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The paper addresses the problem of steering a fleet of wheeled robots along a set of given
spatial paths, while keeping a desired inter-vehicle formation pattern. This problem arises

for example when multiple vehicles are required to scan a given area in cooperation.
In a possible mission scenario, one of the vehicles acts a leader and follows a path accurately,
while the other vehicles follow paths that are naturally determined by the formation pattern

imposed. The paper solves this and other related problems using a simple algorithm that
builds on linearization techniques and gain scheduling control theory. Using this set-up,
path following (in space) and inter-vehicle coordination (in time) are almost decoupled.

Path following for each vehicle amounts to reducing a conveniently defined generalized
error vector to zero. Vehicle coordination is achieved by adjusting the speed of each of the
vehicles along its path, according to information on the position of all or some of the other
vehicles. No other information is exchanged among the robots. The set-up adopted allows

for a simple analysis of the resulting coordinated path following control system. The paper
describes the structure of the coordination system proposed and addresses challenging
problems of robustness with respect to certain types of vehicle failures.
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1. Introduction

In recent years, there has been widespread interest
in the problem of coordinated motion control of fleet
of autonomous vehicles. Applications include aircraft
and spacecraft formation flying control (Giuletti et al.
2000, Queiroz et al. 2000, Beard et al. 2001, Pratcher
et al. 2001), coordinated control of land robots (Desai
et al. 1998, Ögren et al. 2002), and control of multiple
surface and underwater vehicles (Stilwell and Bishop
2000, Encarnação and Pascoal 2001, Skjetne et al.
2002, Skjetne et al. 2003, Lapierre et al. 2003a). The
work reported in the literature addresses a large class

of topics that include, among others, leader/follower

formation flying, control of the ‘‘center of mass’’

and radius of dispersion of swarms of vehicles, and

uniform coverage of an area by a group of surveying

robots.
At first inspection, the problem of coordinated

motion control seems to fall within the domain of

decentralized control. However, as clearly pointed out

in Fax and Murray (2002a, 2002b), it possesses several

unique aspects that are at the root of new challenges

to system designers. Among these, the following are

worth stressing:

(i) except for some cases in the area of aircraft control,

the motion of one vehicle does not directly affect

the motion of the other vehicles, that is, the vehicles*Corresponding author. Email: reza@isr.ist.utl.pt
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are dynamically decoupled; the only coupling arises
naturally out of the specification of the tasks that
they are required to accomplish together.

(ii) there are strong practical limitations to the flow
of information among vehicles, which is severely
restricted by the nature of the supporting com-
munications network. In marine robotics, for
example, underwater communications rely on the
propagation of acoustic waves. This sets tight
limits on the communication bandwidths that are
achievable. Thus, as a rule, no vehicle will be able
to communicate with the entire formation Fax
and Murray (2002b). Furthermore, a reliable vehi-
cle coordination scheme should exhibit some form
of robustness against certain kinds of vehicle fail-
ures or loss of inter-vehicle communications.

A rigorous methodology to deal with some of the
above issues has emerged from the work reported
in Fax and Murray (2002a, 2002b), which addresses
explicitly the topics of information flow and cooperation
control of vehicle formations simultaneously. The meth-
odology proposed builds on an elegant framework that
involves the concept of Graph Laplacian (a matrix
representation of the graph associated with a given com-
munication network). In particular, the results in Fax
and Murray (2002b) show clearly how the Graph
Laplacian associated with a given inter-vehicle commu-
nication network plays a key role in assessing stability of
the behaviour of the vehicles in a formation. It is how-
ever important to point out in that work that: (i) the
dynamics of the vehicles are assumed to be linear
and time-invariant and identical for all the vehicles,
and (ii) the information exchanged among vehicles is
restricted to linear combinations of the vehicle state
variables.
Inspired by the progress in the field, this paper

tackles a problem in coordinated vehicle control that
departs slightly from mainstream work reported in
the literature. Specifically, we consider the problem of
coordinated path following where multiple vehicles are
required to follow pre-specified spatial paths while keep-
ing a desired inter-vehicle formation pattern in time.
This mission scenario occurs naturally in underwater
robotics (Pascoal et al. 2000): namely, in the operation
of multiple autonomous underwater vehicles for fast
acoustic coverage of the seabed. In this important
case, two or more vehicles are required to fly above
the seabed at the same or different depths, along geo-
metrically similar spatial paths, and map the seabed
using copies of the same suite of acoustic sensors.
By requesting that the vehicles traverse identical paths
so as to make the acoustic beam coverage overlap
along the seabed, large areas can be covered in a short
time. This imposes constraints on the inter-vehicle

formation pattern. Similar scenarios can of course be
envisioned for land and air vehicles.

To the best of our knowledge, previous work on
coordinated path following control has been restricted
to the area of marine robotics. See for example
Lapierre et al. (2003a, 2003b) and the references therein.
However, the solutions developed so far for underactu-
ated vehicles are restricted to two vehicles in a leader-
follower type of formation and lead to complex control
laws. There is therefore a need to re-examine this
problem, to try and arrive at efficient and practical
solutions. In an attempt to do this, the present paper
considers a similar problem for wheeled robots in the
hope that the solution derived for this simpler case
will shed some light into the problem of coordinated
path following for the more complex case of air and
marine robots. Different cooperation strategies are
considered that go beyond the commonly adopted
leader-follower structure.

The methodology for coordinated path following
of wheeled robots proposed in this paper builds on
previous work on path following and trajectory tracking
for air and marine vehicles using linearization techni-
ques and gain scheduling control theory. See (Kaminer
et al. 1998, Silvestre 2000, Silvestre et al. 2002) and the
references therein. The circle of ideas explored in these
references can be readily transposed to wheeled robots
to yield the following results: (i) the trimming (equilib-
rium) paths of wheeled robots are circumferences
parameterized by the vehicle’s linear speed and yaw
rate, the circles degenerating into straight lines when
the yaw rate is zero, (ii) tracking of a trimming path
by a vehicle is equivalent to driving a conveniently
defined generalized tracking error to zero, and (iii) the
linearization of the so-called generalized error dynamics
about any trimming trajectory is time invariant. Based
on these results, the problem of integrated design of
guidance and control systems for accurate tracking of
paths that consist of the union of trimming paths can
be cast in the framework of gain scheduled control
theory. In this context, the vehicle’s linear speed and
yaw rate play the role of scheduling variables that inter-
polate the parameters of linear controllers designed
for a finite number of representative trimming paths.
Guidelines for path following control system design
and implementation follow from the work of
(Kaminer et al. 1995), where it is shown how a
simple implementation strategy, referred to as the
D-implementation, avoids feedforwarding the values of
state and control inputs at trimming.

