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SUMMARY

The paper presents a solution to the problem of steering a group of wheeled robots along given
spatial paths, while holding a desired inter-vehicle formation pattern. This problem arises for example
when multiple robots are required to search a given area in cooperation. The solution proposed
addresses explicitly the dynamics of the cooperating robots and the constraints imposed by the
topology of the inter-vehicle communications network. Lyapunov-based techniques and graph theory
are brought together to yield a decentralized control structure where the information exchanged among
the robots is kept at a minimum. With the set-up proposed, path following (in space) and inter-vehicle
coordination (in time) are essentially decoupled. Path following for each vehicle amounts to reducing
a conveniently defined error variable to zero. Vehicle coordination is achieved by adjusting the speed
of each of the vehicles along its path according to information on the positions and speeds of a subset
of the other vehicles, as determined by the communications topology adopted. Simulations illustrate
the efficacy of the solution proposed. Copyright c© 2005 John Wiley & Sons, Ltd.
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1. Introduction

In recent years, there has been widespread interest in the problem of coordinated motion
control of fleets of autonomous vehicles. Applications include aircraft and spacecraft formation
flying control (Beard et al., 2001), (Giuletti et al., 2000), (Pratcher et al., 2001), (Queiroz
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et al., 2000), coordinated control of land robots (Desai et al., 1998), (Ögren et al., 2002)
and control of multiple surface and underwater vehicles (Encarnação and Pascoal, 2001),
(Lapierre et al., 2003a), (Skjetne et al., 2002), (Skjetne et al., 2003), (Stilwell et al., 2000). The
work reported in the literature addresses a large class of topics that include, among others,
leader/follower formation flying, control of the ”center of mass” and radius of dispersion of
swarms of vehicles, and uniform coverage of an area by a group of surveying robots.

At first inspection, the problem of coordinated motion control seems to fall within the domain
of decentralized control. However, as clearly pointed out in (Fax and Murray, 2002), (Fax and
Murray, 2003), it possesses several unique aspects that are at the root of new challenges to
system designers. Among these, the following are worth stressing:

i) except for some cases in the area of aircraft control, the motion of one vehicle does not
directly affect the motion of the other vehicles, that is, the vehicles are dynamically decoupled;
the only coupling arises naturally out of the specification of the tasks that they are required
to accomplish together.

ii) there are strong practical limitations to the flow of information among vehicles, which
is severely restricted by the nature of the supporting communications network. In marine
robotics, for example, underwater communications rely on the propagation of acoustic waves.
This sets tight limits on the communication bandwidths that are achievable. Thus, as a
rule, possibly no vehicle will be able to communicate with the entire formation (Fax and
Murray, 2003). Furthermore, a reliable vehicle coordination scheme should exhibit some form
of robustness against certain kinds of vehicle failures or loss of inter-vehicle communications.

A rigorous methodology to deal with some of the above issues has emerged from the work
reported in (Fax and Murray, 2002), (Fax and Murray, 2003), which addresses explicitly the
topics of information flow and cooperation control of vehicle formations simultaneously. The
methodology proposed builds on an elegant framework that involves the concept of Graph
Laplacian (a matrix representation of the graph associated with a given communication
network). In particular, the results in (Fax and Murray, 2003) show clearly how the Graph
Laplacian associated with a given inter-vehicle communication network plays a key role in
assessing stability of the behavior of the vehicles in a formation. It is however important to
point out in that work that: i) the dynamics of the vehicles are assumed to be linear, time-
invariant, and ii) the information exchanged among vehicles is restricted to linear combinations
of the vehicles’ state variables.

Inspired by the progress in the field, this paper tackles a problem in coordinated vehicle
control that departs slightly from mainstream work reported in the literature. Specifically, we
consider the problem of coordinated path following where multiple vehicles are required to follow
pre-specified spatial paths while keeping a desired inter-vehicle formation pattern in time. This
mission scenario occurs naturally in underwater robotics (Pascoal et al., 2000). Namely, in the
operation of multiple autonomous underwater vehicles for fast acoustic coverage of the seabed.
In this important case, two or more vehicles are required to fly above the seabed at the same
or different depths, along geometrically similar spatial paths, and map the seabed using copies
of the same suite of acoustic sensors. By requesting that the vehicles traverse identical paths so
as to make the acoustic beam coverage overlap along the seabed, large areas can be covered in
a short time. This imposes constraints on the inter-vehicle formation pattern. Similar scenarios
can of course be envisioned for land and air vehicles.

To the best of our knowledge, previous work on coordinated path following control has
essentially been restricted to the area of marine robotics. See for example (Lapierre et
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al., 2003a), (Lapierre et al., 2003b), (Skjetne et al., 2002), (Skjetne et al., 2003) and the
references therein. However, the solutions developed so far for underactuated vehicles are
restricted to two vehicles in a leader-follower type of formation and lead to complex control
laws. Even in the case of fully actuated vehicles, the solutions presented do not address
communication constraints explicitly. There is therefore a need to re-examine this problem
to try and arrive at efficient and practical solutions.

A possible strategy is to consider similar problems for wheeled robots in the hope that the
solutions derived for this simpler case may shed some light into the problem of coordinated
path following for the more complex case of air and marine robots. Preliminary steps in this
direction were taken in (Ghabcheloo et al., 2004a), where the problem of coordinated path
following of multiple wheeled robots was solved by resorting to linearization and gain scheduling
techniques. The solutions obtained are conceptually simple and embody in themselves a
straightforward mechanism that allows for the decoupling of path following (in space) and
vehicle synchronization (in time). The price paid for the simplicity of the solutions is the lack
of global results, that is, attractivity to so-called trimming paths and to a desired formation
pattern can only be guaranteed locally, when the initial vehicle formation is sufficiently close
to the desired one. The present paper overcomes this limitation and yields global results that
allow for the consideration of arbitrary paths, formation patterns (compatible with the paths),
and initial conditions. The solution adopted for coordinated path following is well rooted in
Lyapunov-based theory and addresses explicitly the vehicle dynamics as well as the constraints
imposed by the topology of the inter-vehicle communications network. The latter are tackled
in the framework of graph theory (Godsil and Royle, 2001), which seems to be the tool par
excellence to study the impact of communication topologies on the performance that can be
achieved with coordination.

Once again, using this set-up, path following (in space) and inter-vehicle coordination
(in time) are essentially decoupled. Path following for each vehicle amounts to reducing a
conveniently defined error variable to zero. Vehicle coordination is achieved by adjusting the
speed of each of the vehicles along its path according to information on the positions and speeds
of a subset of the other vehicles, as determined by the communications topology adopted. No
other kinematic or dynamic information is exchanged among the robots. The coordination
system is simple and holds great potential to be extended and applied to the case of air and
marine robots.

