
ARTICLE IN PRESS
0967-0661/$ - se

doi:10.1016/j.co

$This work

under framewo

the PDCTM, a
�Correspond
E-mail addre

(A. Pascoal).
Control Engineering Practice ] (]]]]) ]]]–]]]

www.elsevier.com/locate/conengprac
Depth control of the INFANTE AUV using gain-scheduled reduced
order output feedback$

C. Silvestre�, A. Pascoal

Instituto Superior Técnico, Institute for Systems and Robotics, Torre Norte - Piso 8, Av. Rovisco Pais 1 1046-001 Lisboa, Portugal

Received 21 October 2005; received in revised form 17 May 2006; accepted 23 May 2006
Abstract

The paper addresses the problem of autonomous underwater vehicle (AUV) control in the absence of full state information. An

application is made to the control of a prototype AUV in the vertical plane. The methodology adopted for controller design is nonlinear

gain-scheduling control, whereby a set of linear, dynamic, reduced order output feedback controllers are designed and scheduled on the

vehicle’s forward speed. The paper summarizes the controller design steps, describes a technique for its practical implementation, and

presents experimental results obtained with the INFANTE AUV during tests at sea.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper describes a solution to the problem of
autonomous underwater vehicle (AUV) control in the
vertical plane, in the absence of full state information. An
application is made to the control of the prototype
INFANTE AUV, built and operated by the Instituto
Superior Técnico of Lisbon, Portugal.

The paper starts by introducing a nonlinear dynamic
model of the INFANTE AUV shown in Fig. 1. This is
followed by control system design for precise maneuvering
in the vertical plane. The technique adopted for controller
design is gain scheduling (Rugh & Shamma, 2000). Using
this approach, a set of linear controllers is first derived for a
finite number of linearized models of the plant at selected
operating points. The resulting controllers are then
interpolated on the vehicle’s forward speed.

For linear control system design, the paper exploits the
use of reduced order feedback (ROF) techniques, which
e front matter r 2006 Elsevier Ltd. All rights reserved.
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lead naturally to dynamic output feedback control laws
with a very simple structure. In fact, the resulting
controllers exhibit only the dynamics introduced by
appended integrators (aimed at reducing steady-state
tracking errors to zero) as well as extra dynamics that act
as shaping filters to limit the actuation bandwidth. The
importance of output feedback control strategies cannot be
overemphasized: in practice, it is often impossible, difficult,
or too expensive to measure the full state vector of a given
plant. This motivates the development of controllers that
rely on output variables only, effectively increasing the
simplicity and thus the reliability of the control laws
adopted. In the case of the INFANTE AUV, for example,
it is difficult measure the angle of attack in the vertical
plane. However, it is crucial to achieve stabilization and
good maneuvering performance in that plane. This justifies
the use of output feedback control techniques to meet
desired stability and performance criteria.
From a theoretical point of view, the reduced order

output feedback control problem can be converted into a
static output feedback (SOF) problem for a related
augmented system (Mäkilä, 1985). However, in spite of
the availability of necessary and sufficient conditions for
plant stabilizability by SOF, ‘‘no algorithm is currently
available which guarantees to compute a stabilizing gain or
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Fig. 1. The INFANTE vehicle.
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determine if such a gain exists’’ (Iwasaki, Skelton, &
Geromel, 1994). The work in this area is well rooted in the
theory of linear matrix inequalities (LMIs), which are
steadily becoming the tool par excellence for advanced
control system design. In fact, many control problems can
be cast as LMI problems that can be solved efficiently using
convex programming techniques. However, difficulties
arise when designing (sub-optimal) SOF controllers be-
cause this problem can only be cast in terms of an
equivalent one that involves bilinear matrix inequalities
(BMIs) (Grigoriadis & Skelton, 1996). Because the result-
ing problem is no longer convex, no efficient numerical
procedures exist for its solution as in the case of LMIs.
However, the bilinear characteristics of the problem can
still be exploited to derive an iterative procedure whereby
two sets of LMIs are solved sequentially. This motivated
the approach pursued in this paper, where the results
described in (El Ghaoui, Oustry, & AitRami, 1997) are
used to develop a simple algorithm to iteratively search for
the solution to (sub-optimal) SOF control problems.
Indirectly, the algorithm yields also a computational
procedure to solve the ROF problem studied in this paper
by exploiting the relationship between ROF and SOF
control design techniques described in Mäkilä (1985).
Although the algorithm performs a local search with no
guarantees of global convergence, it exhibits excellent
performance in the current application. See Leibfritz (2001)
for a presentation of different techniques for the design of
SOF controllers.