Using this set-up, path following and inter-vehicle
coordination (in time) are essentially decoupled. Path
following for each vehicle amounts to reducing a con-
veniently defined error vector to zero. Vehicle coordi-
nation is achieved by adjusting the speed of each of
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the vehicles along its path, according to information
on the position of some of the other vehicles. No
other information is exchanged among the robots. The
set-up adopted allows for a simple analysis of the
resulting coordinated path following control system.
The paper describes the structure of the coordination
system proposed and addresses challenging problems
of robustness with respect to vehicle failures. The
coordination system is simple and holds great potential
to be extended and applied to the case of air and
marine robots.
The paper is organized as follows. Section 2 intro-

duces some basic notation and the dynamic model of
a wheeled robot, defines the notion of trimming paths,
and presents two possible solutions to the problem of
path following for a single vehicle. Section 3 introduces
a simple strategy for multiple vehicle cooperation.
The stability of the combined path following and
coordination algorithms is analyzed in section 4.
Section 5 contains the results of simulations that
illustrate the performance of the coordinated path
following system proposed. Section 6 is an introduction
to the problem of robustness of the coordinated
control scheme proposed with respect to single vehicle
failures. Finally, section 7 contains the main conclusions
and describes problems that warrant further research.

2. Basic notation. Path following

This section introduces some basic notation and offers
two solutions to the problem of path following for
a single vehicle.
Consider the wheeled robot of the unicycle type

shown in figure 1, together with a spatial path to

be followed. The vehicle has two identical parallel,
nondeformable rear wheels. It is assumed that the
plane of each wheel is perpendicular to the ground
and that the contact between the wheels and the
ground is pure rolling and nonslipping, i.e., the velocity
of the center of mass of the robot is orthogonal to the
rear wheels axis. Each rear wheel is powered by a
motor which generates a control torque. This will in
turn generate a control force and torque applied to the
vehicle.

The following notation will be used in the sequel.
The symbol fAg :¼ fxA, yA, zAg denotes a reference
frame with origin at OA and unit vectors xA, yA, zA.
Often, for simplicity of presentation, we omit writing
explicitly the third component of the reference frames,
because the wheeled robot is restricted to move in
the horizontal plane. Let fUg and fBg be inertial and
body-fixed reference frames, respectively and assume
that the origin OB of fBg is coincident with the center
of mass of the vehicle. Further let ½x, y�T denote the
position of OB in fUg and  the parameter that describes
the orientation of fBg with respect to fUg (i.e., the
robot’s orientation with respect to the inertial x-axis).
Define v and r as the linear and rotational velocities
of fBg with respect to fUg, respectively expressed
in fBg. With the above notation, the simplified kinematic
and dynamic equations of the wheeled robot can be
written as

Dynamics
_vv ¼ F=m

_rr ¼ N=I

�
ð1Þ

Kinematics

_  ¼ r

_xx ¼ v cosð Þ

_yy ¼ v sinð Þ

8><
>: ð2Þ

where m denotes the mass of the robot, I is the moment
of inertia about its vertical body-axis, and F and
N denote the total force and torque respectively,
applied to the vehicle. Define

x1 ¼ ½v, r�T; x2 ¼ ½ , x, y�T; u ¼ ½F,N�
T

ð3Þ

and assume that m ¼ I ¼ 1 in the appropriate
units. Equations (1) and (2) can obviously be cast in
the general state space form

_xx1 ¼ f1ðx1, uÞ

_xx2 ¼ f2ðx1, x2Þ,
ð4Þ

where f1, f2 are nonlinear functions of their arguments
and x1 and x2 represent the dynamic and kinematic
states, respectively. Even though the simple dynami-
cal model of the wheeled robot does not require
that f1 be a function of x1, it is convenient to adoptFigure 1. Frames and error variables.
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the general state space form because it allows for
the inclusion of dissipative (velocity dependent) terms
if needed. Notice that the evolution of x1 does not
depend on x2.
Following Silvestre (2000) and Silvestre et al. (2002)

a trimming trajectory of the wheeled robot is a set

�c :¼ fðxc1, x
c
2ð�Þ, u

cÞ: f1ðx
c
1, u

cÞ ¼ 0g ð5Þ

parameterized by the 2-tuple of vectors xc1, u
c that

make f1ðx1, uÞ ¼ 0. The notation xc2ð�Þ represents the
corresponding time-history of state variable x2 at trim-
ming. Stated in simple terms, along a trimming
(also called equilibrium) trajectory, the input u is held
fixed, and the dynamic variables remain constant
( _xx1 ¼ 0). Notice, however that the kinematic variables
x2 are allowed to be functions of time.
In the case of the wheeled robot, it is trivial to show

that the only possible trimming trajectories correspond
to circumferences and straight lines. In other words,
with u set to a constant value uc, v and r assume constant
values vc and rc respectively, and the xc2ð�Þ component
of �c is such that  cðtÞ ¼ rctþ  0, where  0 denotes
the heading angle at time t¼ 0. Straightforward com-
putations show that in this case the origin OB of the
wheeled robot is driven along a circumference with
radius R ¼ jvc=rcj, where j � j stands for the absolute
value. The circle degenerates into a straight line when
rc ¼ 0.
Notice in (5) that a trimming trajectory is specified

in terms of all state and input variables at trimming.
However, given fixed values vc and rc, the corresponding
input uc and the state xc2ð�Þ are, apart from the initial
conditions, uniquely determined. In this sense, vc and
rc determine uniquely the values of ½xc, yc�T, and thus
of the corresponding path (curve in space) �c traversed
by the vehicle. Formally,

�c :¼ f�px
c
2ð�Þ: ðx

c
1, x

c
2ð�Þ, u

cÞ 2 �cg ð6Þ

where �p: R
3
! R

2 denotes the operator that
extracts the last two components of xc2ð�Þ. Clearly, a
trimming path is simply obtained from a trimming
trajectory by keeping the 2-D vector corresponding
to the position of the wheeled robot. From the above
discussion, and with a slight abuse of language, it can
be stated that �c ¼ �cðvc, rcÞ, that is, a trimming
path is uniquely determined by the trimming values vc

and rc or, equivalently, by vc and cc, where cc denotes
the path curvature. In what follows it is assumed
that �c can be parameterized in some convenient geo-
metric manner, for example in terms of its curvilinear
abcissa s (length along the path).

