P (Czi + EiK)T

0 (Czi + EiK) −I




< 0 (15)




P−1 Bwi

BT
wi

Z


 > 0 (16)

tr(Z) < γ2. (17)

It is important to point out that this analysis result states that, to guarantee that matrix K satisfies (14)

for all ζ ∈ ∆, it is enough to ascertain that K satisfies (14) on the m points of the set ∆0. The synthesis

problem, i.e. that of finding a matrix P = X−1 and controller K that verify (15-17), can be solved according

to the following result.
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Result 3. The H2 norm of the closed loop operator Tzw(ζ) is less than a positive number γ, that is,

‖Tzw(ζ)‖2 < γ, with ζ ∈ ∆ if a real symmetric matrix X > 0 (X = P−1) and a real matrix Z exist such

that

(W T

1i
Ai + W T

2i
Czi

)X(W T

1i
Ai + W T

2i
Czi

)T −W T

1i
XW1i

−W T

2i
W2i

< 0 (18)


X Bwi

BT
wi

Z


 > 0 (19)

tr(Z) < γ2, (20)

where matrices W T
1i

and W T
2i

satisfy im[W T
1i

W T
2i

]T = ker[BT
i ET

i ]. Using the matrix solution X, the static

state feedback gain K is then computed by solving the following LMI feasibility problem:



−X Ai 0

AT
i −X−1 CT

zi

0 Czi
−I




+




Bi

0

Ei




K[0 I 0] +




0

I

0




KT [BT
i 0 ET

i ] < 0. (21)

This result can be easily proven by using the Projection Lemma,5 followed by a decomposition of the

null space matrices. Finally, the optimal solution for the discrete time H2 control problem is approximated

through the minimization of γ subject to Result 3.

B. Preview Controller Synthesis Technique

For augmented discrete time dynamic systems that include large preview intervals p > 50, the controller

synthesis technique proposed in the last section leads to LMI optimization problems involving a large number

of variables, which cannot easily be solved using the tools available today.

Going back to the preview control problem, consider the linear discrete time system (12). It is well known

from the literature1,2, 12 that solutions for H2 discrete time preview control problems can, in general, be

decomposed into feedback and feedforward controllers by exploiting the particular structure of augmented

preview dynamics. Building on these ideas, an alternative algorithm for computing the feedforward gain

matrix is proposed.

To start with, consider an affine parameter-dependent system with the structure of (12), defined over a

region ∆, with its m vertices in ∆0. Restricting the parameter dependency to the state equation, let Āi, B̄i,

B̄wi , C̄z, and Ē denote the state space matrices for the i = 1, . . . ,m points in ∆0. Assuming that s belongs

to the disturbance vector w, matrix B̄wi includes the preview input matrix B̄s. Consider also the central

point of ∆, ζo, and the corresponding state space matrices Āo, B̄o, and B̄wo .

Partitioning matrices according to the augmented system structure, let P =




Pd Pds

P T

ds Ps


, Q = C̄T

z C̄z =
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


Qd Qds

QT

ds Qs


, R = ĒT Ē, and K = [Kd , Ks]. Further assume that C̄T

z Ē = 0. Applying Schur complements

to the LMI (15), the following Lyapunov inequality is obtained:

(Āi + B̄iK)T P (Āi + B̄iK)− P + (C̄z + ĒK)T (C̄z + ĒK) < 0. (22)

Simple manipulations show that the upper right block of (22) corresponds to a Lyapunov inequality of the

form

(Ai + BiKd)T Pd(Ai + BiKd)− Pd + Qd + KT

d RKd < 0. (23)

In view of these facts, the following result can be established.

Theorem 1. Given a pair (Pd, Kd), Pd = P T

d > 0 that satisfies the conditions of Result 2, consider the

matrix

Pds = [ÃT

c PdBo, (Ã2
c)

T PdBo, · · · , (Ãp+1
c )T PdBo] + [Q1, Ã

T

c Q1 + Q2, ...,

p+1∑

j=1

(Ãp+1−j
c )T Qj ], (24)

where Ãc = Ao−Bo (BT
o PdBo + R)−1

BT
o PdAo and Qj denotes the jth s-dimensional column block of matrix

Qds, and the matrix Ps with entries

Ps(i, j) =





Ξ(i, j) , i ≤ s ∨ j ≤ s

Ξ(i, j) + Ps(i− s, j − s) , i > s ∧ j > s

(25)

Ξ = HT

o PdHo + HT

o PdsD + DT PdsHo + Qs − (PdHo + PdsD)T Bo(BT

o PdBo + R)−1BT

o (PdHo + PdsD).