For the more theoretically oriented reader it is important
to point out that in spite of tremendous progress in the
area, the problems of designing fixed structure or fixed
order controllers for a given plant are essentially open and
continue to motivate active topics of research. A quick
survey of recent publications is sufficient to show the
reader how vibrant the area is. Nonsmooth optimization
techniques that can be used to solve controller synthesis
problems under additional structural constraints are
presented in Apkarian and Noll (2006). In Kharitonov,
Niculescu, Moreno, and Michiels (2005), the authors give
necessary conditions for the existence of SOF stabilization
controllers for a class of single-input–single-output systems
when the control law includes multiple (distinct) delays;
illustrative examples that include a second-order systems,
and chains of integrators are presented and discussed. In
Henrion and Lasserre (2006), the authors propose a
hierarchy of convex linear matrix inequality relaxations
using a moment interpretation of recent results on sum-of-
squares decompositions of nonnegative polynomial ma-
trices to solve nonconvex polynomial matrix inequality
(PMI) optimization problems. The latter include BMIs, the
solution of which yields efficient techniques for the
computation of ROF H2 or H1 controllers. A sufficient
condition for the SOF stabilization of linear discrete-time
systems expressed as an LMI feasibility problem is
presented in Bara and Boutayeb (2005), where the authors
validate the applicability of the algorithms proposed
through numerical examples. Finally, an application of
an (LMI)-based procedure for the design of robust SOF
controllers is presented in Benton and Smith (2005), where
a solution to the emergency lateral control problem of a
highway vehicle with bounded time-varying uncertainties is
presented and discussed. In the paper, a stabilizing SOF
controller is designed and its gains are reduced while
guaranteeing robust stability.
In the work reported here, a finite number of ROF

controllers were developed for linearized plant models
obtained at different operating conditions determined by
the vehicle’s forward speed. The controller parameters were
then interpolated and scheduled on speed (that is, dynamic
pressure). The final implementation of the resulting non-
linear gain-scheduled controller was done using the D-
methodology described in Kaminer, Pascoal, Khargone-
kar, and Coleman (1995) that guarantees a fundamental
linearization property and avoids the need to feedforward
the values of the state variables and inputs at trimming.
The paper is organized as follows. Section 2 introduces a

nonlinear model for the vertical plane dynamics of the
INFANTE AUV. Section 3 details the techniques that
were used for depth control system design and implemen-
tation. Finally, Section 4 contains experimental results
obtained during sea trials of the vehicle in the Azores,
Portugal. Section 5 contains the main conclusions and
describes related problems that warrant future research.

2. Vehicle dynamics

This section describes the dynamic model of the
INFANTE AUV in the vertical plane. See Silvestre
(2000) for details. The vehicle is 4:5m long, 1:1m wide
and 0:6m high. It is equipped with two main thrusters
(propellers and nozzles) for cruising and fully moving
surfaces (rudders, bow planes and stern planes) for vehicle
steering and diving in the horizontal and vertical planes,
respectively. The maximum rated speed of the vehicle with
respect to the water will not exceed 3:5m/s.
The notation used in the paper and the structure of the

vehicle model are standard (Fossen (1994); Silvestre
(2000)). The variables u and w denote surge and heave
speeds, respectively, while y, q, and z denote pitch, pitch
rate and depth. The vector d ¼ ½db; ds�

0 consists of bow and
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stern plane deflections db and ds, respectively. With this
notation, and neglecting the roll stable motion, the
dynamics of the AUV in the vertical plane can be written
in compact form as

Dynamics:

MRB €qþ CRBð_qÞ_q ¼ sð€q; _q; d; nÞ, (1)

_q ¼ ½u;w; q�0. (2)

Kinematics:

d

dt
½x; z�0 ¼ RðyÞ½u;w�0, (3)

_y ¼ q, (4)

where ½x; z�0 is the position of the vehicle’s center of mass,
RðyÞ is the rotation matrix from body to inertial coordinate
frame parameterized by pitch angle y, and s denotes the
vector of external forces and torques acting on the vehicle.
The symbols MRB and CRB denote the rigid body inertia
matrix and the matrix of Coriolis and centripetal terms,
respectively, see Fossen (1994) and Silvestre (2000) for
further details.

The vector s can further be decomposed as

sð€q; _q; d; nÞ ¼ saddð€q; _qÞ þ ssurf ð_q; dÞ þ sbodyð_q; dÞ

þ spropð_q; nÞ, ð5Þ

where sadd represents the added mass effects. The term ssurf

captures the effects of deflections of the control surfaces,
sbody consists of the hydrodynamic forces and torques
acting on the vehicle’s body, and sprop represents the forces
and torques due to the main propellers.

2.1. System identification. Hydrodynamic tank tests

To be of practical use, the model described by Eqs.
(1)–(4) must be tuned for the particular vehicle in study.
Clearly, the main difficulty lies in computing the term s

that arises in the dynamics equation. In the case of the
INFANTE AUV, this was achieved by using a combina-
tion of theoretical methods and experimental data obtained
previously for the MARIUS AUV (Egeskov et al., 1994).

