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Abstract

Object tracking based on multiple models has been recently advocated as a way to tackle
sudden changes of shape or motion parameters. This paper addresses the estimation of time-
varying parameters described by a bank of shared state stochastic models, switched according to
a probabilistic mechanism (hidden Markov chain). A state estimation algorithm is proposed,
based on the propagation of Gaussian miztures in a multi-model framework. For preventing
mode explosion a pruning strateqy combining mode elimination and merging is used. This is
shown to be better than employing either just elimination or merging. Examples dealing with

image processing of moving objects are provided.
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1 Introduction

Tracking objects with time-varying shapes is a challenging problem. Three points make this
problem difficult: the dependence of the object shape on the camera point of view; the shape
changes which occur during the experiment; and the existence of complex motion trajectories
and dynamics. The first difficulty arises even in the case of static shape analysis while the
remaining difficulties are caused by object or camera motion. In the static case, the use of
multiple models has been advocated by a number of researchers, e.g. [5, 6, 17, 22]. A typical
example is the representation of the object as a linear combination of multiple views leading
to the concept of shape subspace. Three views are enough to represent a rigid object under
orthographic projection, if no occlusion occurs [22]. More views are needed to avoid the effect
of occlusions and to deal with non-rigid objects [5]. The model views are either specified by
the user, by selecting a set of typical images of the object, or they are obtained by training
procedures (e.g., using Principal Component Analysis [6, 17]).

These principles can be extended to deal with moving objects in video sequences. When
an object undergoes motion or shape deformation during the observation interval, it is often
represented as a sequence of views or pre-defined image features such as correlation type features
8], corners, strokes [10] or silhouettes [5]. Time dependence among consecutive views or features
is exploited by DTW (Dynamic Time Warping)|7], hidden Markov models or by syntactic
Pattern Recognition methods. These approaches have been extensively studied in the scope of
Human-machine interface and activity recognition [7, 24, 23].

Previous works represent the object motion as a sequence of static models, e.g., views or



image features. A different approach is adopted here. The data is represented by a sequence
of models as before, but dynamic models are used instead: the video sequence is approximated
by a library of stochastic dynamic models switched according to a probabilistic rule. This
type of systems is used in Control theory to represent abrupt changes in industrial plants
[21, 18] as well as in other problems [4], including target tracking for surveillance [2, 9] but
little work has been done to use them in the dynamic scene analysis. A recent step in this
direction is the work [12] based on the use of non parametric methods to deal with multiple
motion models. Discontinuous changes of the object shape during tracking operations have
been recently addressed in [11] using the so-called wormholes. This work is again based on non
parametric descriptions of the probability distributions.

This paper has the same goal. However a different approach is adopted since the a posteriori
distribution of the unknown parameters is represented by a mixture of Gaussians. This leads
to a parametric and optimal update of the a posteriori density. Furthermore, it is shown that
switched models are a useful tool to track rapid shape transitions. The use of multiple models
with shared state [16] allows to tackle complex shapes and nonlinear or changing dynamics
by combining simple local models. The overall algorithm complexity is thus reduced. Further
simplification may also be achieved by pruning least significant modes of the density according
to suitable criteria. As shown below, both procedures can be combined with advantage. This
results in suboptimal algorithms.

The paper is organised as follows. Section 2 provides a background on multi-model dynamic
systems. The data sequence is described as the output of a bank of linear systems equipped

with a switching mechanism. The estimation of the outputs and switching schedule is addressed



in Section 3. Section 4 describes the application of switched shared state filters in the context

of object tracking. Section 5 presents experimental results and section 6 concludes the paper.

2 Switched Dynamic Systems

Let z: € R™ denote the variables to be estimated and k € {1,..., M} the label of the dy-
namic/sensor model which describes the evolution of the process variables at the instant ¢
(discrete variable). This means that the data is assumed to be generated by one (numbered
k:) of several systems differing either in dynamics or observation model. Two examples fur-
ther addressed below are a moving hand making signs and moving lips. In both cases there is
noticeable shape deformation.

The hybrid state is defined by the pair z; = (x4, k;). The first component, z;, is a state
vector shared by all possible local models. The second, k;, denotes the index of the model
currently generating data. The hybrid state summarises all the past information needed to
generate future realisations of the stochastic processes x;, k;. Estimates are made on the basis
of measured variables, y;, which are instantaneous observations of the state variables. Figure
1 summarises the direct dependencies among these variables. At time ¢, it is assumed that the
index k; depends on k;_;. The vector x; depends on z;_; and k;. For reasons to discuss below
a dependency on k;_q is also assumed. The observation y; depends on k; and x;.