In the sequel, we consider the case where the

wheeled robot is required to follow a general path

that consists of the union of trimming paths. The

emphasis is therefore placed on the development of

controllers for accurate following of trimming paths.

Consider now figure 1, and suppose it is required

for the wheeled robot to follow the trimming path
�c, that is, for OB to converge to and follow the

2-D curve �c at constant linear and rotational

speeds vc and rc, respectively. A solution to this pro-

blem can be easily obtained by recalling the work of

Micaelli and Samson (1992, 1993) on path following,

from which the following intuitive explanation is

obtained: a path following controller should look

at i) the distance from the vehicle to the path and

ii) the angle between the vehicle velocity vector and

the tangent to the path, and reduce both to zero.

This motivates the development of the kinematic
model of the vehicle in terms of a Serret-Frenet

frame fTg that moves along the path; fTg plays the

role of the body axis of a ‘‘virtual target vehicle’’

that should be tracked by the ‘‘real vehicle’’. Using

this set-up, the abovementioned distance and angle

become part of the coordinates of the error space

where the path following control problem is formu-

lated and solved.
Formally, given OB assume that the closest point P on

the path is well defined and consider the Serret-Frenet

frame fTg:¼ ft, ng with its origin at P. As is well
known, t and n are the tangent and normal to the

curve at P, respectively, where the positive direction of

t is defined by traversing the path along increasing

values of its length s. Let de be the y-component

of vector d from P to OB, expressed in fTg (the

x-component is zero). Clearly, d is colinear with unit

vector n. Further let  T ¼  c parameterize the rotation

matrix from fTg to fUg, satisfying the relation

_  T ¼ cc _ss ð7Þ

where cc is the curvature of the path and _ss denotes the

time derivative of the curvilinear abcissa s of P. Since

there is no slippage, fBg¼ fTg at trimming.
Equipped with this notation, we now derive two algo-

rithms for path following by resorting to linearization

techniques. See Kaminer et al. (1998), Silvestre (2000),

Silvestre et al. (2002) for an introduction to these techni-

ques and for their application to path following control

of air and marine robots. The two algorithms build on
two different error coordinates and will henceforth

be referred to as the Decoupling and the State

Transformation algorithm.
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2.1. The decoupling algorithm

Given a trimming path, consider the path-following
error coordinates

ve ¼ v� vc

re ¼ r� rc

de ¼ � d

 e ¼  �  c ¼  �  T,

ð8Þ

where � ¼ ½ 0 1 �. Convergence of a vehicle to the path
is equivalent to driving the above error variables to zero.
Notice that with the simplified wheeled robot model,
Fc ¼ Nc ¼ 0. Following the methodology exposed in
Micaelli and Samson (1993), straightforward computa-
tions show that the error dynamics can be written as

_vve ¼ F

_rre ¼ N

_dde ¼ v sinð eÞ

_  e ¼ r�
ccv cosð eÞ

1� decc
:

ð9Þ

Furthermore, the evolution of the closest point on the
path is easily seen to be given by

_ss ¼
v cosð eÞ

1� decc
: ð10Þ

It is important to point out that equations (9) and (10)
are only valid when decc < 1, that is, when the vehicle
is ‘‘sufficiently close’’ to the path.
At this point, it is important to examine the equa-

tions above. Notice that the first equation in (9) is
completely independent of the remaining ones. This
means that the forward speed v of the vehicle can
be manipulated at will by manipulating F, no matter
what the evolution of the variables re, de, and  e is.
In particular, when following a desired trimming path
without any inter-vehicle coordination requirements, the
forward speed is simply set to the trimming value vc.
It is then up to the path following controller to manip-
ulate the torque N so as to drive re, de, and  e to zero.
This simple circle of ideas is at the core of the tech-

nique of coordinated path following proposed in this
paper: for each vehicle in the formation, the torque N
is computed so as to achieve path following for a
given set of possible forward speeds and trimming
paths, while F controls the forward speed of the vehicle
in order to meet the required inter-vehicle formation
requirements.

The first step in the decoupling approach to path
following is to linearize the error dynamics about
trimming conditions to obtain

� _vve ¼ �F

�_rre ¼ �N

� _dde ¼ vc� e

� _  e ¼ �re � c2cv
c�de � cc�ve:

ð11Þ

The resulting system is time-invariant, as proven in
Silvestre (2000) for a more general class of systems.
An important assumption is made at this point: since
the variable ve is controlled independently (to meet the
formation requirements), �ve is simply viewed as a
vanishing perturbation and thus ignored in the design
of a path following controller that will drive re, de,
and  e to zero. This assumption will be re-visited and
proved rigorously later in the paper. In the case of
pure path following about a trimming path (that is,
without any formation requirements), �ve is naturally
set to zero. In what follows, it is assumed that the curva-
ture cc is upper bounded. Ignoring the first independent
equation in (11) yields the sub-system

�_rre ¼ �N

� _dde ¼ vc� e

� _  e ¼ �re � c2cv
c�de,

ð12Þ

for which a stabilizing controller is sought. Notice in
the equations the explicit dependence of the dynamics
on the path curvature cc and trimming forward speed
vc ¼ rc=cc. It is thus natural that the resulting controllers
show dependence, that is, be scheduled on the same
variables. As is customary in gain scheduling control,
the scheduling is done on the actual values of the
variables, that is, on cc and r=cc. In what follows
the D-methodology introduced in Kaminer et al.
(1995) for the design and implementation of gain sched-
uled controllers is adopted. See also Khalil (2000),
Chapter 10. The D-methodology addresses explicitly
the problem of controller implementation on the
original nonlinear plant and avoids feed-forwarding
the values of the relevant variables at trimming. As in
Kaminer et al. (1995), append to the original
system (12) an extra state z, defined by

_zz ¼ �de, ð13Þ

aimed at driving the steady state of �de to zero (in gen-
eral, one should include as many integrators as the
number of control signals). Since the linearized system
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with input �N and state ½�re, �de, � e, z�
T is controll-

able, arbitrary closed loop eigenvalue placement can
be achieved with the state feedback control law