Consider also the feedforward gain matrix

Ks = (BT

o PdBo + R)−1
BT

o (PdHo + PdsD) . (26)

Then, the resulting closed-loop system is stable over the whole region ∆ and the Lyapunov inequality for the

central point verifies

(Āo + B̄oK)T P (Āo + B̄oK)− P + (C̄z + ĒK)T (C̄z + ĒK) =




Λ 0

0 0


 ≤ 0, (27)

with P = P T > 0.

Proof. Let K = [Kd, Ks] be a stabilizing state feedback controller for system (12). Simple inspection of

the structure of (12) shows that only Kd determines the stability of the closed-loop system. Since the pair

(Pd,Kd) satisfies the conditions of Result 2, the stability of the closed-loop system over the whole region ∆

is guaranteed.

To show that (27) is verified for the central point, consider the following expressions

L(P, K) ≡ (Āo + B̄oK)T P (Āo + B̄oK)− P + (C̄z + ĒK)T (C̄z + ĒK)
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and

L̃(P ) ≡ ĀT

o PĀo − P − ĀT

o P T B̄o

(
B̄T

o PB̄o + R
)−1

B̄T

o PĀo + Q,

such that L(P, K) = 0 and L̃(P ) = 0 correspond to a Lyapunov equation and an algebraic Riccati equation

(ARE), respectively. Assuming that Q = C̄T
z C̄z, R = ĒT Ē, and C̄T

z Ē = 0, it is straightforward to show that

L(P, K) = L̃(P ) + (K − K̃)T
(
B̄T

o PB̄o + R
)
(K − K̃), (28)

where K̃ = − (
B̄T

o PB̄o + R
)−1

B̄T
o PĀo. Using the structure of the augmented system matrices, (28) can be

written as



Λ(Pd,Kd) Σ(P, K)

Σ(P, K)T Γ(P, K)


 =




Λ̃(Pd) Σ̃(P )

Σ̃(P )T Γ̃(P )


 +




KT

d − K̃T

d

KT
s − K̃T

s




(
B̄T

o PB̄o + R
) [

Kd − K̃d, Ks − K̃s

]
.

(29)

where Λ(Pd,Kd) < 0 corresponds to the Lyapunov inequality (23) and Λ̃(Pd) = 0 takes the form of an ARE,

both computed for the central system. Since Ks does not influence the stability of the closed loop system,

one can impose that Ks = K̃s = (BT
o PdBo + R)−1

BT
o (PdHo + PdsD), yielding Γ = Γ̃ and Σ = Σ̃.

From the hypothesis, it follows that Λ(Pd, Kd) < 0, which can be rewritten as Λ̃(Pd)+(Kd−K̃d)T (BT
o PdBo+

R)(Kd− K̃d) < 0, and therefore Λ̃(Pd) < 0. Then, there exists a positive definite matrix δQd such that Pd is

the unique positive definite solution to the ARE Λ̃(Pd) + δQd = 0. Defining a new ARE for the augmented

system




Λ̃(P ) + δQd Σ̃(P )

Σ̃(P )T Γ̃(P )


 = 0, it can be shown that its unique positive definite solution is given by

P =




Pd Pds

P T

ds Ps


, where Pds, and Ps satisfy equations (24) and (25), respectively.

To evaluate the efficiency and validity of the method proposed for controller synthesis, a comparative

analysis of the available methods was carried out. The results, presented in Table 1, include both the

computation time and the closed-loop system’s H2 norm achieved by using the proposed method and by

solving the set of LMI’s for the augmented system. The results were computed for a forward flight trimming

condition (linear body speed V = 0.9 ms−1, zero angle of attack) and an increasing number of preview

samples. Data presented in the table was obtained with a 3.00 GHz Intel Pentium 4 with 512MB of RAM

running Matlab 6.5.0 on Microsoft Windows XP Professional.