The paper is organized as follows. Section 2 introduces the basic notation required, describes
the simplified model of a wheeled robot, and offers a novel solution to the problem of path
following for a single vehicle. The main contribution of the paper is summarized in Section 3,
where a strategy for multiple vehicle coordination is proposed that builds on Lyapunov and
graph theory. Section 4 examines the convergence properties of the solutions of the combined
path following and coordination algorithms. The proofs required are given in the Appendix.
Section 5 revisits the coordination problem and provides added insight into the case where
the formation pattern is time-varying. Section 6 describes the results of simulations. Finally,
Section 7 contains the main conclusions and describes problems that warrant further research.
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2. Path Following

This section describes a novel solution to the problem of path following for a single wheeled
robot. The solution builds on and simplifies the nonlinear control law first proposed in (Soeanto
et al., 2003) and later re-examined in (Kaminer et al., 2005). Complete details can be found
in (Ghabcheloo et al., 2004c).

Consider a wheeled robot of the unicycle type depicted in Figure 1, together a spatial path
Γ in horizontal plane to be followed. The vehicle has two identical parallel, nondeformable rear
wheels and a steering front wheel. The contact between the wheels and the ground is pure
rolling and non-slipping. Each rear wheel is powered by a motor which generates a control
torque. This will in turn generate a control force and a control torque applied to the vehicle.
The problem of path following can now be briefly stated as follows:

Given a spatial path Γ, develop a feedback control law for the force and torque acting on
a wheeled robot so that its center of mass converges asymptotically to the path while its total
speed tracks a desired temporal profile.

An elegant solution to this problem was first advanced at a kinematic level in (Micaelli et
al., 1993), from which the following intuitive explanation is obtained: a path following controller
should ”look” at i) the distance from the vehicle to the path and ii) the angle between the
vehicle’s velocity vector and the tangent to the path, and reduce both to zero. This suggests
that the kinematic model of the vehicle be derived with respect to a Serret-Frenet frame {T}
that moves along the path, with {T} playing the role of the body-axis of a ”virtual target
vehicle” that must be tracked by the ”real vehicle”. Using this set-up, the aforementioned
distance and angle become part of the coordinates of the error space where the path following
control problem can be formulated and solved.

The set-up adopted in (Micaelli et al., 1993) was later reformulated in (Soeanto et al., 2003),
leading to a feedback control law that steers the dynamic model of a wheeled robot with
parameter uncertainty along a desired path and yields global convergence results. This is
in striking contrast with the results described in (Micaelli et al., 1993), where only local
convergence to the path has been proven. The key enabling idea involved in the derivation of a
globally convergent path following control law is to add another degree of freedom to the rate
of progression of a ”virtual target” to be tracked along the path, thus bypassing the singularity
problems that arise in (Micaelli et al., 1993) because the position of the virtual target is simply
defined by the projection of the actual vehicle on that path. Formally, this is done by making
the center of the Serret-Frenet frame {T} that is attached to the path evolve according to an
extra ”virtual” control law.

To this effect, consider Figure 1 where P is an arbitrary point on the path to be followed and
Q is the origin of the body-fixed frame {B} located at the center of the mass of the vehicle.
Associated with P , consider the frame Serret-Frenet {T}. The signed curvilinear abscissa of P
along the path is denoted by s. Clearly, Q can be expressed either as q = (x, y) in the inertial
reference frame {U}, or as (xe, ye) in {T}. Let p be the position of P in {U}. Further let
U
TR and U

BR denote the rotation matrices from {T} to {U} and from {B} to {U} respectively,

parameterized by the yaw angles ψT and ψB . Define the variables v and r = ψ̇B as the linear
and angular speed of the robot, respectively, calculated in {U} and expressed in {B}. From
the figure, it follows that

q = p + U
TR

(

xe
ye

)

.
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Figure 1. Frames and error variables

Taking derivatives and expressing the result in frame {U} yields
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ẋe

ẏe
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From the above expression, simple calculations lead to the kinematics of the robot in the
(xe, ye) coordinates as

Kinematics







ẋe = (yecc(s) − 1)ṡ+ v cosψe
ẏe = −xecc(s)ṡ+ v sinψe
ψ̇e = r − cc(s)ṡ.

(1)

where ψe = ψB−ψT and cc(s) is the path curvature at P determined by s, that is, ψ̇T = cc(s)ṡ.
Notice how the kinematics are driven by v, r and also by the term ṡ that plays the role of an
extra control signal.

Under the usual simplifying assumptions, the dynamics of the wheeled robot can be written
as

Dynamics

{

v̇ = F/m
ṙ = N/I

(2)

where m denotes the mass of the robot, I is the moment of inertia about the vertical body-
axis, and F and N denote the total force and torque, respectively, applied to the vehicle. We
assume without loss of generality that m = I = 1 in the appropriate units. With this set-up,
the problem of path following can be mathematically formulated as follows:

Problem 1 [Path Following]. Given a spatial path Γ and a desired speed path
profile vd(t) for the vehicle speed v, derive feedback control laws for F , N and ṡ to
drive xe, ye, ψe, and v − vd asymptotically to 0.

Driving the speed v to the desired speed is trivial to do with the simple control law
F = v̇d − k0(v − vd), which makes the error v − vd decay exponentially to zero. Controlling v
is therefore decoupled from the control of the other variables, and all that remains is to find
suitable control laws for N and for ṡ to drive xe, ye, ψe to zero, no matter what the evolution
of v(t) is. The only technical assumptions required are that the path be sufficiently smooth
and that limt→∞ v(t) 6= 0.
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6 R.GHABCHELOO ET.AL.

Proposition 1 [Path Following]. Let Γ be a path to be followed by a wheeled
robot. Further let the kinematic and dynamic equations of motion of the robot
be given by (1) and (2), respectively. Assume v(t) is uniformly continuous and
limt→∞ v(t) 6= 0. Define

σ = σ(ye) = −sign(v) sin−1 k2ye

|ye|+ǫ0

δ = δ(ψe, σ) =

{

1 if ψe = σ
sinψe−sinσ

ψe−σ
otherwise

φ = ccṡ+ σ̇ − k1(ψe − σ) − vyeδ

(3)

for some k1 > 0, 0 < k2 ≤ 1 and ǫ0 > 0. Let the control laws for N and ṡ be given
by

N = φ̇− k4(r − φ) − (ψe − σ) (4)

ṡ = v cosψe + k3xe (5)

for some k3, k4 > 0. Then, (xe, ye, ψe) = (0, 0, 0) is a globally asymptotically stable
equilibrium point.