�N ¼ �k1�re � k2�de � k3� e � k4z, ð14Þ

yielding the closed-loop characteristic polynomial

�4 þ k1�
3 þ ðk2 þ ðccv

cÞ
2
Þ�2 þ vcðk2 þ k1c

2
cv

cÞ�þ k4v
c:

ð15Þ

Without loss of generality, and for simplicity of expo-
sition, select the desired values of the closed loop eigen-
values to be coincident and equal to ��p rad s

�1; �p > 0.
This can be done with the state feedback gains

k1 ¼ 4�p

k2 ¼
4�3p
vc

� 4�pc
2
cv

c

k3 ¼ 6�2p � ðccv
cÞ
2

k4 ¼
�4p
vc

ð16Þ

that show clearly the dependence on the trimming
values of cc and vc. Obviously, the gains can also be
defined in terms of cc and rc=cc. For implementation
purposes, the actual values of cc and r=cc are used.
Figure 2 shows the final implementation of the gain
scheduled controller on the nonlinear plant, using the
D-methodology (Kaminer et al. 1995).
Notice how the integrator was moved in front of

the plant and derivative operators were introduced at
the appropriate variables. As explained in Kaminer
et al. (1995), this procedure does not introduce any
unstable pole-zero cancelations. In practice, the deriv-
ative operator is approximated by s=ðs� þ 1Þ, with
� sufficiently small. With the implementation proposed,

there is no need to introduce trimming values for any
of the dynamics variables, namely for the angular
velocity r. The importance of this property can hardly
be overemphasized. In fact, given a desired path with
a known curvature cc and given an arbitrary trans-
lational velocity v of the vehicle, the current scheme
will make the vehicle converge to the path and acquire
the correct rotational speed so as to follow the path
with the desired radius. This is done without knowing
the translational velocity explicitly. As explained later,
this property is extremely important for coordinated
path following because we do not require that all
vehicles know the required values of their trimming
speeds. The scheme also avoids feedforwarding the trim-
ming value for the input F and can thus cope with
velocity dependent friction forces not taken into account
in the simplified design model introduced above.

In the scheme proposed, de can be easily computed
for circumferences and straight lines as follows. Let
ð �xx0, �yy0,RÞ denote a circumference with center ½ �xx0, �yy0�

T

and radius R, and let ðx0, y0,mÞ be a straight line
with slope m, passing through a point with coordinates
½x0, y0�. Further let ½x, y�T denote the position of the
center of mass of the robot. Then,

Line: de ¼

y�mx� ðy0 �mx0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p ; m <1

�xþ x0; otherwise

8<
:

Circ:: de ¼ R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� �xx0Þ

2
þ ðy� �yy0Þ

2

q

where the correct sign must be chosen with respect to
the normal axis of the tangent frame.

A solution to the path following problem that
avoids feeding back all state variables can also be
obtained using output feedback. Since the system
with input �N and output ½ �re, �de, z �

T is controllable
and observable, a controller K(s) can be designed
(using any of the methods available in the literature)

Robot
d/dt r

F

N
1/s

Path

d/dt
+

−k3+

−k1

d/dt

−k4

−k2

−

r

de

de

T
T

(cc, r/cc)

Figure 2. Gain Scheduled Controller Implementation using the D-methodology – state feedback.
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and scheduled on cc and r=cc. As an example, an output

feedback controller was designed that requires measure-

ments of de and re only, that is,  e is not measured.
Figure 3 shows the final implementation of the gain

scheduled controller on the nonlinear plant, using the

D-methodology. The figure shows clearly how easy

the implementation of the gain scheduled controller is.

Figure 4 illustrates the behaviour of a wheeled robot

following a circular path at velocities 0:3, 0:4 and

0:5m s�1, with an output feedback controller designed

for vc ¼ 0:4m s�1. As expected, the robot ‘‘learns’’ the

required rotational speeds automatically.

2.2. State transformation

The decoupling methodology for path following is

naturally suited to deal with the case where the forward

speed of the robot is held constant at a given trim-

ming speed. An alternative scheme that can deal easily

with speed variations about a given trimming

value requires the introduction of a new variable � ¼
r� ccv that equals zero at trimming, that is, �c ¼ 0.

To this effect, define the error variables

ve ¼ v� vc

�e ¼ �� �c ¼ r� ccv

de ¼ � d

 e ¼  �  c ¼  �  T:

ð17Þ

The new error space differs from the previous one
in the equation for �e only. By defining a new control
variable

ue ¼ N� ccF,

the corresponding error dynamics become

_vve ¼ F

_��e ¼ ue

_dde ¼ v sin e

_  e ¼ �e þ ccv�
ccv cos e

1� decc
:

Linearizing the above equations yields

� _vve ¼ �F

� _��e ¼ �ue

� _dde ¼ vc� e

� _  e ¼ �re � c2cv
c�de:

ð18Þ

Equation (18) shows that the dynamics of �ve have
become uncoupled from those of ��e, �de, and � e.
This is in contrast with the previous methodology,
where �ve was a coupling variable that was not taken
into consideration during the design phase. As will be

0 10 20 30 40 50 60 70
 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time [sec]

ra
d/

s

 −4  −3  −2  −1 0 1 2 3 4 5

 −3

 −2

 −1

0

1

2

3

4

[m]

[m
]

(a) Angular speeds (b) Spatial paths

Figure 4. Path following of the robot for vc¼ 0.3, 0.4 and 0.5ms�1.

RobotK(s)

d/dt r

de

F

N1/s

Path

d/dt

(cc, r/cc)

Figure 3. Gain Scheduled Controller Implementation using

the D-methodology – output feedback case.
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seen, this uncoupling will render the proof of stability

of the overall coordinated path following system

simple. The price paid is the added complexity of the

path following control law adopted.
In what follows, consider equation (18) with the

dynamics of �ve deleted. The relevant equations resem-

ble those in (12) with �N replaced by �ue. Notice

the important fact that all relevant state variables and

input equal zero at trimming. At this point, a simple

state-feedback or an output-feedback path following

controller can be designed to drive �e, de and  e to

zero. The design procedure follows closely that adopted

for the decoupling method. For example, appending

an integrator to �de and choosing the state feedback

control law

�ue ¼ �k1��e � k2�de � k3� e � k4z ð19Þ

with ki; i ¼ 1, . . . , 4 scheduled on cc and r=cc as in (16)

places all the closed loop eigenvalues at ��p rad s
�1.