Assuming that z; is a first order Markov process, then z; is characterised by the transition

density p(z¢/z:—1). The transition density can be split as follows

p(Zt/Zt—l) = p(ﬂﬁt/kt,zt—l)p(kt/zt—l)- (1)
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It will be assumed that k; is a Markov chain with transition matrix T such that p(k; =
J/Ti-1, ke—n = i) = T;;. This means that model switching is independent of previous z val-
ues, provided that k_; is known (Fig. 1). Instead of defining p(x;/k:, z_1) directly, it is

assumed that z; is the output of a stochastic difference equation

Ty — Aktfl,ktmt—l + bktfl,k?t + wt? (2)

Yr = C e + di, + 0 (3)

where wy, v, are independent Gaussian processes: w; ~ N(0, Qk, k), v¢ ~ N(0, Ry,). Expres-
sion (2) is a stochastic difference equation whose parameter matrices A,b, @ depend on k; and
kv

In image analysis special attention must be paid to transitions, since there is no guarantee
that z; should have the same meaning or even the same dimension for two different values
of k; (see the comments at the end of example 2). Two cases are considered: i) steady state
operation (k: = ki_1)characterised by M linear systems and ii) transition epochs (k: # ki—1)
which are described by M(M-1) equations in order to consider all the admissible transitions.

Two simple examples illustrate the need of probability densities associated to transitions.

Example 1

Consider two shape models (Fig. 2a): two rectangles of different length which have not
been aligned. The object present in the image corresponds either to the first or to the second
model. Let x; be the rotation angle needed to align one of the shape models with the object
observed in the image. Every time the model changes in response to a change in the object

being observed, this must be compensated by a jump in x;. This can be done by assigning



b, .k an appropriate value. Figure 2b shows a sequence of observed shapes and Fig. 2c
the corresponding state trajectory. As expected, the state variable is discontinuous at the
transition.

Example 2

Consider (Fig. 3) a moving object whose shape and position evolve according to two models:
an affine model up to time ¢y and a translation model from time ¢y, on. The state vector has a
different number of components in both cases (six parameters are needed for defining an affine
transform while only two have to be specified in the case of translation motion).

Assuming a Wiener model for the evolution of the coefficients, matrix A is a 6 x 6 identity
matrix up to time to — 1 and a 2 x 2 identity matrix from time ¢y + 1 on. At the transition
instant, matrix A4 is 2 x 6 matrix. Choosing this matrix depends on both the indices k; and
k;_1. This allows to use state vectors with different dimensions and to perform appropriate
switching between the corresponding state spaces and probability density functions defined in
those spaces. In this case, A is no longer a square matrix. It is remarked that the template
must be updated at the beginning of each transition among models.

An alternative would be to freeze some parameters of the high dimension representation
(e.g., affine) when a lower dimensional model (e.g., translation) is to be used. Fig. 4 shows
an example in which a square, whose observations are corrupted by noise (Fig. 4a), follows
a sequence of straight and curved paths. The output of the tracker segmenting both types of

movements is shown in Fig. 4(b).



3 Density Propagation

Density propagation may be performed either by an optimal or a suboptimal algorithm. In the
case of optimal algorithms all the mixture modes are propagated. This leads to an exponential
increase of complexity. Pruning least significant modes of the density according to a suitable

criterion results in suboptimal algorithms.

3.1 Optimal Algorithm

The main question which has to be addressed is the following: given a set of observations
Y: = (y1,...,¥:), what is the posterior density p(z:/Y;) 7 From this, we can estimate z;, e.g.,
using the MAP criterion.

Using the law of total probabilities, the a posteriori density is given by

P2/ Vi) = Z (o, K/ Ye) = Z cre, P2/ Zt) (4)

K Ki—1

where K; = (k1,..., k) is the model label sequence, Z; = (z1,...,2:) is the hybrid state
sequence and ¢y, = P(K,;/Y;). The density p(z:/Z;), which corresponds to the case of known
dynamic and sensor models is normal N(Zk,, Px,) with mean Zg, and covariance matrix Py,
updated by Kalman filtering [2]. Therefore, p(z;/Y;) is a mixture of Gaussians, each of them
is associated to a specific model sequence K;. Since K; € {1,..., M}, there are M* different
model sequences and the mixture will have M* components.

The computation of the mean and covariance of each component is organised in a tree
structure where each branch corresponds to an iteration of a Kalman filter (see fig. 5). This
optimal structure cannot be directly implemented and some complexity reduction schemes have
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to be devised to avoid the combinatorial explosion.
Consider now the computation of the mixing parameters ¢y, = P(K:/Y;). Since the model
sequence is a Markov chain with transition probabilities T;;, the mixing parameters can be

recursively updated (see Appendix 1) by

CKy — OéTktflyktG<yt)CKt71 (5)

where G is a Gaussian density function (see Appendix 1) and « is a constant obtained from the
normalisation condition Y cx, = 1. As explained before, there is a mixture mode associated
to each tree node. The algorithm used to compute the parameters associated to each node is

summarised in Table I.

3.2 Sub-optimal Algorithms

In practice, the number of components of the Gaussian mixture cannot grow to infinity and must
be limited. Several strategies have been proposed for this sake in Control literature [21]. In this
paper, two methods are used to achieve this goal: component elimination and merging. The
first method discards components with mixing parameters, cg,, smaller than a given threshold
(e.g., T. =—%). These components produce a negligible contribution to the mixture density. The
second method tries to avoid multiple components with close densities by merging then into
a single component. The divergence is used for deciding whether two components are similar
(the divergence is computed for all pairs of components; the pair with smallest divergence is
merged if the divergence is below a given threshold T;,; the process continues until there is no

pair meeting the merging conditions). Here, divergence is defined as in [19]. Accordingly, the



divergence between two normal distributions, N(u, P), N(¢/, P’) is given by [19]

D= %(M_M/)T<P_l +P/_1)<M_M/)+ %tT{P_IP/+PI_1P—2]} (6)

Another possibility would be to employ Kullback-Lleibler divergence. A similar criterion is used
in [14] to approximate a periodic function by a Gaussian mixture in the context of nonlinear

phase estimation.

3.3 Example

An example illustrating density propagation with the suboptimal algorithm described is now
given.

Example 3

Consider two point targets moving on a line with random velocity (Fig. 6). Suppose there
is a sensor which provides the coordinates of one of the points (we do not know which) at each
instant of time and the measurement is corrupted by noise. We wish to estimate the location
of both points at every instant of time from the noisy observations.

This is a state estimation problem with interrupted observations which can be formulated
using multiple models. The state vector z = (z', #?) contains the points’ coordinates. It will

be assumed that the points locations are the outputs of the stochastic equation

0995 O
Ty = T+ wy (7)



where w; ~ N(0,Q), Q = diag(0.5,4) and the sensor equations are

Model 1: ye=1[1 Oz + v
(8)
Model 2 : y,= [0 1]z + vy
with v, ~ N(0,0.3). The model transitions are described by a Markov chain with transition
matrix T (T11 = Ta2 = 0.9). This state dynamic model is constant in time but observations are
modeled either by model 1 or model 2. It is not a priori known which of these models is active
at a given time.

Figure 7 shows the output of the state estimation algorithm described in table I for a single
experiment. Figure 7a shows the observations available to locate the points (try to guess their
motion from this graphic only). Figure 7b shows which target is measured at each time instant
(solid line) and the most probable value of k; computed from the mixture coefficients (dotted
line). The evolution of the state components, ', z?, (solid line) and their MAP estimates
(dotted line) are displayed in Fig. 7c,d. This experiment shows that the algorithm manages to
locate both targets and to guess which target is being sensed, most of the time. Finally, Figs.
7e-i show the density function (Gaussian mixture) p(ax, k:/Y;), ke = 1,2 for the first 5 instants
as well as the true state value (vertical line; remark the line is sometimes hidden by the state
density function). The best model sequence estimated from Fig. 7e-h is given by the sequence
of indices 11222 which agrees with Fig. 7b.

To assess the performance of pruning, the two-point problem was solved considering four
strategies:

i) no pruning

ii) mode elimination (threshold T, = 107%),
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iii) mode merging (threshold T, = 5 x 1072) and

iv) mode merging and elimination (thresholds T. = 107, T,,, = 5 x 1072).

In all these experiments the maximum number of modes allowed was 200. When the limit
is exceeded the mixture modes with smallest coefficients are discarded.

The a posteriori density was propagated using the algorithm described in this paper during
the first 100 instants. The mixture densities obtained with pruning (cases ii, ii, iv) are compared
with the density obtained without pruning (case i) The difference was evaluated using the

divergence [19]

d(p1, p2) 2/291 z))log pQEgdl’ (9)

Since there is no closed form expression for the divergence between two mixtures of Gaus-
sians, Monte Carlo techniques were used instead to evaluate the integral.