Proof. See the Appendix.
At this point, it is important to give some intuition for the control law proposed. As will be

seen later, the proof starts with the Lyapunov function V = 1

2
x2
e+

1

2
y2
e+ 1

2
(ψe−σ)2+ 1

2
(r−φ)2.

The first two terms capture the distance between the robot and the virtual target, which must
be reduced to 0. The third term aims to shape the approach angle of the robot to the path as
a function of the distance ye, by forcing it to follow a desired orientation profile embodied in
the function σ. See (Micaelli et al., 1993) where this strategy was first introduced. Finally, the
fourth term is a by-product of the backstepping technique that lies at the root of the proof
and aims to force the actual rate of rotation r of the robot to track a desired profile that is
determined at the kinematic level. The control laws for torque N and virtual target speed
ṡ follow from Lyapunov theory. Under the above conditions, ṡ tends to v, that is, the speed
of the virtual target approaches v asymptotically. Furthermore, r approaches ccṡ = ccv as t
increases.

3. Coordination

Equipped with the results obtained in the previous section, we now consider the problem of
coordinated path following control that is the main contribution of the present paper. In the
most general set-up, one is given a set of n ≥ 2 wheeled robots and a set of n spatial paths
Γk; k = 1, 2, ..., n and require that robot k follow path Γk. We further require that the vehicles
move along the paths in such a way as to maintain a desired formation pattern compatible
with those paths. The speeds at which the robots are required to travel can be imposed in a
number of ways; for example, by nominating one of the robots as a formation leader, assigning
it a desired speed, and having the other robots adjust their speeds accordingly. Figures 2
and 3 show the simple cases where 3 vehicles are required to follow the straight paths or
circumferences Γi; i = 1, 2, 3 while keeping a desired ”triangle” or ”in-line” formation pattern.
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Figure 2. Coordination: triangle formation Figure 3. Coordination: in-line formation

Figure 4. Along-path distances: straight lines Figure 5. Along-path distances: circumferences

In the simplest case, the paths Γi may be obtained as simple parallel translations of a
”template” path Γt (Figure 2). A set of paths can also be obtained by considering the case of
scaled circumferences with a common center and different radii Ri (Figure 3).

Assuming that separate path following controllers have been implemented for each robot,
it now remains to coordinate (that is, synchronize) them in time so as to achieve a desired
formation pattern. As will become clear, this will be achieved by adjusting the speeds of
the robots as functions of the ”along-path” distances among them. To better grasp the key
ideas involved in the computation of these distances, consider for example the case of in-line
formations maneuvering along parallel translations of straight lines. For each robot i, let si
denote the signed curvilinear abscissa of the origin of the corresponding Serret-Frenet frame
{Ti} being tracked, as introduced in the previous section. Since each vehicle body-frame {Bi}
tends asymptotically to {Ti}, it follows that the vehicles are (asymptotically) synchronized if

si,j(t) := si(t) − sj(t) → 0, t→ ∞; i = 1, .., n; i < j ≤ n. (6)

Copyright c© 2005 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2005; 00:1–2
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Figure 6. A general coordination scheme

This shows that in the case of translated straight lines si,j is a good measure of the along-path
distances among the robots. Similarly, in the case of scaled circumferences an appropriate
measure of the distances among the robots is

s̄i,j := s̄i − s̄j ; i = 1, .., n; i < j ≤ n (7)

where s̄i = si/Ri. See Figures 4 and 5.

Notice how the definition of s̄i,j relies on a normalization of the lengths of the circumferences
involved and is equivalent to computing the angle between vectors li and lj directed from the
center of the circumferences to origin of the Serret-Frenet frames {Ti} and {Tj}, respectively.
In both cases, we say that the vehicles are coordinated if the corresponding along path distance
is zero, that is, si − sj = 0 or s̄i − s̄j = 0. The extension of these concepts to a more general
setting requires that each path Γi be parameterized in terms of a parameter ξi that is not
necessarily the arc length along the path. An adequate choice of the parameterization will
allow for the conclusion that the vehicles are synchronized iff ξi = ξj for all i, j. For example,
in the case of two robots following two circumferences with radii R1 and R2 while keeping
an in-line formation pattern, ξi = si/Ri; i = 1, 2. This seemingly trivial idea allows for the
study of more elaborate formation patterns. As an example, consider the problem depicted in
Figure 6 where vehicles 1 and 2 must follow paths Γ1 and Γ2 while maintaining vehicle 2 ”to-
the-left-and-behind” vehicle 1, that is, along straight lines that make an angle of 135 degrees
with the positive direction of path Γ1. Let ξ1 = s1 and ξ2 = s2

√
2. It is clear the vehicles are

synchronized if ξ1 − ξ2 = 0. Since the objective of the coordination is to synchronize ξi’s, we
sometimes refer to them as coordination states.

The above considerations motivate the mathematical development that follows. We start by
computing the coordination error dynamics, after which a decentralized feedback control law
is derived to drive the coordination error to zero asymptotically. In the analysis, graph theory
- as the mathematical machinery par excellence to deal with inter-vehicle communication
constraints - will play a key role.
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COORDINATED PATH FOLLOWING 9

3.1. Coordination error dynamics

As before, we let the path Γi be parameterized by ξi and denote by si = si(ξi); i = 1, 2, ..., n
the corresponding arc length. We define Ri(ξi) = ∂si/∂ξi and assume that Ri(ξi) is positive
and uniformly bounded for all ξi. In particular, si is a monotonically increasing function of
ξi. We further assume that all Ri(ξi) is bounded away from 0 and that ∂Ri/∂ξi is uniformly
bounded. The symbol Ri(.) is motivated by the nomenclature adopted before for the case of
paths that are nested arcs of circumferences. Using equation (5), it is straightforward to show
that the evolution of ξi is given by

ξ̇i =
1

Ri(ξi)
(vi cosψei + k3ixei), (8)

which can be re-written as

ξ̇i =
1

Ri(ξi)
vi + di, (9)

where

di =
1

Ri(ξi)
[(cosψei − 1)vi + k3ixei]. (10)

Notice from the previous section that di → 0 asymptotically as t → ∞, if vi is bounded.
In the Appendix, in the proof of Proposition 3, it will be shown that this assumption is
met. Suppose one vehicle, henceforth referred to as vehicle L, is elected as ”leader” and let
the corresponding path ΓL be parameterized by its length, that is, ξL = sL. In this case,
RL(ξL) = 1. It is important to point out that L can always be taken as a ”virtual” vehicle
that is added to the set of ”real” vehicles as an expedient to simplify the coordination strategy.
Let vL = vL(t) be a desired speed profile assigned to the leader in advance, that is ξ̇L = vL, and
known to all the other vehicles. Notice now that in the ideal steady situation where the vehicles
move along their respective paths while keeping the desired formation, we have ξi−ξL = 0 and
therefore ξ̇i = vL for all i = 1, .., n. Thus, vL becomes the desired speed of each of the vehicles,
expressed in ξi coordinates. As such, one can proceed without having to resort to the concept
of an actual or virtual leader vehicle, thus making the coordination scheme truly distributed.

From (9), making di = 0, it follows that the desired inertial velocities of vehicles 1 ≤ i ≤ n
equal Ri(ξi)vL(t). This suggests the introduction of the speed-tracking error vector

ηi = vi −Ri(ξi)vL, 1 ≤ i ≤ n. (11)

Taking into account the vehicle dynamics yields

η̇i = ui = Fi −
d

dt
(Ri(ξi)vL) . (12)

Using (9), it is also easy to compute the dynamics of the origin of each Serret-Ferret frame
{Ti} as

ξ̇i = 1

Ri
ηi + vL + di. (13)

To write the above dynamic equations in vector form, define η = [ηi]n×1, ξ = [ξi]n×1,
u = [ui]n×1, d = [di]n×1 and C = C(ξ) = diag[1/Ri(ξi)]n×n to obtain

η̇ = u

ξ̇ = Cη + vL1 + d
(14)
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10 R.GHABCHELOO ET.AL.

where 1 = [1]n×1. In the above, ||d|| → 0 asymptotically as t → ∞ and matrix C is positive
definite and bounded, that is,

0 < c1I ≤ C(ξ(t)) ≤ c2I (15)

for all t, where c1 and c2 are positive scalars and I the identity matrix. Notice that C is
allowed to be (state-driven) time-varying, thus allowing for more complex formation patterns
than those in the motivating examples of the previous section.

The objective is to derive a control strategy for u to make ξ1 = ... = ξn or, equivalently,
(ξi − ξj) = 0 for all i, j. At this point, however, two extremely important control design
constraints must be taken into consideration. The first type of constraints is imposed by the
topology of the inter-vehicle communications network (that is, by the types of links available
for communication). The second type of constraints arises from the need to drastically reduce
the amount of information that is exchanged over the communications network. In this paper,
it will be assumed that the vehicles only exchange information on their positions and speeds.
The case where only position information is exchanged leads to more complex coordination
control laws and will not be examined here.

A possible control law is of the form

ui = ui(ηi, ξi, ηj , ξj : j ∈ Ji) (16)

where Ji is the index set (of the neighbors) that determines what coordination states ξj and
speed-tracking errors ηj ; j 6= i are transmitted to vehicle i. With this control law, each vehicle
i requires only access to its own speed-tracking error and coordination state and to some or
all of the coordination states and speed-tracking errors of the remaining vehicles, as defined
by the index set Ji. Throughout the paper, we assume that the communication links are
bidirectional, that is, if vehicle i sends information to j, then j also sends information to i.
Formally, i ∈ Jj ⇔ j ∈ Ji. Clearly, the index sets capture the type of communication structure
that is available for vehicle coordination. This suggests that the vehicles and the data links
among them be viewed as a graph where the vehicles and the data links play the role of
vertices of the graph and edges connecting those vertices, respectively. It is thus natural that
the machinery of graph theory be brought to bear on the definition of the problem under study.

3.2. Graphs. Graph-induced coordination error

We summarize below some key concepts and results of graph theory that are relevant to
the paper. See for example (Biggs, 1996), (Godsil and Royle, 2001), and (Balakrishnan and
Ranganathan, 2000), and the references therein.

3.2.1. Basic Concepts and Results

An undirected graph or simply a graph G(V, E) (abbv. G) consists of a set of vertices Vi ∈ V(G)
and a set of edges E(G), where an edge {Vi, Vj} is an unordered pair of distinct vertices Vi and
Vj in V(G). A simple graph is a graph with no edges from one vertex to itself. In this paper we
only consider simple graphs, and will refer to them simply as graphs. As stated before, in the
present work the vertices and the edges of a graph represent the vehicles and the data links
among the vehicles, respectively. If {Vi, Vj} ∈ E(G), then we say that Vi and Vj are adjacent
or neighbors. A path of length N from Vi to Vj in a graph is a sequence of N + 1 distinct
vertices starting with Vi and ending with Vj , such that two consecutive vertices are adjacent.

Copyright c© 2005 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2005; 00:1–2
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COORDINATED PATH FOLLOWING 11

The graph G is said to be connected if two arbitrary vertices Vi and Vj can be joined by a path
of arbitrary length.

The assumption that all communication links are bidirectional seems to imply that no
specific orientations should be assigned to the edges of the underlying coordination graph.
This is true from a pure communications standpoint. However, the fact that we wish the
coordination control law to reflect the topology of the communication network requires that
we take a different approach to the problem at hand. To see this, let G be the undirected graph
that captures the bidirectional communication network. Then, G has n vertices (as many as the
vehicles). Associate to each vertex i the respective coordination state ξi. As discussed before,
it is the objective of the coordination system to drive the errors (ξi − ξj) to 0 for all i, j. This
suggests that the coordination control law have access to all or some of the errors thus defined,
as determined by the communication network. Suppose vertices i and j can communicate with
each other. Then, it is natural that the overall coordination error vector (to be reduced to 0)
include all allowable ξi− ξj or a combination thereof. The important fact is that the + and −
signs involved in the computation of the error components naturally introduce an orientation
in the coordination graph from vertex j to vertex i. To make this circle of ideas formal we
recall the definition of orientation of a graph and related concepts.

An orientation of a graph G is the assignment of a direction to each edge of that graph. To
do this, select for each edge {Vi, Vj} in E(G) one of the Vi, Vj to be the head of the edge and
the other the tail, and view the edge oriented from its tail to its head. After this operation, the
elements of E(G) become ordered pairs (Vi, Vj), henceforth known as arcs. See Figure 7 for the
case of a graph with three vertices. Formally, an orientation of G can be defined as a function
σ from the arcs of G to {−1, 1} such that if (Vi, Vj) is an arc then σ(Vi, Vj) = −σ(Vj , Vi). If
σ(Vi, Vj) = 1, then we regard the arc (Vi, Vj) as oriented from tail Vi to head Vj . An oriented
graph is a graph with a particular orientation denoted Gσ. The incidence matrix M of Gσ is the
{0,±1}-matrix with rows and columns indexed by the vertices and the arcs of Gσ, respectively.
If Gσ has n vertices and ǫ arcs, M is of order n× ǫ and its kl-entries are

mkl =







+1, if Vk is the head of arc l
−1, if Vk is the tail of arc l

0, otherwise
(17)

where an arbitrary numbering of the arcs is assumed. Note that each column of M contains
only two non-zero entries, +1 and −1, representing the head and the tail of the incident arc.
The following result plays a key role in the development that follows.