An output gain-scheduled feedback control law can

also be designed and implemented as shown in figure 5.

Notice that the implementation does not require the use

of the D-methodology because the trimming values of

all relevant state and input variables are zero.

A quick comparison of the two methods shows that
the state transformation strategy has the advantage
of decoupling the velocity equation from the other
variables.

Figure 6 shows the results of simulations aimed at
illustrating the performance of the two methodologies
for path following. In the simulations, it was required
that a wheeled robot follow a circumference with
a given radius while the forward speed undergoes varia-
tion imposed by a periodic square signal in F. Notice
that the state transformation methodology eliminates
completely the variations in forward speed. As will be
seen later, this allows for a very simple proof of stability
of the complete coordinated path following system.
The downside of the method is that it requires (at a
path following level) knowledge of the forward speed v
and force F. This is totally avoided in the decoupling
method. The latter seems at first inspection to be far
worse than the state transformation method because
it cannot, at the path following level, eliminate the
variations in forward speed about a trimming value.
However, it will be later proved that the deviation
in speed goes to zero at steady state, and this is the
reason why the decoupling method works. The
advantage of the decoupling method is the fact that no
variables related to synchronization must be used.
In summary, the state transformation method yields
better performance at the price of increased controller
complexity. It is up to the designer to decide what
method to use depending on practical considerations.

3. Coordination

We now consider the problem of coordinated
path following control that is the main focus of the
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present paper. In the most general set-up, one is given a

set of n � 2 wheeled robots and a set of n trimming

paths �k; k ¼ 1, 2, . . . , n and require that robot i follow

path �i. We further require that the vehicles traverse

the paths in such a way as to maintain a desired forma-

tion pattern compatible with those paths. The speeds at

which the robots are required to travel can be imposed

in a number of ways; for example, by nominating one

of the robots as a formation coordinator, assigning it

a desired speed, and having the other robots adjust

their speeds accordingly. Figure 7 shows the particular

cases where 3 vehicles are required to follow trimming

paths �i; i ¼ 1, 2, 3 while keeping a desired ‘‘triangle’’

or ‘‘in-line’’ formation pattern.
We assume each path is parameterized in terms of

a single parameter si (e.g. its curvilinear abscissa,

as measured from some adequately chosen point on

the path). In the simplest case, the paths �i may be

obtained as simple translations of a ‘‘template’’ path

�t (figure 7(a)). We also consider the case of scaled

circumferences with a common center and different

radii Ri (figure 7(b)). In this paper, for simplicity of
presentation, we restrict ourselves to ‘‘in-line’’ formation
patterns.

Assuming that path following controllers have been
implemented separately for each robot, it now remains
to synchronize these in time so as to achieve the desired
formation pattern. As will become clear, this will
be achieved by adjusting the speeds vi of the robots
as a function of the ‘‘along-path’’ distances between
them. Formally, we define the distances between vehicles
i and j as

si, j ¼ si � sj; i, j ¼ 1, . . . , n; i 6¼ j ð20Þ

in the case of shifted straight lines, and as

�ssi, j ¼ �ssi � �ssj; i, j ¼ 1, . . . , n; i 6¼ j, ð21Þ

with �ssi ¼ si=Ri, in the case of scaled circumferences.
See figure 8. Notice that the definition of �ssi, j relies on
a normalization of the lengths of the circumferences
involved and is equivalent to computing the angle

t
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Figure 7. Coordination.
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between vectors li and lj directed from the center of
the circumferences to vehicles i and j, respectively.
Given the positions ½xi, yi�

T and ½xj, yj�
T of robots i

and j, respectively it is trivial to compute that

Line: si, j ¼

ðxi � xjÞ þmðyi � yjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p ; m <1

yi � yj; otherwise

8<
:

Circ:: �ssi, j ¼ atan2ðyi � �yy0, xi � �xx0Þ

� atan2ðyj � �yy0,xj � �xx0Þ:

To compute the evolution of the along-path distance,
use (10), (21) to obtain

_�ss�ssi, j ¼
vi cosð eiÞ

Rið1� deicciÞ
�

vj cosð ej Þ

Rjð1� dejccjÞ
, ð22Þ

which degenerates into

_ssi, j ¼ vi cosð eiÞ � vj cosð ejÞ ð23Þ

for straight lines. In the case of circumferences
cck ¼ �1=Rk, the sign depending on the direction
of motion. Clearly, the objective is to drive �ssij (or si, j)
to zero by manipulating vi; i ¼ 1, 2, . . . , n about their
trimming values vci . Notice that in the case of ‘‘in-line’’
coordinated path following the along path distances are
zero at trimming, that is, sci, j ¼ �ssci, j ¼ 0.
Adopting a set-up similar to the one used for path

following control, one is naturally led to consider the
coordination system that is obtained by linearizing the
relevant dynamics equations about trimming, that is,

� _vvei ¼ �Fi

�_ssi, j ¼ �vei � �vej

for straight lines and

� _vvei ¼ �Fi

�_�ss�ssi, j ¼
�vei
Ri

�
�vej
Rj

þ fið�deiÞ � fjð�dej Þ
ð24Þ

for circumferences, where

fkð�dek Þ ¼
vck signðcckÞ

R2
k

�dek : ð25Þ

In the equations above, there are disturbance-
like terms fkð�dek ) that come from the path-following
system. At this point, it is assumed that these

disturbances tend asymptotically to zero. As will be
seen later, this fact is trivial to prove in the case of the
state-transformation methodology for path following.
A similar conclusion will also be derived for the decou-
pling strategy. As a consequence of this assumption,
the relevant linearized equations for circumferences
reduce to

� _vvei ¼ �Fi

�_�ss�ssi, j ¼
�vei
Ri

�
�vej
Rj
:

ð26Þ

In the sequel, we analyze the case of coordinated path
following for circumferences, the results carrying over
in an obvious manner to straight lines.

The final step in the design of a coordination control-
ler for (26) is to seek a general control law of the form

�Fi ¼ gið�vei , �ssi, jÞ; j 6¼ i; j 2 Ji

such that �ssi is driven to zero asymptotically. In the
above equation, Ji denotes the set of vehicles that
vehicle i communicates with. It is then straightforward
to implement the controller in a nonlinear setting by
once again exploiting the results available in (Kaminer
et al. 1995). For practical reasons, we require that
the gið�, �Þ depend on �vei only, that is, vehicle i does
not have access to the speeds of the other vehicles.