The proposed method is indeed much faster than solving the LMI’s for the augmented system, especially

as the dimension of the preview vector increases, and achieves H2 norm values very close to the ones given by

the LMI optimization. Notice that, in practical terms, computation time for the optimal LMI-based method

is no longer acceptable when the number of preview samples reaches twenty.
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Table 1. Comparison of computation time and H2 norms

Proposed method LMI-based method
p ‖.‖2 time[s] ‖.‖2 time[s]
1 3.639 14.8 3.639 30.5
2 3.484 14.7 3.484 61.8
3 3.340 14.7 3.341 100.6
4 3.203 14.6 3.205 194.8
5 3.073 14.8 3.075 314.7
6 2.948 14.6 2.950 546.0
7 2.828 14.6 2.831 281.2
8 2.714 14.7 2.717 1312.6
9 2.605 14.7 2.609 1998.1
10 2.503 14.7 2.507 2810.1
15 2.090 14.7 ?† >3600
20 1.845 14.7 ?† >3600
30 1.692 14.9 ?† >3600
40 1.682 14.8 ?† >3600
50 1.677 14.9 ?† >3600
70 1.669 15.3 ?† >3600
100 1.668 16.3 ?† >3600
†Computation interrupted after one hour.

VI. Reference path

The preview-based tracking controller presented in the previous sections can be applied to terrain follow-

ing for autonomous helicopters using different range sensing techniques. In this paper, a setup is considered

wherein a Laser Range Scanner, mounted underneath the helicopter, scans the terrain along the vehicle’s

direction of forward flight, see Figure 8. As a result of this setup, a vector of reference points is available

at all times and the full preview vector xs(k) can be computed for every sampling instant. To consider

this state vector in the tracking controller, it is assumed that for two consecutive sampling instants, the

computed reference paths are very similar, so that the dynamics of xs(k) can be approximated by (11).

The method adopted to build the reference path from measurement data is now presented. As shown

in Figure 6, the laser readings, consisting of scanning angle and measured range, are transformed into 2-D

terrain points, expressed in the body-fixed frame {B}. All the ensuing processing is performed with respect

to this coordinate frame. The reconstruction points are interpolated by straight lines to approximate the

terrain profile, while the actual reference path is obtained by “rolling” a circle along the reconstructed terrain

profile and selecting the maximum for each x coordinate (see Figure 7). In this way, the reference path is

guaranteed to keep a pre-specified safety distance from the terrain, defined as a perpendicular offset Doff to

the reconstructed terrain profile.

As an example of the path building process, consider the case represented in Figure 8. It is clear that, for
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Figure 6. Reconstructed terrain profile and cor-

responding reference path.
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Figure 7. Rolling a circle of radius Doff , along the

terrain profile.

high enough values of the scanning angle, the laser beam no longer hits any obstacle. For these readings, the

laser is considered blind and a vertical wall shaped obstacle is assumed, for reasons of simplicity. The path

building algorithm also handles occlusion problems, such as the one depicted in Figure 9, where the vehicle

describes a climbing flight maneuver parallel to the wall and the sensor cannot acquire future information

about the terrain profile ahead of this wall.

Figure 8. Example of terrain profile and corre-

sponding reference path built from laser scan mea-

surements.

Figure 9. Step shaped terrain and actual refer-

ence path computed using out-of-range laser read-

ings.

In this specific example, instead of ignoring the two laser readings that do not reach any obstacle, the

algorithm uses them to capture the sudden change in the terrain and provide relevant preview information

to the control system.

15 of 21

American Institute of Aeronautics and Astronautics



VII. Non-linear implementation

In the application presented here the vehicle is expected to follow the terrain moving along a vertical

plane, with no sideslip, vB = [u 0 w]T . Under these assumptions, the angle of attack α and linear body speed

V = ‖vB‖ can be respectively approximated by α = arctan
(

w
u

)
, and V =

√
u2 + w2. During the controller

design phase, the considered helicopter flight envelope was parameterized by ζ = [V, α]T and partitioned into

the 18 regions presented in Figure 10.
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Figure 10. Operating regions parameterized by

ζ = [V, α]T and plotted in the velocity axes uOw.
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Figure 11. Surface and respective affine approx-

imation obtained for element A14 as function of

the velocity V and angle of attack α.