The added mass term was estimated in part by assuming
ellipsoidal and elliptical cylinder approximations for the
body and control surfaces, respectively (Lamb, 1932;
Newman, 1977). Approximations to the lift and drag
terms of the control surfaces were obtained using thin
airfoil theory. Additional terms were computed based on
data determined from the following series of tank tests
carried out at the Danish Maritime Institute (DMI) in
Lyngby, Denmark for the MARIUS AUV:
(i)
 Open water tests of the propeller/nozzle system to
determine its characteristics in undisturbed (open)
water.
(ii)
 Resistance tests to measure the resistance of the vehicle
without the propulsion system in place.
(iii)
 Self-propulsion tests to assess the performance of the
propulsion system in the wake of the hull.
(iv)
 Planar Motion Mechanism tests in the horizontal and
vertical planes to measure the most relevant hydro-
dynamic derivatives of the vehicle.
The reader is referred to Abkowitz (1964) and Harvald
(1983) for an introduction to these standard tests. See also
Egeskov et al. (1994) for the results of the tests in
Denmark.
The rest of this section presents the most relevant vertical

plane hydrodynamic derivatives of the INFANTE vehicle.
These terms account for the interaction of the vehicle’s hull
and deflection surfaces with the surrounding fluid and
capture the variation of the forces and torques experienced
by the vehicle when it deviates from its normal cruising
condition (moving forward along a straight line in the
vertical plane). With a certain abuse of notation, the
hydrodynamic derivatives can be viewed as resulting from
a Taylor series expansion of the forces and torques about
the nominal operating condition. In general, hydrodynamic
derivatives are functions of the nominal vehicle’s total
speed (Abkowitz, 1964). In this paper, the normal
procedure of replacing the vehicle’s total speed by its
forward speed u is adopted. This procedure is justified for
the case when the vertical heave speed is small.
From Eqs. (1) and (5), using the standard SNAME

notation (Fossen, 1994; Lewis, 1990), the hydrodynamic
forces and torques in the vertical plane can be expressed as

½X h; Zh; Mh�
0 ¼ sð€q; _q; d; nÞ,

where X h and Zh denote the forces along the vertical plane
(x and z axis) and Mh is the torque about the y body axis.
Expanding in terms of nondimensional hydrodynamic
derivatives yields

Hydrodynamic forces:

X h ¼
r
2

L2½X uuu2 þ X www2� þ
r
2

L2u2½X dbdb
d2b þ X dsdsd

2
s �

þ
r
2

L4X qqq2 þ
r
2

L3X _u _uþ T , ð6Þ

Zh ¼
r
2

L2Zwuwþ
r
2

L3Zquqþ
r
2

L2u2½Zdb
db þ Zdsds�

þ
r
2

L3Z _w _wþ
r
2

L4Z _q _q, ð7Þ

Mh ¼
r
2

L3Mwuwþ
r
2

L4Mquqþ
r
2

L3u2½Mdb
db þMdsds�

þ
r
2

L4M _w _wþ
r
2

L5M _q _q, ð8Þ

where T denotes the total longitudinal force imparted by
the thrusters. The main particulars for the INFANTE
vehicle in the vertical plane are Iy ¼ 1700Nms2,
m ¼ 2234:5 kg, r ¼ 1030 kg=m3, and L ¼ 4:22m. Table 1
lists the most relevant nondimensional hydrodynamic

derivatives of the vehicle vertical plane model, following
the standard notation of Lewis (1990). In the table,
the hydrodynamic parameters are normalized using the
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Table 1

Nondimensional hydrodynamic coefficients for the INFANTE AUV in

the vertical plane—�10�5

X Z M

X uu �387

X _u �368

X ww �978 Zw �32805 Mw 5476

Z _w �11973 M _w �1286

X qq 5898 Zq 6790 Mq �3878

Z _q �1047 N _q �247

X dbdb
�4980 Zdb

�7539 Mdb
2411

X dsds �4980 Zds �7539 Mds �2052

Table 2

Dimensional hydrodynamic coefficients for the INFANTE AUV in the

vertical plane: surge, heave and pitch motions

CX _u ¼
1
2
rX _uL3, CX ¼

1
2
rX uuL2,

CXww ¼
1
2
rX wwL2, CX qq ¼

1
2
rX qqL4,

CXdbdb
¼ 1

2
rX dbdb

L2, CXdsds
¼ 1

2
rX dsds L2,

CZ _w ¼
1
2
rZ _wL3, CZw ¼

1
2
rZwL2,

CZ _q ¼
1
2
rZ _qL4, CZq ¼

1
2
rZqL3,

CZdb
¼ 1

2
rZdb

L2, CZds
¼ 1

2
rZds L2,

CM _w ¼
1
2
rM _wL4, CMw ¼

1
2
rMwL3,

CM _q ¼
1
2
rM _qL5, CMq ¼

1
2
rMqL4,

CMdb
¼ 1

2rMdb
L3, CMds

¼ 1
2rMds L3
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characteristic length L and the surface deflections are
expressed in radians.
2.2. Control model

For control design purposes, the vehicle was assumed to
be commanded directly in thrust T. In this case, the
simplified vertical plane dynamics can be written in
dimensional form as

Surge motion equation:

m _u ¼ CX u2 þ CX ww w2 þ CX qqq2 þ u2CXdbdb
d2b þ u2CXdsds

d2s
þ CX _u

_uþ T , ð9Þ

Heave motion equation:

mð _w� uqÞ ¼ ðW � BÞ cosðyÞ þ CZw uwþ CZq uqþ CZdb
db

þ CZds
ds þ CZ _w

_wþ CZ _q
_q, ð10Þ

_z ¼ �u sinðyÞ þ w cosðyÞ, (11)

Pitch motion equation:

Iy _q ¼ zCBB sinðyÞ þ CMw uwþ CMquqþ CMdb
db þ CMds

ds

þ CM _w
_wþ CM _q

_q, ð12Þ

_y ¼ q, (13)

where Eqs. (9), (10) and (12) describe the surge, heave and
pitch motion, respectively, and Cð:Þ are the simplified model
coefficients represented in Table 2.