Lemma 1. (Godsil and Royle, 2001) Let G be a graph with ǫ edges and n vertices.
Let M be the incidence matrix of Gσ with an arbitrary orientation σ. If G is
connected, then ǫ ≥ n− 1, RankMT = n− 1, and KernMT = 1.

We close this short introduction to graph theory by introducing the concept of Laplacian of
an undirected graph (Biggs, 1996). Let G be an undirected graph with n vertices and assign
an arbitrary orientation to it. Consider the corresponding incidence matrix M . The Laplacian
L of G is the symmetric, positive semi-definite square matrix L = MMT of order n× n. This
definition of Laplacian is equivalent to the more used one of L = D − A, where D and A
denote the degree matrix and the adjacency matrix of G, respectively. By construction, L is
independent of the particular orientation assigned to an undirected graph G. Furthermore,
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Figure 7. Left: An undirected graph. Right: The undirected graph with an associated orientation

all eigenvalues of L are non-negative, and L1 = 0. If G is connected, RankL = n − 1
and consequently L has a single eigenvalue at zero with corresponding right eigenvector 1.
Furthermore, the diagonal elements of the Laplacian matrix of a connected graph are positive
and the off diagonal terms are non-positive. The following example illustrates some of these
properties.
Example 1. Consider the graph G of Figure 7 with the orientation inherited from the directions
assigned to its edges. Then,

M =





−1 1
1 0
0 −1



 and L =





2 −1 −1
−1 1 0
−1 0 1



 .

Given any arbitrary vector ζ,

Lζ =





ζ1 − ζ2 + ζ1 − ζ3
ζ2 − ζ1
ζ3 − ζ1



 .

Moreover if y = Lζ, then the i’th element of y is

yi =
∑

j∈Ji

(ζi − ζj),

that is, yi is a linear combination of the terms (ζi − ζj), where j spans the set Ji of vehicles
that i communicates with. This seemingly trivial point plays a key role in the computation
of a decentralized coordination control law that takes into consideration the a priori existing
communication constraints, as will become clear later.

In preparation for the next section we now recall a set of more advanced results in graph
theory.

3.2.2. Spanning tree of a graph.

A subgraph of a graph G is a graph G1 such that V(G1) ⊆ V(G) and E(G1) ⊆ E(G). If
V(G1) = V(G), we call G1 a spanning subgraph of G. A cycle is a close path (that is, a path
from vertex Vi to itself) in which the intermediate edges are all distinct. A connected graph
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COORDINATED PATH FOLLOWING 13

without cycles is defined as a tree. The following two lemmas are borrowed from (Balakrishnan
and Ranganathan, 2000).

Lemma 2. Every connected graph contains a spanning tree.

Lemma 3. The number of edges in a tree with n vertices is n − 1. Conversely, a
connected graph with n vertices and n− 1 edges is a tree.

These results are now exploited to give further insight into the structure of a connected
graph G with n vertices and ǫ edges. Since G is connected, ǫ ≥ n − 1. We analyze the cases
ǫ ≥ n and ǫ = n− 1 separately.

Suppose ǫ ≥ n and choose a spanning tree T in G, which is known to exist because of Lemma
2. Lemma 3 ensures that the spanning tree has n−1 edges. Index the edges of G that are in T
from 1 to n− 1 and the remaining edges from n to ǫ. Associate now an arbitrary orientation σ
to graph G and compute the corresponding incidence matrix M of Gσ. Finally, partition M as
M = [M1,M2], where M1 ∈ R

n×n−1 becomes the incidence matrix of T σ with the orientation
inherited from Gσ.

Since T is connected, RankM1 = n − 1 and MT
1 M1 is invertible. Define U =

MT
2 M1(M

T
1 M1)

−1. Then, M2 and M1 are related through the expression MT
2 = UMT

1 . Close
inspection of U shows that it is a matrix with entries in the set {0,±1}. This is a simple
consequence of the following two facts: i) the columns of M1 are linearly independent and
each column of M2 is a linear combination of the columns of M1, and ii) given an arbitrary
column of M2, the coefficients of its expansion in terms of the columns of M1 are +1 or −1.
To see this, consider an arbitrary edge i ≥ n (corresponding to column j = i− n+ 1 of M2),
joining vertices Vk and Vl. T is connected, and therefore there exists a path Γ from Vk to Vl
entirely contained in T . Because the edges in this path correspond to a subset of the columns
1, ..., n− 1 of matrix M1 and each edge has an assigned orientation, the results follow. In view
of the above, the Laplacian of G admits the representation

L = MMT = (M1Y )(M1Y )T (18)

with

Y 2 = I + UTU ;Y > 0. (19)

Consider now the case where ǫ = n−1 edges (that is, G is already a tree). The above equalities
apply with U = 0 and Y = I. Furthermore, M2 is obviously null.

Example 2. Consider the connected graph G that is obtained by adding to that of Figure 7 an
extra edge {V2, V3} with orientation σ(V2, V3) = 1. The resulting graph is not a tree. However,
it admits an obvious spanning tree for which

M1 =





−1 1
1 0
0 −1



 , M2 =





0
−1

1



 , UT =

(

−1
−1

)

, and Y 2 =

(

2 1
1 2

)

.
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3.3. Coordination. Problem formulation and solutions

We now state the coordination problem that is the main focus of this section. First, however
we comment on the type of communication constraints considered in the paper. It is assumed
that: i) the communications are bidirectional and ii) the communications graph is connected.
Notice that if assumption (ii) is not verified, then there are two or more clusters of vehicles
and no information is exchanged among the clusters. Clearly, in this situation no coordination
is possible.

Problem 2 [Coordination]. Consider the coordination system with dynam-
ics (14) and assume that d tends asymptotically to 0. Further assume that each
of the n vehicles has access to its own state and exchanges information on its path
parameter (coordination state) ξi and speed-tracking error ηi with some or all of
the other vehicles. Let G be a graph with n vertices and ǫ edges, where the presence
of an edge between vertex i and j signifies that vehicle i and j communicate through
a bidirectional link. Determine a feedback control law for u such that limt→∞ η = 0
and limt→∞(ξi − ξj) = 0 for all i, j = 1, .., n.

Remark 1. The assumption that d tends asymptotically to 0 as t → ∞ will be justified in
Section 4, which contains the analysis of the dynamic behavior of the combined path following
and coordination systems.

The next proposition offers a solution to the coordination problem, under the basic assumption
that the communications graph G is connected.

Proposition 2 [Solution to the coordination problem]. Consider the
coordination problem described before and assume that the communications graph G
is connected and the disturbance-like term d is zero. Let L = MMT be the Laplacian
of G where M is the incidence matrix that is obtained with an arbitrary orientation
on graph G. Further let A = diag[ai]n×n and B = diag[bi]n×n be arbitrary positive
definite diagonal matrices. Then, the control law

u = −(A−1L+A)Cη −B sat(η +A−1Lξ), (20)

where sat is the saturation function

sat(x) =







xm x > xm
x |x| ≤ xm
−xm x < −xm

(21)

with xm > 0 arbitrary, solves the coordination problem. Namely, the control
law meets the communication constraints and the origin is a uniformly globally
asymptotically stable (UGAS) equilibrium point of the coordination closed-loop
subsystem.

Proof. See the Appendix where it will be shown that the solution derived yields a decentralized
control law that meets the communication constraints. The case d 6= 0 is treated in Section 4
where we study the path-following and coordination interconnection.
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We now examine the form of the control law adopted, which can be written as

ui = − ai
Ri
ηi −

1

ai

∑

j∈Ji

(
1

Ri
ηi −

1

Rj
ηj) − bi sat(ηi +

1

ai

∑

j∈Ji

(ξi − ξj)). (22)

We recall that Ji denotes the set of vehicles (vertices in the graph) that communicate with
vehicle i. Notice how the control input of vehicle i is a function of its own speed-tracking error
and coordination state as well as of the coordination states and speed-tracking errors of the
other vehicles included in the index set Ji. Clearly, the control law is decentralized and meets
the constraints imposed by the communications network, as required.

Matrices A and B play the role of tuning knobs aimed at shaping the behavior of the
coordination system. Notice that the coordination vector ξ appears inside the sat function.
From the form of control law, it is clear that the sat function affords the system designer
an extra degree of freedom because as xm increases, the control activity u becomes more
”responsive” to vector ξ (intuitively, as xm increases, the coordination dynamics become
”faster”). Interestingly enough, the introduction of the sat function allows for a simple proof
that v(t) remains bounded when the path following and coordination systems are put together.

4. Path Following and Coordination Interconnection

This section examines the behavior of the coordinated path following system that results from
putting together the path following control and the coordination control systems presented in
the previous sections. In particular, we show that the trajectories of the relevant state variables
tend asymptotically to 0 if the positive definite matrix A satisfies an additional technical
condition, as shown below. For simplicity of exposition, we make A = aI, a > 0.

Proposition 3 [Coordinated Path Following]. Consider the closed-loop
system consisting of the Path Following (P.F.) and Coordination Control (C.C.)
subsystems of Propositions 1 and 2, respectively depicted in Figure 8. Let Xpi =
(xei, yei, ψei)

T ; 1 ≤ i ≤ n denote the state of the path following subsystem of
each vehicle. Further let Xc = (ηT , θT )T be the relevant state of the coordination
subsystem. Suppose matrix A = aI; a > 0 in the coordination control law (20)
satisfies the constraint

a2 >
1

2
(
c2
c1

− 1)max
i
κi (23)

where κi = |Ji| is the cardinality of Ji (the index set of the neighbors of vertex i
in Graph G) and c1 and c2 are as defined in (15). Then, given any initial state
defined by Xpi(0); 1 ≤ i ≤ n and Xc(0), the resulting trajectories Xpi(t) and Xc(t)
are driven asymptotically to 0.

Proof. See the Appendix.
Notice how the two subsystems are connected via d and v. Section 2 showed, under some

mild technical assumptions, that Xpi = 0 is a globally asymptotically stable equilibrium of
each path following subsystem. In particular, it was required that the speed vi(t) be uniformly
continuous and that limt→0 vi(t) 6= 0. Under these conditions, the disturbance-like term di
that appears at the coordination level was shown to vanish asymptotically to zero if the speed
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d

v

Xp

Xc

P.F.

C.C.

Figure 8. Overall closed-loop system consisting of the path following and coordination control
subsystems

vi is bounded, thus making the states of the coordination system tend asymptotically to zero.
It follows from these considerations that Xpi and Xc in Figure 8 tend asymptotically to zero
if the speed v satisfies the three technical conditions stated above. This is formally shown in
the proof of the above proposition.

5. Time-Varying Pattern Tracking

In Section 3 we showed, with the help of simple motivating examples, how the problem of
coordinated path following can be essentially reduced to that of ”aligning” the coordination
states ξi asymptotically, that is, making ξi − ξj → 0 for all i and j as t→ ∞. In that section,
it was also shown how the coordination ξi state of each vehicle yields a re-parametrization
of its assigned path as a function of path length si, that is, ξi = ξi(si) . Using this set-up,
formation patterns (compatible with the paths being followed) are obtained by proper choice
of the parametrization functions ξi(s), which must be computed in advance. In the case of
complex but fixed formation patterns that are path-dependent, the re-parametrization can be
done but may assume a complicated form. This problem is further aggravated in the case of
desired formation patterns that are explicit functions of time, because in this case the above
re-parametrization is simply non-existent. This section offers a methodology for time-varying
pattern tracking that is simple to implement and overcomes the above problems. The rationale
behind the methodology can be explained by referring to the simple case of a number of vehicles
doing coordinated path following along parallel straight lines. With ξi = si and the methods
proposed so far, coordination is achieved when the vehicles assume an in-line formation pattern,
which will henceforth be called the baseline pattern or configuration. Now, it is easy to go from
the baseline configuration to a more complex, possibly time-varying formation, by introducing
appropriate offsets in the desired positions of the vehicles with respect to the position of a
fictitious Leader or with respect to the average point of the formation. We take the latter
approach and formalize it as follows. Recall the coordination dynamics

η̇ = u

ξ̇ = Cη + vL1 + d
(24)

and assume as before, at this stage, that d = 0. Define α (the average point of the formation)
and δ (the offset of the vehicles with respect to α) as

α = 1

n
1T ξ (25)
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and
δ = ξ − α1, (26)

respectively and notice that 1T δ = 0. Define now the (pattern-induced) reference vector h(t)
with respect to α, which satisfies necessarily the relation 1Th(t) = 0. Then, the problem of
time-varying pattern tracking is reduced to that of making (δ − h) → 0 as t→ ∞.

With the change of variables

µ = η − C−1ḣ
θ = YMT

1 (ξ − h)

u0 = d
dt

(C−1ḣ),

(27)

the dynamics of (µ, θ) are given by

µ̇ = u− u0

θ̇ = YMT
1 Cµ

(28)

The methodology used in the last section can now be exploited to show that the coordination
control law u = u0 − (A−1M1Y

2MT
1 + A)Cµ− Bsat(µ+ A−1M1Y θ) or, equivalently (in the

original state-space) the control law

u =
d

dt
(C−1ḣ) − (A−1L+A)(Cη − ḣ) − Bsat(η − C−1ḣ+A−1L(ξ − h)) (29)

renders the origin of the closed-loop system uniformly globally asymptotically stable (UGAS).
Therefore, MT

1 (ξ−h) → 0 and using the fact that MT
1 1 = 0 this implies that MT

1 (δ−h) → 0.
Because 1T δ = 0 and 1Th = 0, that is, δ − h is normal to the null space of MT

1 , we conclude
that (δ − h) → 0 as required. In the exposition above, it was implicitly assumed that the
reference h(t) is sufficiently smooth in order for its derivatives to exist. 2

The above control law can be written in decentralized form as

ui =
d

dt
(Riḣi) − ai(

1

Ri
ηi − ḣi) −

1

ai

∑

j∈Ji

(
1

Ri
ηi − ḣi −

1

Rj
ηj + ḣj)

−bi sat(ηi −Riḣi +
1

ai

∑

j∈Ji

(ξi − hi − ξj + hj)).

Notice that vehicle i needs to know the difference ξj−hj between the coordination variable ξj
and reference hj of vehicle j (but not the coordination state ξj itself), together with 1

Rj
ηj− ḣj .

6. Simulations

This section contains the results of simulations that illustrate the performance obtained with
the coordinated path following control laws developed in the paper. Figures 9 and 10 illustrate
the situation where 3 wheeled robots are required to follow paths that consist of parallel straight
lines and nested arcs of circumferences (C piecewise constant). Figure 9 corresponds to the
case of an in-line formation pattern. Figure 10 shows the case where the vehicles are required to
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18 R.GHABCHELOO ET.AL.

keep a triangular formation pattern with constant pattern hT = [−0.25,+0.5,−0.25]. In both
simulations, vehicle 1 is allowed to communicate with vehicles 2 and 3, but the last two do not
communicate between themselves directly. The reference speed vL was set to vL = 0.1 [s−1].
Notice how the vehicles adjust their speeds to meet the formation requirements and the path
following errors decay to 0. In the in-line formation case (Figure 9), the coordination errors
ξ12 = ξ1 − ξ2 and ξ13 = ξ1 − ξ3 converge to zero. In the triangle formation case (Figure 10),
ξ12 → −0.75 and ξ13 → 0 as desired.

Figure 11 illustrates a different kind of coordinated maneuver in the x− y plane: one robot
is required to follow the x−axis, while the other must follow a sinusoidal path as the two
maintain an in-line formation along the y−axis. In this case, C is time varying. Notice in
Figure 11(b) how vehicle 1 adjusts its speed along the path so as to achieve coordination. As
seen in sub-Figures 11(c) and 11(d), the vehicles converge to the assigned paths and drive the
error between their x−coordinates to 0.

7. Conclusions and suggestions for further research

The paper formulated and presented a solution to the problem of steering a fleet of wheeled
robots along a set of given spatial paths, while keeping a desired inter-vehicle formation
pattern. The solution adopted for coordinated path following builds on Lyapunov based
techniques and addresses explicitly the constraints imposed by the topology of the inter-
vehicle communications network. With this set-up, path following (in space) and inter-vehicle
coordination (in time) are essentially decoupled. Path following for each vehicle amounts to
reducing a conveniently defined error variable to zero. Vehicle coordination is achieved by
adjusting the speed of each of the vehicles along its path, according to information on the
position of the other vehicles, as determined by the communications topology adopted. The
methodology proposed led to a decentralized control law whereby the exchange of data among
the vehicles is kept at a minimum. Simulations illustrated the efficacy of the solution proposed.
Further work is required to extend the methodology proposed to air and underwater vehicles.
Namely, by addressing the problems of robustness against temporary communication failures.

Appendix

Proof of Proposition 1 - Path Following. The key ideas used in the proof borrow from
the work of (Soeanto et al., 2003) and (Kaminer et al., 2005), to which the reader is referred
for details. Notice that we assumed the speed v of the robot is controlled independently and
therefore v is viewed as an exogenous variable that does not tend to 0 as t→ ∞. Consider the
Lyapunov function candidate

V =
1

2
x2
e +

1

2
y2
e +

1

2
(ψe − σ)2 +

1

2
(r − φ)2 (30)

which is positive definite and radially unbounded. With N and ṡ as in (4) and (5), respectively
the time derivative of V along the trajectories of the vehicle with kinematics described in (1)
and dynamics ṙ = N yields

V̇ = −k3x
2
e − k1(ψe − σ)2 − k2|v(t)|

y2
e

|ye| + ǫ0
− k4(r − φ)2, (31)
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which is negative semidefinite (notice that v(t) can go through 0). Define Xp = (xe, ye, ψe)
T .

Then, Xp = 0 is a stable equilibrium point. Since ||Xp(t)|| < r, for some r > 0, for all t ≥ t0
and the vector field in (1) is locally Lipschitz in Xp uniformly in t, we conclude that Xp(t) is
uniformly continuous in t on [t0,∞). To conclude asymptotic stability start by noticing that
because V (t,Xp(t)) is nonincreasing and bounded from below by zero, it converges to a limit
as t→ ∞. From

−
∫ t

t0

V̇ (τ,Xp(τ))dτ = V (t0,Xp(t0)) − V (t,Xp(t)), (32)

it follows that limt→∞

∫ t

t0
V̇ (τ,Xp(τ))dτ exists and is finite. Because Xp(t) and v(t)

are uniformly continuous, so is V̇ (t,Xp(t)). A straightforward application of Barbalat’s

lemma (Khalil, 2002) allows for the conclusion that limt→∞ V̇ (t,Xp(t)) = 0. Therefore, from
(31), xe, (ψe − σ), (r − φ) and v(t)y2

e vanish as t → ∞. Moreover, since V is bounded below
by zero and nonincreasing, we can conclude that limt→∞ ye = ye,lim. Because limt→∞ v(t) 6= 0
and v(t)y2

e,lim vanishes, ye,lim = 0. As a consequence, the origin Xp = 0 is globally attractive
and thus globally asymptotically stable.2

Remark 2. Suppose |v(t)| has a positive lower bound, that is inft |v(t)| = vm > 0 for all t ≥ t0.
Then, for |ye(t)| < c (where c is an arbitrary constant) one obtains that V̇ ≤ −λV for λ =
min(k3, k1, k4,

k2vm

c+ǫ0
). It follows that all states Xp(t0), such that V (t0,Xp(t0)) < c2/2; t0 ≥ 0,

decay to 0 exponentially with rate λ.

Remark 3. It is interesting to see what happens when the basic assumption that the speed v
should not tend to 0 as t→ ∞ is violated. To do this, it is sufficient to examine the situation
where v = 0 for all t ≥ t0, that is, when the vehicle is stopped. In this case V̇ is still negative
semidefinite and the origin is stable. Again, using Barbalat’s lemma it is easily seen that xe
converges to zero while the remaining states are attracted to constant values. In particular,
the vehicle orientation tends to an angle that is a function of the steady value of ye. This
property shows that the path following algorithm degrades gracefully when the vehicle comes
to a stop.

Proof of Proposition 2 - Coordination. We start by introducing formally the graph-induced
coordination error as

θ = YMT
1 ξ, (33)

with M1 and Y as defined in Section 3. Recall that RankM1 = n − 1, MT
1 1 = 0, MT

1 M1 is
invertible, and Y > 0. From these relations, θ = 0 is equivalent to ξi = ξj ,∀i, j. Consequently,
if θ is driven to zero asymptotically, so are the coordination errors ξi − ξj and the problem of
coordinated path following is solved. This justifies the choice of the above error vector.

With the control law (20), the dynamics of the coordination system (14) can be written in
terms of η and θ as

η̇ = −(A−1M1Y
2MT

1 +A)Cη −B sat(η +A−1M1Y θ),

θ̇ = YMT
1 Cη + YMT

1 d.
(34)

in which we used the fact that MT
1 vL1 = 0. Let

z = η +A−1M1Y θ
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and consider the candidate Lyapunov function

V =
1

2
θT θ +

1

2
zT z.

Clearly, V is positive definite and radially unbounded on (η, θ). Computing the derivative
of V along the solutions of (34) with d = 0 yields

V̇ = −ηTACη − zTBsat(z).

which is negative definite with respect to (ηT , zT )T = 0, or equivalently with respect to
(ηT , θT )T = 0, since M1 is full rank and Y > 0. Therefore the origin is a UGAS equilibrium
point of (34). 2

Proof of Proposition 3 - Path Following and Coordination Interconnection.
Define Vη = ηT η and compute its derivative along the solutions of the coordination

subsystem (34) to obtain

V̇η = −ηTCQCη − 2ηTB sat(η +A−1M1Y θ)

where Q = C−1A−1L + LC−1A−1 + 2C−1A. From Lemma 4 in the Appendix, and because
C(t) is diagonal and has a positive uniform lower bound c1, it follows from condition (23) that
there exists γ̄ = γc21 > 0 such that ηTCQCη ≥ γ̄||η||2 and therefore

V̇η ≤ −γ̄||η||2 + 2bmxm
√
n||η||,

where bm = maxi bi; i = 1, 2, .., n. Clearly, V̇η is negative if ||η|| > 2bmxm
√
n/γ̄. Therefore,

η is uniformly ultimately bounded and so is v(t) = η + vLC
−11. See (Khalil, 2002) for the

definition of ultimate boundedness, together with related results of interest. From the form of
the closed-loop dynamics (34) it follows that η̇ is bounded and therefore v̇ is also bounded.
As a consequence, v(t) is uniformly continuous.

It is now necessary to show that limt→∞ vi(t) 6= 0 for all i. Assume by contradiction that
∃j such that vj(t) = 0 for all t > t0 ≥ 0 and limt→∞ vi(t) 6= 0 ∀i 6= j (the analysis for the case
where vj tends to 0 but is not identically 0 after a certain finite time can be done identically).
Recall from Remark 3 that all xei’s converge to zero as t→ ∞ even if vi(t) tends to 0. Thus,
dj = 1

Rj
[(cosψej−1)vj+k3xej ]|vj=0 is also bounded and tends to zero. Furthermore, according

to Proposition 1, the states Xpi ∀i 6= j are bounded and converge to zero and so do the di’s

∀i 6= j. Since η and d are bounded, so is θ̇. Therefore θ is bounded in any bounded interval
of time. It is easy to check that (34) is small-signal L∞ stable with d as an input, that is
∃r > 0 such that if ||d|| < r the states remain bounded. Because ||d|| → 0, as t → ∞, then
∃T > 0 : ∀t > T, ||d(t)|| < r. Therefore the states remain bounded and decay to zero as
d → 0, namely the coordination states Xc vanish asymptotically. Thus, η = v − vLC

−11 and
in particular ηj = vj − RjvL converge to 0, which contradicts the assumption that vj = 0
because vL 6= 0 and Rj is positive definite. 2

Remark 4. The behavior of the signals described above is clearly seen in the simulations: the
coordination errors θ increase initially while the vehicles are far from the paths and d is large,
and then decay to zero as the vehicles approach the paths and time grows.
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Lemma 4. Let G be a connected graph with Laplacian L of dimension n× n and
let C(t) = diag[cii]n×n be a diagonal matrix satisfying c1I ≤ C(t) ≤ c2I; c1 > 0.
Define

Q(t) = C−1(t)A−1L+ LC−1(t)A−1 + 2C(t)−1A,

where A = aI. Suppose

a2 >
1

2
max
i
κi (

c2
c1

− 1) (35)

where κi = |Ji| is the cardinality of Ji, that is, the index set of the neighbors of
vertex i in Graph G. Then, there exists γ > 0 such that ||Q(t)|| > γ for all t ≥ 0.

Proof. L has the property that all its diagonal elements are positive and the off diagonals are
non-positive. Because A and C are diagonal, Q inherits that property. This, together with
Geršgorin’s theorem (Horn and Johnson, 1985) imply that if

n
∑

j=1

qij(t) > γ, ∀i (36)

for some γ > 0, then λmin(Q(t)) > γ for all t, equivalently Q1 > γ1, where the inequality
should be interpreted element by element. Because L1 = 0, the above condition degenerates
to

L[1/ciia]n×1 + [2a/cii]n×1 > γ1

or, using the properties of L, 2a/cii +
∑

j∈Ji
(1/ciia− 1/cjja) > γ for all i. Therefore, (36) is

satisfied if

2a2 > κi(
c2
c1

− 1) + γ, ∀i

which is equivalent to (35) because γ can be taken arbitrarily small. 2
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Figure 9. In-line formation, piecewise constant C
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Figure 10. Triangular formation, piecewise constant C
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Figure 11. Coordination of 2 vehicles, varying C
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