Equation (9) can be rewritten as a sum of the expected values of appropriate log functions

(Kullback-Leibler divergences)

x x
d(p1, p2) /]91 ]91 $§d + = /]92 g]]jQ(x)dx (10)

It is remarked that in the special case of Gaussian distributions this reduces to (6).

Each integral was computed in two steps. First, 10° realisations of the variable = were
sampled from the density p; (viz. p2). Then the average value of log p1/ps (viz. logps/p) was
computed.

Fig. 8(a) shows the number of modes and (b) the divergence obtained by the different
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pruning strategies considered. As seen, the combination of merging and elimination always
yields the smallest number of modes. Average values are seen in Table II.

The simultaneous use of mode elimination and merging is clearly better than each of them
used in isolation. As seen from the table, elimination+merging is almost as close to pruning
than just elimination and much closer than just merging. The combination of elimination and
merging requires however less than four times the number of modes if either the elimination
or merging is used in isolation. Indeed, in this example, very good results are achieved with
approximately 10 modes (5 modes per model).

Fig. 9 provides a visual illustration of this fact. While both densities are seen as quite
similar (a) was obtained with 100 Gaussians and (b) with just 8 Gaussians, selected by the

merging+elimination method.

4 Application to Tracking

The methods considered in section 3 may be applied to a variety of problems. This section
specialises these methods for tracking of moving objects whose shape and dynamics change in

time.

4.1 Dynamic Shape Modeling

Consider an image sequence of a moving object. We wish to estimate the evolution of the
shape and motion parameters. By shape it is meant either the outer boundary of the object or

a set of strokes. There are several ways to represent shape and motion evolution as the output
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of stochastic difference equations. In this paper, it is assumed that the edges detected in the
image are transformed versions of a set of reference (model) strokes. Each stroke is a curve in
R?, represented by a continuous function defined on an interval I C R [3]. Let ¢; : I — R* be a
parametric representation of the curve detected in the ¢-th image and ¢’ : I — R%,i = 1,..., M,
the parametric representation of the reference curves associated with M shape models. It is
assumed that

¢ = T v (11)

where 7, is a geometric transform, k; € {1,..., M} is the model label and v is a noise curve.
The geometric transform 7; conveys motion and distortion information. Several transforms
are considered in this paper. The affine transform is a popular choice since it provides enough
flexibility to represent the motion of planar and even tri-dimensional ob jects under orthographic
projection [22]|. For the sake of simplicity, it will be assumed that 7; is either a translation or
an affine transform. Therefore, the image curve c(s) = (cit, c2r) (Where s is the parameter
corresponding to the curve parameterisation considered) is given by

Translation:

c1e(8) = A (s) + 1 + v1(8) 12)

Cor(8) = 5t (8) + 2o + va(s)

Affine Transform:

Clt<3) - C]ft (S):Blt + Cgt (S):I?Qt + X3¢+ U1 (S)

02t<3) - C]ft (S):B4t + Cgt <8)$5t + Tt + UQ(S)

13



where s € [ is a parameter which defines the location of a point on the stroke, c¥(s) = (c¥,, c&,),

v(s) = (vi, v2r) and xye, o (translation) or iy, ..., xe: (affine) are the motion parameters at
instant ¢. It is not realistic to assume that the whole contour ¢; is known. In many cases,
only samples c¢;(s1),...,c:(sm) of the image strokes are extracted from the t-th image, using
appropriate image analysis algorithms [3]. These samples are the observations available at time
t which should be used to retrieve the object boundary.

Assuming that the object moves during the acquisition process, dynamic equations have to

be devised for describing the evolution of the motion parameters. Let

Ty = [T14, Top, T1gy Doe|” (translation model) or (14)

Ty = @14y, Topy T1gy v vy Ter) - (affine model). (15)

It is assumed that z; is the output of a difference equation (2).

Let us now consider the sensor model. Image processing provides samples ¢;(81), ..., ¢:(S.m).
Let ., ¢, v be 2m x 1 vectors with the coordinates of all sampling points stacked in a single
column (e.g., y: = [c1e(81) ... c1e(Sm)cai(51) ... car(5m)]"). Then, (12,13) can be written as (3)
where

Translation:

1m><1 Om><1 Om><2

Om><1 1rn><1 Om><2

di = [ch(s1) - Ap(5m)cu(s1) - - Cy(8m)]" (17)
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Affine Transform:

di = Ogpix1 (18)

¢i(s1) ch(s1) 1

ci(sm) Ch(sm) 1

Mi Om><3 Om><6
C; = (20)

Om><3 Ml Om><6

In the translation case, matrix C; is shape independent. Shape information in conveyed in
d; while in the case of the affine transform shape information is contained in Cj.