It is important to point out that the type of experimental
data obtained in the course of the PMM tests, as well as the
computation of some of the vehicle parameters using thin
airfoil theory limit the regions of validity of the horizontal
and vertical submodel described above. In fact, the model
derived is only valid for small angles of attack, and for
small control surface deflections (Abkowitz, 1964). In
practice these limitations are not severe, since they
represent the normal operating conditions of a vehicle
with the shape of the INFANTE AUV.

To develop a depth controller, the vehicle’s forward
nominal speed u ¼ u0 is assumed to be constant and the
vertical plane model is formally written as

d

dt
xv ¼ Fvðxv; uvÞ, (14)

where xv ¼ ½w; q; y�0 2 R3 is the state vector, uv ¼ ½db; ds�
0

2 R2 is the input vector, and Fv : R
3 � R2 ! R3 is a

nonlinear function that is easily obtained from the surge,
and pitch equations of motion, together with the kinematic
depth and pitch relationships described by Eqs. (11)
and (13).

3. Control system design and implementation

This section describes the design of a depth control
system for the AUV INFANTE, based on the dynamic
model presented in Section 2. The methodology adopted
for controller design is nonlinear gain-scheduled control,
whereby the design of a controller to achieve stabilization
and adequate performance of a given nonlinear plant
(system to be controlled) involves the following steps
(Rugh & Shamma, 2000):
(i)
 Linearizing the plant about a finite number of
representative operating points,
(ii)
 Designing linear controllers for the plant linearizations
at each operating point,
(iii)
 Interpolating the parameters of the linear controllers of
Step (ii) to achieve adequate performance of the
linearized closed-loop systems at all points where the
plant is expected to operate. The interpolation is
performed according to an external scheduling vari-
able (vehicle’s forward speed), and the resulting family
of linear controllers is referred to as a gain-scheduled

controller,

(iv)
 Implementing the gain-scheduled controller on the

original nonlinear plant.
In what follows a brief summary is given of the work
done at each of the design steps, leading to the develop-
ment of a controller for the vehicle that is scheduled on
forward speed. For the sake of brevity, the linear design
methodology is illustrated for the case of a single operating
condition that corresponds to a forward speed of 2:0m/s.
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Fig. 2. Linearized model eigenvalues as functions of the forward speed u0.
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Linearization. open-loop system analysis: The model for
the vertical plane was linearized about the equilibrium
point determined by ½w0; q0; z0; y0�

0 ¼ ½0; 0; 0; 0�0 and
u0 ¼ ½db; ds�

0 ¼ ½0; 0�0.
The resulting linearized model eigenvalues are presented

in Fig. 2. The model exhibits an eigenvalue at zero
(corresponding to a pure integrator in the depth coordinate
z) and three stable eigenvalues that link together the
variables w, q and y. Notice the overall trend in the plot,
where the two complex eigenvalues at low speed degenerate
into two real eigenvalues at higher speed. The state space
linearized dynamics and input matrices for the forward
velocity of 2:0m/s are represented below:

A ¼

�1:400 2:763 0:0 0:078

2:108 �5:419 0:0 �0:312

1:0 0:0 0:0 �2:0

0:0 1:0 0:0 0:0

2
666664

3
777775,

B ¼

�0:797 �0:201

1:588 �0:809

0:0 0:0

0:0 0:0

2
666664

3
777775.

The state space matrix A has one second-order mode
with a natural frequency of 0:121 rad/s, a real eigenvalue at
�6:5 rad/s, and a zero eigenvalue. Notice that the variable
y does not exhibit a pure integration effect, due to the
existence of a restoring torque caused by the combined
effect of buoyancy and gravity. In the input matrix, the
bow and stern plane deflections db and ds affect directly the
state variables w and q.
3.1. Design specifications

The linear depth controllers were required to meet the
following design specifications:
Zero steady-state error: Achieve zero steady-state values
for the error variable in response to the input commands
zcmd .

Bandwidth requirements: The input–output command
response bandwidth for the depth command channel
should be on the order of 0:1 rad/s; the control loop
bandwidth for the bow and stern planes channels should
not exceed 5 rad/s; these figures were selected to ensure that
the actuators would not be driven beyond their normal
actuation bandwidth.

Closed-loop damping and stability margins: The closed-
loop eigenvalues should have a damping ratio of at least 0:7
and a real part of at most �0:1 rad/s. It was also required
that the steady-state deflection of the bow planes in
response to a step input command in depth be db ¼ 0.

3.2. Brief theoretical background

The methodology selected for linear control system
design was reduced order output feedback with an
H1 criterion (Grigoriadis & Skelton, 1996). This method
rests on a firm theoretical basis and leads naturally to an
interpretation of control design specifications in the
frequency domain. Furthermore, it provides clear guide-
lines for the design of controllers so as to achieve robust
performance in the presence of plant uncertainty.
The design tools adopted are LMIs, which are steadily

becoming a standard tool for the design of advanced
control systems. See Boyd, El Ghaoui, Feron, and
Balakrishnan (1994) for a lucid exposition of the subject
and an historical perspective. As explained in Boyd et al.
(1994) and El Ghaoui and Niculescu (1999), the story of
LMIs can be traced back to the work of Lyapunov, who
showed that the origin of the linear time-invariant system
dxðtÞ=dt ¼ AxðtÞ is asymptotically stable if and only if
there exists a positive definite matrix P such that
A0Pþ PAo0. Let P1;P2; . . . ;Pm be a basis for the space
of nxn positive definite matrices, with m ¼ n� ðnþ 1Þ=2.
Further let F0 ¼ 0 and Fi ¼ A0Pþ PiA. Then, finding P
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positive definite that satisfies the equation above (or
determining that none exists) is equivalent to determining
whether a vector x ¼ ðx1; . . . ;xnÞ

0
2 Rn exists such that

F ðxÞ ¼ F 0 þ
Xn

i¼1

xiF io0 (15)

is satisfied.
An LMI is any constraint F ðxÞ of the form introduced

above. In the general case, the vector x ¼ ðx1; . . . ;xnÞ
0
2 Rn

represents the free design variables (also called decision
variables) and the symmetric matrices Fi ¼ F 0i 2 Rn�n are
given. The inequality symbol in Eq. (15) means that F ðxÞ is
negative definite, i.e., for all nonzero u 2 Rn, u0F ðxÞuo0.
Solving this inequality consists of finding x such that (15)
holds.

LMIs present the following appealing property for
computational purposes: finding a feasible x such that
F ðxÞo0 is a convex optimization problem for which
efficient interior point algorithms have been developed
and implemented in the Matlab LMI Toolbox.

In general, multiobjective/multicriteria control pro-
blems, where mixed time and frequency domain specifica-
tions must be met, are extremely difficult to solve.
However, within the LMI framework, multiobjective/
multicriteria problems involving simultaneous H2 and
H1 performance criteria as well as regional eigenvalue
placement, settling time, saturation, and initial conditions
response specifications, can be formulated and solved using
advanced numerical tools. The key idea in the LMI
approach to multiobjective/multicriteria controller design
consists of converting each closed-loop control objective or
specification into an additional constraint on the class of
admissible closed-loop Lyapunov functions. This design
technique expresses the desired closed-loop control objec-
tives and specifications in terms of a set of LMIs (involving
a single Lyapunov function) which, if feasible, guarantee
simultaneous achievement of the different closed-loop
requirements, possibly at the expense of being conservative.

In summary, LMIs provide a powerful formulation as
well as a versatile design technique for a wide variety of
linear control problems. Since solving LMIs is a convex
optimization problem for which numerical solvers are now
available, reducing a control problem to an LMI can be
seen as a practical solution for many control problems.
K

G

w z

yu

Fig. 3. Feedback interconnection.
3.3. Linear control system design

The reduced order output feedback (ROF) control
problem can be solved by converting it into a SOF control
problem, using a well-known system augmentation techni-
que (El Ghaoui et al., 1997). To this effect, consider the
original plant dynamics Sm ¼ fAm;Bm;Cmg and the
appended dynamics Sk ¼ fAk ¼ 0k;Bk ¼ Ik;Ck ¼ Ikg of
order k. Let uk 2 Rk, and xk 2 Rk, be the control input and
state of the appended dynamics. It can be shown (Mäkilä,
1985) that the ROF stabilization problem has a solution of
order k if and only if the augmented system

A ¼
Ak 0

0 Am

" #
; B ¼

Bk 0

0 Bm

" #
; C ¼

Ck 0

0 Cm

" #

admits a SOF stabilizing solution. Therefore, solving the
SOF problem for the augmented system is equivalent to
solving the reduced order output feedback problem for the
original plant. In other words, given a reduced order
controller design problem—where the problem data consist
of a nominal plant model and a set of H-infinity
performance specifications associated with the plant states
and inputs—there is an equivalent static output feedback
control problem for an augmented plant that can be cast in
terms of the feasibility of a set of LMIs. If the latter are
feasible, then their solution will yield directly an output
feedback controller for the augmented plant and, indir-
ectly, a reduced order output feedback controller for the
original plant. The remainder of this section focuses on the
SOF problem.
In what follows, the standard setup and nomenclature in

Zhou, Doyle, and Glover (1995) is adopted, leading to the
feedback system represented in Fig. 3 with realization

_xðtÞ ¼ AxðtÞ þ BwwðtÞ þ BuðtÞ;

zðtÞ ¼ CzxðtÞ þDwðtÞ þ EuðtÞ;

yðtÞ ¼ CxðtÞ þ FwðtÞ;

8><
>: uðtÞ ¼ KyðtÞ, (16)

where x is the state vector. The symbol w denotes the input
vector of exogenous signals (including commands and
disturbances), z is the output vector of errors to be reduced,
y is the vector of measurements that are available for
feedback, and u is the vector of actuator signals. The
generalized plant G consists of the augmented system
described before together with weights that shape the
exogenous and internal signals, see Section 3.4. Suppose
that the feedback system is well-posed, and let T zw denote
the closed-loop operator from w to z. The (sub-optimal)
H1 SOF synthesis problem consists of finding (if it exists)
a static controller K that stabilizes the closed-loop system
and makes the infinity norm kTzwk1 of the operator Tzw

smaller than a desired bound g40.
Let Acl ¼ ðAþ BKCÞ be the closed-loop system matrix

of (16) with K to be determined. The technique used for
controller design is based on the following standard results
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(Chilali & Gahinet, 1996; El Ghaoui & Niculescu, 1999;
Zhou et al., 1995).

Result 1: The closed-loop system with realization
(16) has all the eigenvalues in the semi-plane l 2 C :
ReðlÞo� a if a real symmetric matrix X40 exists such
that the closed-loop Lyapunov inequality

X ðA0cl þ aIÞ þ ðAcl þ aIÞXo0 (17)

is satisfied.
Result 2: The H1 norm of the operator T zw is less than a

positive number g, that is, kT zwk1og, if a real symmetric
matrix X40 exists such that the LMI

XA0cl þ AclX � �

B0w �gI �

CzX þ EKC D �gI

2
64

3
75o0 (18)

holds.
Additional closed-loop regional eigenvalues placement

specifications can also be converted into design constraints
by using the concept of LMI regions in the complex plane,
as introduced by Chilali and Gahinet (1996), thus general-
izing Result 1. Let L ¼ ½lij � and M ¼ ½mij� be real
symmetric matrices. An LMI region Rlmi is defined as an
open domain in the complex plane that satisfies

Rlmi ¼ fz 2 C : lij þmijzþmjiz̄o0; i; j ¼ 1; . . . ; ng. (19)

This description can represent a large number of regions
which are symmetric with respect to the real axis, such as
conic sectors, half-planes, etc. Using the concept of LMI
regions, Result 1 admits the following generalization, see
Chilali and Gahinet (1996) for further details:

Result 3: The closed-loop system with realization (16)
has all the eigenvalues in the region Rcl defined by (19) if a
real symmetric matrix X40 exists such that the closed-
loop generalized Lyapunov inequality

lijX þmijAclX þmjiXA0clo0; i; j ¼ 1; . . . ; n. (20)

is satisfied.
In the present design case, the closed-loop eigenvalues

are required to lie in the region depicted in Fig. 4. Simple
computations show that in this case (20) degenerates into
sinðyregÞðAclX þ XA0clÞ cosðyregÞðXA0cl � AclX Þ 0

cosðyregÞðAclX � XA0clÞ sinðyregÞðAclX þ XA0clÞ 0

0 0 AclX þ XA0cl þ 2aregX

2
64

3
75o0, (21)
where the parameters areg and yreg were set to acl ¼ �0:1
and ycl ¼ 45�, respectively, so as to meet the desired closed-
loop performance specifications.

In the case of a square full rank matrix C, the standard
transformation W ¼ KCX converts the above nonlinear
LMIs into convex LMIs. However, in the case of a
noninvertible C matrix, the problem of determining a sub-
optimal SOF controller involves solving BMIs. In this
situation, the problem at hand is no longer convex, thus
making the task of finding numerical solutions hard. It is
relevant to point out that given an arbitrary dynamic
system, there are no guarantees that a SOF controller exists
that will stabilize the system. Furthermore, even if the
existence of a stabilizing controller can be established, the
nonconvex characteristics of the optimization problem are
such that no assurances can be given as to whether a
numerical procedure will converge to a solution. Therefore,
the following algorithms for the computation of a sub-
optimal H1 SOF controller should only be adopted if
sound judgement is applied to establish if a solution to the
(sub-optimal) H1 SOF synthesis problem can indeed be
found.
The algorithms proposed for control system design can

be briefly explained as follows: (i) compute (if it exists) a
SOF stabilizing controller for the generalized plant G, and
(ii) use this controller as a starting point to find anH1 sub-
optimal controller, subject to regional eigenvalue place-
ment constraints. Algorithm 1 finds a stabilizing controller
using Result 1, starting with an arbitrary K of appropriate
dimensions.