At this point, different strategies can be adopted for
control, depending on the flow of information among
the vehicles. Figure 9 shows three representative
configurations, illustrated for the case of 3 robots.

Leader-Follower. This configuration captures the
case where a vehicle, elected as the ‘‘Leader’’,
executes a path following algorithm at a required
forward speed and relays its position to the remaining
vehicles. It is up to the ‘‘Followers’’ to keep the
formation, based on info received from the Leader.

Gateway. In this configuration, a vehicle serves as
a Gateway (vehicle 1 in figure 9, gateway configuration).
Each of the remaining vehicles sends its position to
Gateway and receives the Gateway’s position.
Coordination is thus achieved through the Gateway
vehicle.

1

3

2

1

3

2

1

3

2

1) L-F 2) Gateway 3) Neighbours

Figure 9. Information flow diagram: (1) Leader-Follower,
(2) Gateway, (3) Neighbours.
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Neighbors. In this case, each vehicle communicates

with its immediate neighbours. The n vehicles are

indexed according to the spatial pattern they are
required to achieve, and vehicle i; i ¼ 2, . . . , n� 1 com-

municates with vehicles i� 1 and iþ 1. Vehicles 1 and

n communicate with vehicles 2 and n� 1, respectively.

Different control laws can now be proposed for the

configurations above. In what follows we analyze the

Leader-Follower and the Gateway configurations.

3.1. Leader-Follower

Suppose vehicle 1 is the Leader. A possible coordination

control law is

�F1 ¼ �a1�ve1

�Fi ¼ �ai�vei þ Ribi��ss1,i; i ¼ 2, . . . , n ð27Þ

which corresponds to having the leader adjust its own
speed independently, while the remaining vehicles con-

trol their speeds in response to the along-path distances

between them and the leader.
Equation (26), together with (27), define the coordi-

nation system dynamics. Simple computations show

that this linear system exhibits one eigenvalue at

�a1 rad s
�1, and n� 1 pairs of eigenvalues at the roots

of �2 þ ai�þ bi ¼ 0, i.e. the eigenvalues are independent
of the radii of the circumferences that the vehicles

must follow. Clearly, the closed-loop eigenvalues are

stable if ai and bi are positive. Furthermore, the eigen-

values can be assigned arbitrarily in the left half complex
plane by proper choice of parameters ai and bi.
Notice, however that the implementation of the coor-

dination system proposed requires that we have access

to �vei ; i ¼ 1, 2, . . . , n. This is easy to do for vehicle 1,

because it acts as a leader and sets the ‘‘pace’’ for the
formation by traveling at the desired speed vc1, which is

set in advance. However, when it comes to the remaining

vehicles, it is best not to feedforward the desired speeds

vci ; i ¼ 2, . . . , n, lest the radii be different from their
expected values. In this case, one should require that

the vehicles ‘‘learn’’ their speeds vci ; i ¼ 2, . . . , n

automatically. This can be done by changing the

above control law to include integrators on the states
��ss1,i and doing a D-implementation of the resulting con-

trol scheme, following the circle of ideas introduced in

Kaminer et al. (1995). Formally, define the new states

�e1,i through

� _ee1,i ¼ ��ss1,i: ð28Þ

and modify the control law (27) to incorporate extra
feedback terms from the new states, yielding

�F1 ¼ �a1�ve1
�Fi ¼ �ai�vei þ Ribi��ss1,i þ Rici�e1,i:

ð29Þ

Straightforward computations show that the resulting
(coordination) closed loop system exhibits one eigen-
value at �a1 rad s

�1, and n� 1 pairs of complex eigen-
values at the roots of polynomial �3 þ ai�

2 þ bi�þ ci.
Again, the eigenvalues are independent of the radii Ri

and can be placed arbitrarily in the left half
complex plane. Using the methodology exposed in
Kaminer et al. (1995) it is simple to go from perturbed
to global variables and to arrive at the final coordination
control law

F1 ¼ �a1ðv1 � vc1Þ

_zzi ¼ �Rici �ss1,i þ ai _vvi

Fi ¼ �zi þ Ribi �ss1,i,

ð30Þ

where the derivative _vvi can be computed numerically
using an approximate differentiation operator.

As in Kaminer et al. (1995), it can be shown that
the linearization of the full nonlinear system (about
the trimming conditions corresponding to the situation
where the vehicles execute perfect coordinated path
following) has the same set of eigenvalues as those
for the linear designs, that is, they are the roots of
�3 þ ai�

2 þ bi�þ ci. Thus, from a local point of view,
the coordination error converges to zero and the veloc-
ities of the robots are synchronized. Notice in the above
control law that only the desired velocity vc1 of the leader
must be provided. As for the other velocities, and since
they appear only through their derivatives and their
steady state values are constant, it is not required to
feedforward their trimming values.

3.2. Gateway

Inspired by the previous coordination control law, and
taking into consideration the communications structure
for the Gateway configuration (with vehicle 1 as the
Gateway vehicle) suggests the control law

�F1 ¼ �a1�ve1 � b0�ev � R1ðb1���ss1,i þ c1��e1,iÞ

�Fi ¼ �ai�vei þ Riðbi��ss1,i þ ci�e1,iÞ

� _ee1,i ¼ ��ss1,i

� _eev ¼ �ve1 ,

where � denotes the summation operator over
all i � 2. Define z1 ¼ a1�ve1 þ b0�ev þ R1c1��e1,i and
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zi ¼ ai�vei � Rici�e1,i; i � 2. A straightforward appli-
cation of the D-methodology yields the final nonlinear
coordination control law

F1 ¼ �z1 � R1b1��ss1,i

_zz1 ¼ a1 _vv1 þ b0ðv1 � vc1Þ þ R1c1��ss1,i

for the Gateway vehicle and

Fi ¼ �zi þ Ribi �ss1,i

_zzi ¼ ai _vvi � Rici �ss1, i:

for the remaining vehicles. The problem of finding a set
of gains to obtain a stable system with adequate transi-
ent performance is not tackled in this paper. Instead,
we simply prove that the above system can always be
stabilized in a trivial manner. To simplify the presen-
tation, the analysis is done for the case of three vehicles.
Let ai ¼ a, bi ¼ b and ci ¼ c; i ¼ 1, . . . , 3. The closed
loop eigenvalues are easily seen to be the roots of

ð�3 þ a�2 þ b�þ cÞ �ð�þ aÞð�3 þ a�2 þ 3b�þ 3cÞ
�

þ b0ð�
3 þ a�2 þ b�þ cÞÞ ¼ 0: ð31Þ

The result follows from the fact that if a, b, and c are
chosen so as to make �3 þ a�2 þ b�þ c a stable poly-
nomial, then so is (31) for any positive b0. This can be
easily seen by applying the Routh-Hurwitz criterion.