Equations (2-3) with the above definitions define a switched dynamic system which is able
to represent sudden changes of shape (changes appearing in matrices of (3)), or motion (changes
appearing in the matrices of (2)), or both, provided that the object are approximated by one

of the reference shapes.

4.2 Feature Detection

It is assumed that the shape model is attracted by feature points detected in the image. Several
methods are available for detecting image features, e.g., by using line searching along the
normal directions at specific contour points [3, 20] or by computing the data centroids using
competitive learning methods [1]. In all of these, feature detection requires an estimate of the
object shape in the next frame (predicted shape). A mean square error estimate of the object
shape 97 = E{y:/Yi—1} is used in this paper. It is remarked that the detected features depend
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on the predicted shape. Indeed, only the vicinity of the predicted contour is usually considered
by feature detection methods. In order to render feature detection more independent with
respect to estimation, some authors [12] use multiple predictors.

Since the density of the predicted state, p(z:/Y;—1), is a mixture of Gaussians, shape pre-

diction can be written as follows (see details in Appendix 2).

M
Uy = > Ciri™ +di” (21)

i—=1

where
= ). ik (22)
Kt:k?t:’i
di_ — dl Z Cl_(t (23)
Kiki=1

CI_Q — Tktflkthtfl (24)

In the last three equations, the sum is performed for all the label sequences (tree leaves), Kj,
such that k& = 1.

Shape prediction performed by (21) is a weighted average of the predicted shapes and
motions produced by each of the models, weighted by the model likelihood. This combined

predictor based on different shape models is easily computed as shown.

5 Results

The proposed algorithm was used for tracking moving objects with significant shape changes

in image sequences. A simple dynamic model was adopted to describe the evolution of the
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motion parameters: the derivative of each parameter is modeled by a Wiener process, leading

to a dynamic equation

I 1
Ty = Ty + Wy (25)

O I

where x; (z: € R* in the case of translation, example 4 below, z; € R'? in the case of affine
transform, example 5 below, see definitions in equations [14,15]) is a state vector containing
the motion parameters and their derivatives, [ is the identity matrix and O the null matrix. It
is assumed that the object shape in the first image is known. For each new image the following

operations are performed:

shape prediction according to g~ = E{y/Y;_1};

feature detection by constrained clustering methods [1];

update of mixture components according to table I;

component reduction;

parameter estimation using the MAP method.

Example 4

Figure 10 shows examples of lip motion estimated with the above multi-model tracking algo-
rithm. Three models are considered (see Fig. 10a). At each instant of time the algorithm
manages to select the most appropriate model to represent the lips as well as the motion pa-
rameters (Fig. 10b-h). Lips are represented by 4 parameters (2 translation coordinates and

their derivatives). The proposed algorithm manages to propagate the a posteriori distribution
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by using mixtures of Gaussians. The image analysis operations needed to extract shape infor-
mation from the observed images are based on the constrained clustering techniques developed
in [1]

Example 5

Figure 11 shows tracking results obtained with a sequence of a moving hand, assuming that the
reference shapes are transformed according to an affine model (a 12D state vector is used in
this experiment). It is remarked that this example can not be tackled by the translation model
since the image undergoes rotation from frame to frame. Three shape models are considered as
shown in fig. 11a. Fig. 11b-f displays the selected shape model transformed using the estimates
of the affine parameters. This example illustrates the ability of the proposed algorithm to cope

with significant shape changes, keeping good tracking capability.

6 Conclusion

This paper addresses the image processing problem of tracking moving objects with significant
changes of shape or motion dynamics. The propagation of the a posteriori density is the most
difficult step in this procedure and it is accomplished by using Gaussian mixtures whose pa-
rameters are recursively computed at each instant of time. In order to avoid a combinatorial
explosion of the number of modes, mode pruning is used, according to suitable criteria. It is
found that the combination of merging and mode elimination provides an adequate description
of the a posteriori density while keeping the number of modes and consequently the computa-

tional complexity small. The proposed algorithm is applied to the estimation of object motion
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and shape in image sequences, assuming that sudden changes of the object shape or motion
may occur during the experiment. While nonparametric methods can be used, efficiently prop-
agating a density of a 12D space is performed, as in example b, with advantage by parametric

methods such as the ones considered in this paper.
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Appendix 1 - Computation of cgk

Appendix 1 derives a recursive algorithm for updating the mixing coefficients of a Gaussian

mixture for the propagation of the state density function, associated with a switched multiple

model system. Since ck, = P(K:/Y;), then

PV, Ky)

1
CKt - P(}/t) - P(}/t) /P<}/;7Kt7xt)dxt

1
— P /P(yt/Yt—hKt,xt)P(Yt_17Kt7mt)d$t
1

P(Y:)

[ Plb e )Py, Ko
e Pl )P Vi, Ko, )P, Kis )
— P(}/;) yt T Tt t t—1, t—1, Tt t—1, t—1, T AT

Since k; is a Markov chain, P(k:/Yi_1, Ki—1, ) = Tk, , 1, and

Ty 1k
== I p k P(Y;_1, K d
CK, P(Yt) / (yt/ t7$t) ( t—1y 4\ 17$t) Ty

_ T]ftflykt
- P /P(yt/k’t,:Et)P(:Bt/}/;_17Kt_1)P<}/'t_17Kt_l)dmt

= OéTict,l,ktCKt,l/P(yt/kml’t)P(iEt/Yt—hKt—l)dﬂﬁt

(30)

(31)

(32)

where a = P(Y;_1)/P(Y}) is the same for all the components. The integral which remains to be

computed is well known: it is the innovation density function N(0, P.), P. = Cy, P~CL + Ry,,

computed at € = y; — C, 2™, which will be denoted as G(y;), for simplicity. Therefore,

CKy — aTkt—lktG<yt)CKt—1

as we wished.
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Appendix 2 - Output Prediction

This appendix derives the mean square error prediction of the output of a switched multiple
model system g; = E{y:/Yi-1}.

Since the label sequence K; is unknown, the predicted output can be written as follows

Uy = Z cr, B{ye/ K, Yioa} (34)

K

where cg, = P(K:/Y;—1). Since y = Cr,x¢ + dg, + vy, then

Uy =Y g, |Crdy + dy, (35)

K

where ; = F{z;/Y;_1} is updated as shown in Table 1.
Since matrices Cy,, dg, depend on the current label k; only, the sum in (35) can be reorganised

by associating the terms with the same C, d matrices. Therefore

M M
U =Y, Y. g |Cidy +di) =Y Cidy +dy” (36)

=1 Kyike—i i=1

where
=) ki (37)
Kiki=1
di_ — dl Z Cl_(t (38)
Kiki=1

The predicted coefficients ck, can be recursively computed as follows

e — PUKy/Yier) = Pl Kot /Tocs) = P/ Koo, Toot)P(Ko1Toy) (39)

Since P(k’t/Kt_l, Tt—l) = Tktflkiﬂ CKy 1 — P(Kt_l/Tt_l)

CI_Q - Tkt71ktht717 (40)
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For each node created at instant t, update the mean and covariance, according to the following

steps:
i)Prediction it)Filtering
= Aktflykti/ + d]ftflykt T=17 -+ K<yt - thi_)
K= P‘C’,Z;(C’ktP_C’,Z + Ry,)!
P = AktflyktP/A%;,l,kt -+ thflykt P= (I - Kth)P_
¢ =Tk 11 c=aG(y)c™
where

“ FANRPIN ~ FANRPIN
(5177 P7 C) - <$Kt7 PKt? CKt)7 (:Z?/, Plv CI) - (mKt717 Pthu CKt71)7

Table 1: Density propagation for a Switched Dynamic System (tree update)

average number of modes | average divergence

elimination 39.5 0.0015
merging 44.3 0.0043
9.8 0.0016

merging + elimination

Table 2: Comparison of pruning results with the ones obtained without prunning, using 200

Gaussians.
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Figure 1: Hybrid state model
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Figure 3: Computation of the mixture components
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Figure 4. Tracking with two motion regimes: a) input data (noisy); b) tracking results with

motion labeling
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Figure 5: Computation of the mixture components
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Figure 6: Moving targets
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Figure 8: Pruning methods: a) number of modes; b) divergence between puned and unpruned

mixtures
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Figure 9: Mixtures: a) without pruning (100 Gaussians) and b) with pruning (8 Gaussians)
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Figure 10: Lip tracking a) shape models b-h) original iamges and shape estimates

31



Figure 11: Tracking results with real data. a) shape models b-h) shape estimates
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