Algorithm 1 (SOF stabilizing controller).
(1)
 For an arbitrary K find a such that ReðliðAþ aIÞÞo0,
i ¼ 1; . . . ; n.
(2)
 Fix K and solve LMI (17) (feasibility problem) with
respect to variable X.
(3)
 Fix X and solve the optimization problem of minimiz-
ing a subject to the LMI constraint (17) in the variables
a, and K .
(4)
 If apacl go to step 1, else end.
The second algorithm computes a SOF H1 sub-optimal
controller using Result 2, adopting the stabilizing static
controller K obtained before as a starting point.
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Algorithm 2 (SOF H1 sub-optimal controller with regional

pole placement constraints).
(1)
 Set yreg ¼ 90�, areg ¼ acl .

(2)
 Fix K and solve the optimization problem of minimiz-

ing g subject to the LMI constraints (18) and (21) in the
variables g and X. Set g1 ¼ g found.
(3)
 Fix X and solve the optimization problem of minimiz-
ing g subject to the LMI constraint (18) and (21) in the
variables g and K . Set g2 ¼ g found.
(4)
 If yregoycl , set yreg ¼ ycl .

(5)
 If jg1 � g2j4z or yreg4ycl go to step 2, else end.
In this design exercise, z was set to 0:001.
Finally, the ROF controller is computed from the

augmented system and the gain K .

3.4. Synthesis model and controller design

The first step in the controller design procedure is the
development of a synthesis model that can serve as an
interface between the designer and the H1 controller
synthesis algorithm.

Consider the feedback system shown in Fig. 5, where P is
the augmented linearized model of the AUV in the vertical
plane (including the Sk dynamics), and K is a SOF
controller to be designed. The block G within the dashed
line is the synthesis model, which is derived from the linear
augmented model of the plant by appending the depicted
weights. In practice, the weights serve as tuning ‘‘knobs’’
which the designer can adjust to meet the desired
performance specifications.

In the figure, w1 represents the depth command zcmd that
must be tracked. The vector w2 includes the input noise to
each of the sensors that provide measurements of depth,
pitch and pitch rate as well as disturbance inputs to the
states w and q of the plant. The signal u represents
the augmented system control inputs that consist of uk and
the bow and stern plane deflections db, and ds, respectively,
P

K

I
s

W4

W1

W2

W3

S

+ w

w1

w2 z

u

u

y

x1 e

x2

G

Fig. 5. Synthesis model.
and vector e ¼ w1 � x1 is the respective depth tracking
error. The signal x2 contains the remaining state variables
that must be penalized in the design process, that is, w, q

and y. The matrices W i; i ¼ 1; . . . ; 4 correspond to
dynamic weights that penalize input, state and tracking
variables. Finally, the signal y consists of variables xk, q, y,
z, e=s and db=s that are available for feedback. To meet
the depth step command response requirement the weight-
ing function W 1 was chosen as W 1 ¼ 0:1. The weight
W 2 on the actuation vector u was selected as
W 2 ¼ diagð0:5; 0:5;W aðsÞÞ. Block W aðsÞ is a dynamic
weight matrix used to enforce the bandwidth constraint
on the bow and stern planes, as discussed later. The weight
W 3 was set to diagð22:0; 0:1; 0:01; 0:05; 0:05Þ to meet the
command bandwidth requirements, and W 4 ¼ 0:001I4.
Notice the existence of a block of integrators I=s that
operates on the tracking errors e and on the entries of the
control input vector u that are selected by the matrix S.
Integral action on the errors is required to ensure zero
steady state in response to step commands in w1. Integral
action on the entries of u introduces a ‘‘washout’’ on the
particular control inputs selected. In the present case, the
‘‘washout’’ ensures zero bow plane deflection at trimming
conditions.
The constraints on the maximum bow and stern plane

actuation bandwidths were converted into a H1 design
specification through the operator W aðsÞ using the
appended (nonobservable from y) stable dynamic weight
shown in Fig. 6.
In the figure, vector za (which during the design process

is included in the overall performance vector z) represents
the bow and stern plane actuation channels after being
weighted by two first-order linear stable transfer functions.
For the case studied in this paper, the matrix operator
W aðsÞ was set to

W aðsÞ ¼ 2

s=6þ 1

ðs=30þ 1Þ
0

0
s=6þ 1

ðs=30þ 1Þ

2
6664

3
7775.

The inclusion of these high-pass weights expedites the
process of fine tuning the closed-loop bandwidths of the
control planes because it penalizes high-frequency compo-
nents of the actuation signals. After several iterations the
controller order was set to k ¼ 2 to accommodate the
K P
w +

−
u

x1

za
Wa(s)

�a

Fig. 6. Actuators bandwidth constraint.
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required actuator bandwidth constraints and the order of
the resulting ROF controller was 4.

Fig. 7 shows the Bode diagrams for the closed-loop
transfer functions from the depth command input zcmd to
the variables z, y, ds and db for the 2:0m/s controller. The
diagram shows that the performance requirements and the
actuator bandwidth constraints are met by the resultant
closed-loop system.

Figs. 8 and 9 illustrate the efficacy of the controller
synthesis technique proposed. Fig. 8 shows the
evolution of variable a during the first phase of
the controller synthesis (Algorithm 1). Fig. 9 depicts the
K ¼

�0:0086 �0:0366 0:0312 �0:1

0:3311 1:4135 �0:0638 �0:3

�0:0691 �0:2782 0:0002 0:11

�0:2687 �1:1510 0:0011 0:45

2
6664
evolution of g, the H1 norm of the system under study
(second phase, Algorithm 2) for the 2:0m/s controller.
Notice that in this case the overall controller synthesis
procedure requires seven iterations to find a stabilizing
controller and 68 iterations to compute the sub-
optimal reduced order output feedback controller.
The regional eigenvalues placement constraint was
achieved after 6 iterations in the second phase of the
synthesis procedure. The sub-optimal SOF controller K,
determined using the algorithm presented above for the
augmented dynamics P and for the forward speed of
2:0m=s is
820 �0:4080 0:3053 �2:1357

120 0:0337 �0:6098 3:4339

16 1:7494 �0:0065 0:6050

07 7:3011 �0:0258 2:5146

3
7775.
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Fig. 10 displays the dominant closed-loop eigenvalues for
the set of controllers synthesized for different vehicle
speeds. In the figure the closed-loop eigenvalue regional
placement constraint is represented by a solid line. It is
evident that the constraint is satisfied by the different
controllers synthesized for vehicle’s speeds in the interval
½0:5; 3:5�m/s.

3.5. Non-linear controller implementation

A set of controllers was designed for a finite number of
operating points, and their parameters interpolated ac-
cording to the vehicle’s forward speed (scheduling vari-
able). The implementation of the resulting nonlinear gain-
scheduled controller was done using the D-methodology
described in Kaminer et al. (1995). This leads to the general
structure for the implementation of discrete-time gain-
scheduled controllers depicted in Fig. 11, where F ðuÞ

denotes the block that interpolates the reduced order
output feedback controllers obtained from the discretiza-
tion of the linear controller designs in Section 3.3. The
feedback chain from the integrators output to the block
F ðuÞ implements the ‘‘washout’’ for the bow plane channel.
In the present case a sampling frequency of 10Hz was
selected. In the figure, u ¼ ½db; ds�

0 is vector of the bow and
stern planes deflection, e ¼ ze is the depth tracking error
and x ¼ ½q; z; y�0. The limits on the saturation block were
set to þ30� and �30�, to prevent plane stalling. Notice that
at trimming, the variable e ¼ ze and the vector at the
output of the discrete ‘‘differentiator’’ are both zero. As
explained in Kaminer et al. (1995) for the continuous time



ARTICLE IN PRESS
C. Silvestre, A. Pascoal / Control Engineering Practice ] (]]]]) ]]]–]]] 11
setup, this simple but important fact is the reason why the
linearization of the nonlinear gain scheduled system about
an equilibrium condition will not introduce any extra terms
arising from the additional feedback loop u, thus recover-
ing the properties of the linear designs. Furthermore, it
avoids feedforwarding the trimming values for the inputs
and state variables.

4. Tests at sea

To assess the performance of the controller developed, a
series of tests were carried out at sea. The vehicle was
operated at constant heading and low depths, under the
influence of strong wave action. Figs. 12–15 show some of
the practical results obtained during depth changing
maneuvers, together with the results of simulations
obtained with a full nonlinear model of the vehicle. At
the beginning of this maneuver INFANTE was at surface;
20 s into the maneuver the depth controller was switched
on and a command to dive to 8m depth was applied; this
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Fig. 12. Commanded and measured dep
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Fig. 13. Pitch angle—simulat
was followed by a command to dive to 10m at t ¼ 150 s. In
the figures, the dashed and solid lines represent the
experimental and the simulation results, respectively. The
vehicle’s forward speed was kept approximately constant at
1:8m/s.
Figs. 12–14 show commanded and measured depth,

pitch and pitch rate activity, respectively. Fig. 15 displays
the activity of the bow planes. Notice the strong coupling
between wave action and control planes deflection near the
surface, mainly induced by pitch and pitch rate. Leaving
aside the influence of the waves (which was not addressed
explicitly in the controller design phase), the figures reveal
close agreement between predicted and actual maneuvers.

5. Conclusions

The paper described the design and experimental testing
of a control system for the INFANTE AUV in the vertical
plane. The general setup adopted for controller design was
nonlinear gain-scheduling control, whereby a set of linear
300 400 500

e [s]

th—simulated and measured values.
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ed and measured values.
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finite reduced order output feedback controllers were
designed using linear matrix inequality (LMI) based
techniques. The methodology adopted addressed explicitly
the fact that one of the vehicle states is not easily accessible
for measurement. Furthermore, it is well rooted in recent
theoretical advances in control theory and numerical
analysis. The performance of the controller developed
was evaluated using the proposed methodology was
evaluated during tests at sea. The controllers implemented
have proven extremely reliable over a long series of
missions with the INFANTE AUV. Further problems that
warrant further research include AUV control close to the
surface in the presence of strong wave action and AUV
terrain following.
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