4. Stability of the coordinated path following

control system

In the previous sections, the general problem of coor-
dinated path following was broken down into two
problems: path following and vehicle coordination
(that is, synchronization in time), according to a desired
formation pattern. This procedure, even though not
fully justified from a theoretical point of view, allowed
for the derivation of simple control laws for the two
problems taken separately. In fact, the design of a
path following controller using the decoupling method-
ology relied on the assumption that the coupling
term �cc�ve in the dynamics (11) could indeed be
viewed as a vanishing perturbation coming from the
coordination level. Conversely, the design of the
coordination controller assumed that the perturbation
terms �dek could also be viewed as perturbations
being reduced to zero at the path following level.
In view of these yet unjustified assumptions, the control
laws derived should, at this stage, be simply viewed as
candidates to be brought together to yield a combined

coordinated path following controller, the stability
of which must be proven rigorously. This is the objec-
tive of this section. A proof of stability is done
for the Leader-Follower configuration and for a state
feedback control law at the path following level. Once
again, two path following strategies are considered:
state transformation and decoupling.

4.1. State transformation

The state transformation case is trivial to analyze
because there is true decoupling of the path following
and coordination schemes. In fact, close examination
of the error dynamics in (18) shows that the evolution
of the coordination-related variable �ve is totally
independent of the path following related variables.
Furthermore, the latter are driven asymptotically to
zero with the control law (19) proposed. As a
consequence, the variables �dek that appear at the
coordination level in (24)–(25) vanish asymptotically.
The coordination scheme with the control law (25) pro-
posed is therefore an asymptotically stable system driven
by vanishing external perturbations. As a consequence,
all relevant state variables are also driven to zero
asymptotically. The same conclusion can be reached
by considering the linearized dynamics of the system
that arise when a state-feedback/state-transformation
control strategy is used for path following and a
Leader-Follower configuration is adopted at the coordi-
nation level. From (18), (19), (24), and (29) the complete
dynamics can be written as

� _vve1 ¼ �a1�ve1

� _��e1 ¼ �k1��e1 � k2�de1 � k3� e1 � k4z1

� _dde1 ¼ vc1� e1

� _  e1 ¼ ��e1 � c2c1v
c
1�de1

_zz1 ¼ �de1

� _vvei ¼ �ai�vei þ Ribi��ss1,i þ Rici�e1,i

� _��ei ¼ �k1��ei � k2�dei � k3� ei � k4zi

� _ddei ¼ vci � ei

� _  ei ¼ ��ei � c2civ
c
i �dei

_zzi ¼ �dei

�_�ss�ss1,i ¼
�ve1
R1

�
�vei
Ri

þ
vc1 signðcc1Þ

R2
1

�de1

�
vci signðcci Þ

R2
i

�dei

� _ee1,i ¼ ��ss1,i; i ¼ 2, . . . , n

ð32Þ

410 R. Ghabcheloo et al.



Using the controller gains in (16) yields the
closed loop characteristic polynomial ð�þ a1Þ �
ð�þ �pÞ

4n�i¼2...nð�
3 þ ai�

2 þ bi�þ ciÞ. Clearly, the set
of eigenvalues of the total linearized path following
control system consists of the union of the two sets of
eigenvalues determined for the two systems taken sepa-
rately. Since the two can be designed to be stable, the
stability of the complete coordinated path following
system follows.

4.2. Decoupling

The decoupling strategy is harder to analyze. Consider
the Leader-Follower configuration where vehicle 1 is
the leader. Once again, we only indicate how a set
of gains can be found so as to make the linearized
coordinated path following system stable. From (11),
(14), (24), and (29), the closed-loop dynamics can be
written as

� _vve1 ¼ �a1�ve1

�_rre1 ¼ �k1�re1 � k2�de1 � k3� e1 � k4z1

� _dde1 ¼ vc1� e1

� _  e1 ¼ �re1 � c2c1v
c
1�de1 � cc1�ve1

_zz1 ¼ �de1

� _vvei ¼ �ai�vei þ Ribi��ss1,i þ Rici� �ee1,i

�_rrei ¼ �k1�rei � k2�dei � k3� ei � k4zi

� _ddei ¼ vci � ei

� _  ei ¼ �rei � c2civ
c
i �dei � cci�vei

_zzi ¼ �dei

�_�ss�ss1,i ¼
�ve1
R1

�
�vei
Ri

þ
vc1 signðcc1 Þ

R2
1

�de1 �
vci signðcciÞ

R2
i

�dei

� _ee1,i ¼ ��ss1,i; i ¼ 2, . . . , n:

ð33Þ

Without loss of generality, consider the case of two
vehicles only. The corresponding closed-loop charac-
teristic polynomial is

ð�þ a1Þð�þ �pÞ
4

 
ð�3 þ a2�

2 þ b2�þ c2Þð�þ �pÞ
4

�
vc2
R2

� �2

�ð�þ 4�pÞðb2�þ c2Þ

!
: ð34Þ

Notice that ð�þ a1Þð�þ �pÞ
4 can be chosen to be stable

by proper design of the path following controller and

thus plays no role in the stability analysis that follows.
Choose a2 ¼ 3�, b2 ¼ 3�2, and c2 ¼ �3 for some �>0,
and let k ¼ maxvc

2
,R2

fðvc2=R2Þ
2
g, that is, let k be the

largest expected trimming value of the rotational speed
of the Follower. With the above choices, the relevant
part of the characteristic polynomial that depends on
k becomes

ð�þ �Þ3ð�þ �pÞ
4
� 3�2k�ð�þ 4�pÞðsþ �=3Þ ð35Þ

Notice that the poles at ��p come from the path fol-
lowing, and those at � come from coordination level.
Let � ¼ m�p, and for a given k choose �p ¼ 2m

ffiffiffi
k

p
.

A straightforward but cumbersome application of the
Routh-Hurwitz stability criteria reveals that the above
system is stable for m > m0 ¼ 0:63. Thus, given any k,
�p can be chosen large enough (note that �p ¼ 2mk1=2)
to guarantee stability. To better illustrate this result,
a numerical example was run with k¼ 0.25 rad2 s�2

and � ¼ 2m2
0k

1=2 ¼ 0:4 rad s�1. The critical �p was com-
puted as �p0 ¼ 2m0k

1=2 ¼ 0:63 rad s�1. Figure 10 shows
the root loci for varying �p0 � 0:5 < �p < �p0 þ 2.
Clearly, the system is stable for �p > �p0 .

5. Simulations

This section contains the results of simulations that
illustrate the performance of the coordinated path
following control system developed. Figures 11 and 12
correspond to simulations where 4 wheeled robots
were required to follow paths that consists of portions
of straight lines and nested arcs of circumferences,
while holding an in-line formation pattern. In the simu-
lation, the controller gains were scheduled on the path’s
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Figure 10. Root locus for varying �p.
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curvature as well as on the rotation speed of the vehicles,
as explained before. The simulation assumed a Gateway
configuration, where the Gateway vehicle (vehicle
number 1, denoted V1) was assigned a piecewise
constant speed profile that acted as a reference for the
actual speed of that vehicle, shown in figure 12.
During the first phase of the maneuver, along an arc
of a circumference, the desired speed of V1 was set to
0:1m s�1. All vehicles started at zero speed, on top of
their respective paths. During the successive legs of the
mission, the reference speed for vehicle V1 was set to
0.2, 0.4, and 0.2m s�1. Notice how the remaining vehi-
cles adjust their speeds to meet the formation require-
ments. Figure 13 shows the coordination errors, as
captured by the along-path distances between vehicle 1

and the remaining vehicles. The figures include
information on both si,j and �ssi, j. Because the paths
to be followed consist of segments of straight lines
and semi-circumferences, normalization factors were
used to make the above variables non-dimensional.

6. Robustness against vehicle failures: a brief discussion

The previous sections described a set of solutions to
the problem of coordinated path following of multiple
wheeled robots. However, the important issue of
robustness against vehicle failures or loss of inter-vehicle
communications was not addressed explicitly. Two
possible failure situations are described below as
illustrative examples.

Vehicle failures. This situation occurs when one
or more of the vehicles cannot achieve their desired
formation speeds. For example, in a Leader-Follower
configuration one of the vehicles may get ‘‘stuck’’ at
some fixed velocity that is different from the assigned
one. The need then arises to assess the stability of the
resulting formation and, in particular, to find out if
the along-path ‘‘coordination errors’’ �ssi, j remain
bounded.

Communication failures. In this case, one or more of the
inter-vehicle communication links fail temporarily or
permanently. For example, the communication link
between two vehicles may fail briefly at random instants
of time, or one vehicle may only be able to broadcast its
position to a subset of the remaining vehicles and receive
information from another subset. In both cases, it is
crucial to find out if the formation remains stable.
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Figure 13. Coordinated path following, the coordination
error between vehicle 1 and the remaining vehicles, 2, 3 and 4.
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The study of these problems is far from complete
and warrants further research efforts. Here, for the
sake of completeness, we simply touch upon a number
of simple problems in the area of robustness against
vehicle failures by examining the coordination
dynamics only. Further details are given in
Ghabcheloo et al. (2004).

Leader-Follower configuration. In the absence of
vehicle failures, the coordination dynamics can be
written as

_vv1 ¼ �a1v1 þ a1v
c
1

_vvi ¼ �zi þ Ribi �ss1,i

_�ss�ss1,i ¼
1

R1
v1 �

1

Ri
vi

_zzi ¼ �aizi þ Riðaibi � ciÞ�ss1,i

ð36Þ

Suppose now that due to a failure the speed of the
leader is fixed at some positive speed v0. The dynamics
of the remaining vehicles become

_vvi ¼ �zi þ Ribi �ss1,i

_�ss�ss1,i ¼
1

R1
v0 �

1

Ri
vi

_zzi ¼ �aizi þ Riðaibi � ciÞ�ss1,i:

ð37Þ

Clearly, the eigenvalues of (37) are those of (36) except
for the eigenvalue at �a1. Thus, if the dynamics without
failures are asymptotically stable, so are the dynamics
in the case where the leader fails. As a consequence,
1=R1v0 � 1=Rivi, �ss1, j; i ¼ 2, . . . , n are driven to zero.
Stated intuitively, all vehicles slow down or speed up in
order to adopt the speeds that are required to maintain
formation. Should the failure occur in one the follow-
ers, say vehicle k � 1, it is possible to show that all the
remaining vehicles will still synchronize with the Leader.

Gateway configuration. In the case of the Gateway
configuration, a similar analysis shows that if for some
reason the velocity of the Gateway vehicle is fixed
at v0, then (as in the case of the Leader-Follower config-
uration) the other vehicles will adapt their velocities so as
to keep the formation. It is interesting to examine the
case where a vehicle other than the Gateway vehicle
has a failure and its speed gets fixed at v0.
Without any loss of generality, assume that the

vehicle with a failure is vehicle 2. In this case, straight-
forward computations show that the coordination
dynamics become

_vv1 ¼ �z1 � R1b1��ss1,i

_vvi ¼ �zi þ Ribi �ss1,i

_�ss�ss1,2 ¼
1

R1
v1 �

1

R2
v0

_�ss�ss1,i ¼
1

R1
v1 �

1

Ri
vi

_zz1 ¼ �a1z1 þ b0ðv1 � vc1Þ � R1ða1b1 � c1Þ��ss1,i

_zzi ¼ �aizi þ Riðaibi � ciÞ�ss1,i

for i ¼ 3, . . . , n. If properly designed, the coordination
law will ensure that the above system is stable. It can
then be concluded that all vehicles except vehicle 2 will
learn their correct speed and keep the formation.
Vehicle 2 will however exhibit a finite steady state error

�ss1,2 !
b0
c1

vc1
R1

�
v0
R2

� �
: ð38Þ

This error can be reduced to zero by adding an extra
integral state on the coordination error (Ghabcheloo
et al. 2004).

7. