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Lisbon, Portugal

ABSTRACT

The fluorescence confocal microscopy is one of the most
important tools in biomedical and pharmaceutic research.
The main advantage of this technique over the traditional
optical microscopy is the fact that it allows the selection of
a thin cross-section of the sample by rejecting the visual
information coming from the out of focus planes. Addition-
ally, it uses fluorescence synthetic molecules that radiate in
a wave length different from the one of the incident laser. It
is easy to track these molecules inside the cell.

In this paper we present two related algorithms for flu-
orescence confocal microscopy, both of them derived from
an alignment-by-reconstruction algorithm originally devel-
oped for 3D ultrasound. The first algorithm, estimates a
3D region from a set of images corresponding to a stack of
parallel cross sections taken from the cell. The second algo-
rithm, estimates one 2D cross-section from a set of images
taken during a long period of time. This last algorithm also
estimates a 2D function describing the intensity exponen-
tial decay fluorescence coefficients for each position on the
2D region of interest. This decrease of the image intensity,
called photobleaching, must be compensated but it is use-
ful from a biological point of view because it is related with
the chemical and transport phenomena that occur inside the
cell.

1. INTRODUCTION

Confocal microscopy is known since the end of fifties. How-
ever, the most significant advances occurred during the last
decade. The fluorescence confocal microscope has became
one of the most powerful tool in medical and biological re-
search [4] due to the improvement of the laser scanning con-
focal microscope (LSCM) [3], to the development of syn-
thetic fluorescent probes and proteins and to the develop-
ment of a wider spectrum of laser light sources coupled to
highly accurate acoustic/optic controlled filters.

The main advantage of the fluorescence confocal micro-
scope over the traditional optical one consists on its capabil-
ity of illuminate a thin plan of the specimen to be observed,
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Fig. 1. Confocal Microscope.

collecting the light radiated from that plan and eliminating
the out-of-focus information[2]. The illumination is pro-
vided by a highly focused laser beam and the observation is
performed by rejecting all radiation but the one emitted by
the fluorescence effect[1], as shown in Fig.1.

By controlling the position of the sample or the geome-
try of the microscope (pinholes and lens positions) [3] it is
possible to select the focal plane to be observed. This al-
lows the extraction of a sequence of parallel cross-section
of a specimen with small inter-planes contamination and re-
construct three dimensional structures, e.g., cytoplasmatic
or nucleus membranes, cytoskeleton, mitochondria, Golgi
apparatus, endoplasmic reticulum, and nucleus [6].

This paper presents a reconstruction algorithm from flu-
orescence confocal microscopy images, inspired in a 3D
ultrasound reconstruction method presented in [5]. Here
two different problems are considered, i) 3D reconstruc-
tion from a set of parallel cross-sections of the cell taken
in a short period of time and ii) 2D reconstruction of a sin-



gle plane from a set of images, corresponding to the same
cross-section taken in a long period of time.

The four main difficulties that we must to deal with are
the following:

1. Non Gaussian noise. Images are corrupted by multi-
plicative noise with a Poisson distribution. The noise
arises because the number of emitted photons due the
fluorescence effect is very small.

2. Unobserved inter-planes regions. When the vertical
spatial resolution is small, some planar regions in be-
tween cross-sections, could not be observed. In these
cases they must be estimated by interpolation.

3. Blurring. The rejection of visual information radiated
from the out-of-focus planes is not perfect. Therefore,
there is a blurring effect, described by a point spread
function (PSF) [2] that can be included in the recon-
struction algorithm. In this paper it will be assumed
that this effect is negligible (future improvements will
take it into account).

4. Photobleaching. This, phenomenon occurs when flu-
orophore permanently loses the ability to fluoresce,
due to chemical reactions induced by the incident laser
or by other surrounding molecules. This effect leads
to a decrease in the image intensity along the time and
at space varying rates. When the acquisition is fast
and the laser intensity is low, as it is the case in data
acquisition for 3D reconstruction, this phenomenon is
not relevant. However, in long time acquisition pro-
cesses this effect must be considered.

2. 3D RECONSTRUCTION

The 3D reconstruction of the cell from a set of parallel cross
sections can be formulated as follows. Let f be a scalar
function describing the fluorophore distribution in the re-
gion of interest (ROI) Ω ∈ R3. We will assume that

f(x) = Φ(x)T F (1)

where Φ(x) = [φ1(x), φ2(x), ..., φN (x)]T is a vector of
N spline basis functions and F = [f1, f2, ..., fN ] is a vec-
tor of coefficients to be estimated. We will assume that
splines have a finite support and are centered at the nodes
of a regular grid (see [11] for details). A typical grid has
100× 100× 100 nodes.

The goal in this section is to estimate the function f(x)
from a set of noisy observations Y = {yp

i,j} and the corre-
sponding locations, X = {xp

i,j}, affected by measurement
errors, where p = 0, ..., L− 1 and 0 ≤ (i, j) ≤ (n,m). The
pixel locations in space in a cross-section p, is given by

xp
i,j = xp

0 + Up

[
Rp[i, j]T + Tp

]
(2)
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Fig. 2. Alignment by rotation and translation.

where xp
0 is the 3D location of the bottom-left pixel, xp

0,0,
and Up = [up

1,u
p
2] is a 3 × 2 matrix (see Fig. 2). The

two columns of Up, up
1 and up

2, are the orthogonal vectors
aligned with the image sides with length equal to the in-
ter pixels distance. These parameters, xp

0, up
1 and up

2, are
obtained from the position and orientation of each cross-
section provided by the acquisition system and are affected
by errors. To correct these errors, the pixel positions are
rotated and translated by using a rotation matrix,

Rp =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
(3)

and the translation vector tp = tp1u
p
1 + tp2u

p
2. All these

parameters, Ψ = [(t1, t2, θ)p], with p = 0, ..., L − 1, must
be estimated during the reconstruction process.

The function f(x) and pose parameters Ψ can be esti-
mated by the maximum a posteriori (MAP) method. This
leads to

[F̂ , Ψ̂] = arg min
F,Ψ

E(F, Ψ) (4)

where

E(F, Ψ) = − log(p(Y |F, Ψ))− log(p(F ))− log(p(Ψ)) (5)

is the energy function to be optimized.

1. In this expression p(Y |F, Ψ) is the observation model
which accounts for the multiplicative noise corrupt-
ing the confocal images. Assuming statistical inde-
pendency of the observations [7] and a Poisson dis-
tribution for the pixel intensities [6], the data fidelity
term is

EY = − log(p(Y |F, Ψ)) = −
L∑

p=1

n,m∑

i,j

ϕ(yp
i,j ,x

p
i,j) (6)

where xp
i,j depends on (t1, t2, θ)p and

ϕ(y,x) = log
[
f(x)y

y!
e−f(x)

]

= y log[f(x)]− f(x) + C. (7)



2. p(F ) is the prior associated to the vector of coeffi-
cients, F . The prior information allows us to deal
with the ill-posed nature of the reconstruction prob-
lem [8].The prior p(F ) is assumed to be a Gibbs dis-
tribution with quadratic potential functions [9], i.e.,

p(F ) =
1
Z

e−γU(F ) (8)

where γ is the regularization parameter and U(F ) =∑
(p,q)∈S δ2

pq is the internal energy with δ2
pq = (fp −

fq)2. This energy is obtained by summing all square
differences among neighbouring nodes in the neigh-
bor system S.

3. p(Ψ) is the prior distribution of the alignment param-
eters, (t1, t2, θ)p. Assuming a zero mean normal dis-
tribution for the alignment parameters and statistical
independency we obtain

p(Ψ) = C

L−1∏
p=0

e
− (t

p
1)2+(t

p
2)2

2σ2
t

− (θp)2

2σ2
θ (9)

Using the previous models, the energy function (5) is

E(F, Ψ) = −
L∑

p=1

n,m∑

i,j

ϕ(yp
i,j ,x

p
i,j) +

1
2σ2

t

L∑
p=1

[
(tp1)

2 + (tp2)
2
]
+

1
2σ2

θ

L∑
p=1

(θp)2 +

γ
∑

(p,q)∈S

(fp − fq)2. (10)

where f(x) =
∑N−1

k=0 fkφk(x) and xp
i,j given by (2).

The minimization of (10) is an optimization problem
with a very large number of variables. The solution of (4)
can be obtained by finding the stationary point of E(F, Ψ)
w.r.t. F and Ψ, i.e., ∇F,ΨE(F, Ψ) = 0. This is performed
iteratively in two steps,

∇F E(F, F̂t−1, Ψ̂t−1) = 0 → F̂t (11)
∇ΨE(Ψ, F̂t, Ψ̂t−1) = 0 → Ψ̂t (12)

where t denotes the tth iteration. These two steps alternates
until convergence is achieved.

To solve the equations (11)-(12) we will use the Gauss-
Seidel and fixed point methods by optimizing the energy
function w.r.t. to each parameter, fk, tpτ and θp at a time and
keeping all the other unknowns constant [10].

From the stationary conditions, ∂E(F, Ψ)/∂fk = 0,
∂E(F, Ψ)/∂tpτ = 0 and ∂E(F, Ψ)/∂θp = 0 we obtain the

following recursion expessions

f̂ t+1
k =

1
2γNv

L,n,m∑

p,i,j

βp
i,jφk(x̂p

i,j) + f̄ t
k (13)

(tpτ )t+1 = σ2
t

n,m∑

i,j

βp
i,j(∇f(x̂p

i,j).u
p
τ︸ ︷︷ ︸

dot product

) (14)

(θp)t+1 = σ2
θ

n,m∑

i,j

βp
i,j(∇f(x̂p

i,j).v
p
i,j︸ ︷︷ ︸

dot product

) (15)

where

βp
i,j =

yp
i,j

f(xp
i,j)

− 1

x̂p
i,j = xp

0 + (rp
1(i, j) + tp1)u

p
1 +

(rp
2(i, j) + tp2)u

p
2 (16)

vp
i,j = −rp

2(i, j)up
1 + rp

1(i, j)up
2 (17)

rp
1(i, j) = i cos(θp)− j sin(θp) (18)

rp
2(i, j) = i sin(θp) + j cos(θp). (19)

Nv is the number of neighbors of fk and

f̄ t
k = (1/Nv)

∑

(p∈Vk)

f̂ t
p (20)

is the average intensity in the neighborhood of fk. In the
computation of the alignment parameters, [t1, t2, θ]p, only
the pixels belonging to the pth cross-section are used.

The initialization of the unknowns is performed as fol-
lows,

f0
k = fML

k tpτ = θ = 0

where fML
k is an approximate maximum likelihood esti-

mate given by

fML
k =

∑
i∈V (fk) yiφk(xi)∑
i∈V (fk) φk(xi)

(21)

This expression is obtained assuming that f(xi) ≈ fk when
xi is in the neighborhood of fk, V (fk).

3. 2D RECONSTRUCTION WITH
PHOTOBLEACHING

The photobleaching occurs when a single plan is observed
during a long period of time for studying the molecule trans-
port and diffusion phenomena inside the cell[1]. In this
case, the decreasing in the image intensity and cell move-
ments must be compensated. Therefore, instead of estimat-
ing a 3D volume, as in the previous section, we want to
estimate the underline 2D function that is being observed.



The formalization of the previous problem can still be
used with the following modification: parameters of the
Poisson distribution have an exponential decay along the
time, i.e.,

f(x) → f(x)e−λ(x)p (22)

where p is the index of the pth image and λ(x) is a space
varying coefficient characterizing the intensity decay. The
function λ(x) is now defined as linear combination of basis
functions (compare with (1)),

α(x) = Φ(x)T Λ (23)

where Λ = [λ1, λ2, ..., λN ] is to be estimated. Additionally,
the vectors Up are the same for all planes, that is, Up =
U = [u1,u2].

The equation (7) is now replaced by

ϕ(y,x) = y log(f(x))− λ(x)yp− f(x)e−λ(x)p (24)

and the new energy function is

E(F, Λ, Ψ) = −
L∑

p=1

n,m∑

i,j

ϕ(yp
i,j ,x

p
i,j) +

1
2σ2

t

L∑
p=1

[
(tp1)

2 + (tp2)
2
]
+

1
2σ2

θ

L∑
p=1

(θp)2 +

γ
∑

(p,q)∈S

(fp − fq)2 +

ρ
∑

(p,q)∈S

(λp − λq)2 (25)

where ρ is a regularization parameter for the λ(x) field. The
recursion equations are derived in the same way as previ-
ously, leading to

f̂ t+1
k =

1
2γNv

L,n,m∑

p,i,j

βp
i,jφk(x̂p

i,j) + f̄ t
k (26)

λ̂t+1
k =

1
2γNv

L,n,m∑

p,i,j

ωp
i,jφk(x̂p

i,j) + λ̄t
k (27)

(tpτ )t+1 = σ2
t

n,m∑

i,j

dp
i,j .u

p
τ︸ ︷︷ ︸

dot product

(28)

(θp)t+1 = σ2
θ

n,m∑

i,j

dp
i,j .v

p
i,j︸ ︷︷ ︸

dot product

(29)

where

βp
i,j =

yp
i,j

f(xp
i,j)

− e−λ(xp
i,j)p

ωp
i,j = p

[
f(xp

i,j)e
−λ(xp

i,j)p − yp
i,j

]

dp
i,j = βp

i,j∇f(x̂p
i,j) + ωp

i,j∇λ(x̂p
i,j). (30)

The auxiliary unknowns x̂p
i,j , vp

i,j , rp
1(i, j) and rp

2(i, j) are
defined by equations (16)-(19). The coefficients λk are ini-
talized with zeros, i.e., λ0

k = 0.

The equations (26)-(29) are alternatively computed until
convergence is achieved. The field λ(x) contains useful bi-
ological information, because it provides the decreasing rate
of the fluorophore at different locations of the cell, which is
related with the chemical and diffusion processes involved.

4. EXPERIMENTAL RESULTS

In this section two examples using real data are presented.
In the first example a set of 20 images are used for the 3D
reconstruction of the cell. These images, correspond to par-
allel cross sections of a cell taken in a short period of time
to avoid the photobleaching effect. Figs. 3 a-c) show three
images from the data sequence used by the reconstruction
algorithm. Figs. 3 d-f) show three different views of the 3D
reconstruction of the cell cytoplasmatic membrane.
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Fig. 3. 3D reconstruction from 20 images. a-c)Three noisy
images from the data sequence used for 3D reconstruction.
d-f) Three different views of the 3D reconstructed cytopla-
matic membrane.

The second example results are displayed in Fig. 4 and
corresponds to the 2D reconstruction of a single cross-section
of a cell from a set of 300 images with photobleaching.
Figs. 4a-b) display the first and the 100th images of the
data sequence, respectively, where the photobleaching ef-
fect is clear, since the second image is much more less in-
tense than the first one. Figs. 4 c-d) display the estimated
function f(x) and the corresponding function of intensity
exponential decay coefficients, λ(x), respectively.
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Fig. 4. 2D reconstruction with photobleaching. First line:
First and 100th image respectively from a sequence of 300
images. Second line: Estimated 2D functions f(x) and
λ(x) respectively.

5. CONCLUSIONS

In this paper we present two algorithms for fluorescence
confocal microscopy, based on the alignment-by-reconstruction
algorithm developed for 3D ultrasound. The first algorithm
estimates a 3D region of interest from a set of fluorescence
confocal images corresponding to parallel cross-sections uni-
formly taken from the volume. These images are corrupted
by Poisson noise and are misaligned. The reconstruction al-
gorithm deals with these difficulties by reducing the noise
and estimating the geometric transformation needed to per-
form the alignment. This is done in a unified way, by mini-
mizing the same energy function w.r.t. both sets of parame-
ters: 3D function and alignment coefficients.

The second algorithm estimates a 2D function from a set
of fluorescence confocal images corresponding to the same
cross-section. These images are obtained during a long pe-
riod o time. Therefore, a decreasing of intensity, called pho-
tobleaching, is observed and must be compensated. Addi-
tionally, during this long period of time, the cell moves and
its displacement must be compensated, as in the previous
3D reconstruction algorithm. The photobleaching is com-
pensated by estimating a 2D function, corresponding to the
exponential decreasing rate at each pixel. The 2D function,
exponential coefficients and alignment parameters are esti-

mated simultaneously.
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