For each operating region, the elements of the discrete time state space matrices obtained from lineariza-

tion of the error dynamics were approximated by affine functions of ζ using a Least Squares Fitting. As an

example, Figure 11 shows the surface obtained for element (1, 4) of matrix Ā and the planes computed for

the considered set of operating regions.

For a relatively dense grid of evaluated operating points, the affine approximation results in a maximum

absolute error between matrix entries of less than 10% and a average absolute error of less than 2%.
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Figure 12. Dominant open-loop eigenvalues

for the linearized systems.
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Figure 13. Dominant open-loop eigenvalues

for the affine approximations.
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To further validate the affine parameter-dependent approximation, Figures 12 and 13 display the dom-

inant open-loop eigenvalues for the linearized systems and for the resulting affine approximations. It is

important to stress that the eigenvalues have a similar variation with (V, α) and that the number of unstable

eigenvalues remains constant.

A. Controller implementation

To implement the controller within the scope of gain scheduling control theory,15 a state feedback matrix

gain Ki was computed for each of the operating regions according to the technique presented in Section

V. During the controller design phase, the regions were defined as overlaid to avoid fast switching between

controllers, see Figure 10. The disturbance input matrix B̄w was set to B̄s and the state and control weight

matrices C̄z and Ē were set to

C̄z =




diag(cz) 015×3(p+1)

04×15 04×3(p+1)


 , Ē =



015×4

5I4×4


 , (30)

where cz = [0.5, 0.5, 0.5, 0.1, 0.1, 0.1, 1, 1, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1]T , yielding the performance vec-

tor

z = [0.5vT

e , 0.1ωT

e , dT

t , 0.01φe, 0.01θe, 0.1ψe, 0.1xT

i , 5.0uT ]T . (31)

The final implementation scheme, presented in Figure 14, was achieved using the D-methodology de-

scribed in Ref. 10. This methodology moves all integrators to the plant input, and adds differentiators where

they are needed to preserve the transfer functions and the stability characteristics of the closed loop system.

The D-methodology implementation has several important features that are worthwhile emphasizing: i)

auto-trimming property - the controller automatically generates adequate trimming values for the actuation

signals and for the state variables that are not required to track reference inputs; ii) the implementation of

anti-windup schemes is straightforward, due to the placement of the integrators at the plant input.

VIII. Results

The following simulation results were obtained using the nonlinear dynamic model SimModHeli, which

includes not only the rigid-body dynamics but also main rotor and Bell-Hiller stabilizing bar flapping dy-

namics. The model was parametrized for the Vario X-treme platform.

Figure 15 presents the entries of the preview feedforward control matrix Ks as a function of the preview

time. In this case, a preview interval of 1 s, sampled at T = 0.02 s, is considered. It is clear that the weight

of the preview signal decreases as the corresponding instant of time gets further ahead in the future, with

negligible contributions above 0.8 s of preview time.
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Figure 14. Implementation setup using gain scheduling and the D-methodology.
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An additional tool used to assess the performance of the preview control scheme consists of comparing

the H2 norm of the linear closed-loop systems resulting from application of the control strategies with and

without preview action. As shown in Figure 16, considering a mesh of operating points defined in V and α,

the performance index for the preview-based solution is consistently below that of the traditional solution.

In Figure 17, the terrain following performance obtained with the proposed scheme is evaluated by varying

the size of the preview vector and comparing the trajectories described by the vehicle, while following a step-

shaped terrain profile. It can be observed that increasing the number preview samples, up to the value
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Figure 17. Terrain following performance obtained for

different values of p, the size of the preview vector.

of 30, produces a clear improvement in performance. The fact that after a certain threshold no significant

improvement is achieved is a natural result and corroborates the expected properties of the proposed method.

The time evolution of the error state vector xe and actuation signals u corresponding to the p = 50

experiment is presented in Figures 18 and 19, respectively. It can be observed that signal activity, due to the

preview action, clearly precedes transition points in the reference path. The vertical line marks the change

in the reference path from forward to vertical flight. After each transition, both the state and input quickly

converge to trimming values.
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IX. Conclusions

The paper presented the design and performance evaluation of a laser based terrain following controller

for rotorcraft. The technique described achieves good terrain following performance by taking into account,

in the control law, the terrain characteristics ahead of the helicopter. Resorting to an H2 controller design

methodology for affine parameter-dependent systems, the technique presented exploits a new error space

capable of naturally describing the particular dynamic characteristics of the helicopter in a suitable flight

envelope. An alternative algorithm was proposed for computing the feed-forward gain matrix that avoids

solving Linear Matrix Inequalities involving large numbers of unknowns. The resulting nonlinear controller

was synthesized and implemented within the scope of gain-scheduling control theory, using a piecewise affine

parameter-dependent model representation for the given set of operating regions. The effectiveness of the new

control law was assessed in a MATLAB/Simulink simulation environment with a full nonlinear model of the

Vario X-Treme helicopter. The quality of the results obtained clearly indicates that the methodology derived

is suitable for the proposed application. Future work will include helicopter control close to the ground in

the presence of strong wind action, extension of the presented technique to true three-dimensional terrain

following using different sensors, and exploration of new error spaces along with new preview information

inputs.

Acknowledgments

This work was supported in part by the FCT Programa Operacional da Sociedade de Informação (POSI)

under the framework of the QCA III and by the POSI/SRI/41938/2001 ALTICOPTER project. The work

of R. Cunha was supported by a PhD Student Scholarship, SFRH/BD/5034/2001, from the Portuguese FCT

POCTI program.

References

1Tomizuka, M., “Optimum Linear Preview Control with Application to Vehicle Suspension-Revisited,” American Society

of Mechanical Engineers - Journal of Dynamic Systems, Measurement, and Control, Vol. 98, No. 3, 1976, pp. 309–315.

2Prokop, G. and Sharp, R. S., “Performance enhancement of limited bandwith active automotive suspensions by road

preview,” Institution of Electrical Engineers Proceedings - Control Theory and Applications, Vol. 142, No. 2, 1995, pp. 140–

148.

3Takaba, K., “Robust servomechanism with preview action for polytopic uncertain systems,” International Journal of

Robust Nonlinear Control , Vol. 10, 2000, pp. 101–111.

4Hess, R. A. and Jung, Y. C., “An Application of Generalized Predictive Control to Rotorcraft Terrain-Following Flight,”

IEEE Transactions on Systems, Man, and Cybernetics, Vol. 19, No. 5, Sept. 1989, pp. 955–962.

5Ghaoui, L. E. and Niculescu, S. I., editors, Advances in Linear Matrix Inequality Methods in Control , Society for

Industrial and Applied Mathematics, SIAM, Philadelphia, PA, 1999.

6Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in Systems and Control Theory,

20 of 21

American Institute of Aeronautics and Astronautics



Society for Industrial and Applied Mathematics, SIAM, Philadelphia, PA, 1994.

7Cunha, R. and Silvestre, C., “A 3D Path-Following Velocity-Tracking Controller for Autonomous Vehicles,” 16th IFAC

World Congress, Praha, Czech Republic, July 2005.

8Silvestre, C., Pascoal, A., and Kaminer, I., “On the Design of Gain-Scheduled Trajectory Tracking Controllers,” Inter-

national Journal of Robust Nonlinear Control , Vol. 12, 2002, pp. 797–839.

9Kaminer, I., Pascoal, A., Hallberg, E., and Silvestre, C., “Trajectory tracking for autonomous vehicles: An integrated

approach to guidance and control,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 21, No. 1, 1998, pp. 29–38.

10Kaminer, I., Pascoal, A., Khargonekar, P., and Coleman, E., “A Velocity Algorithm for the Implementation of Gain-

Scheduled Controllers,” Automatica, Vol. 31, No. 8, 1995, pp. 1185–1191.

11Cunha, R. and Silvestre, C., “Dynamic Modeling and Stability Analysis of Model-Scale Helicopters with Bell-Hiller

Stabilizing Bar,” AIAA Guidance, Navigation, and Control Conference, Austin, TX, Aug. 2003.
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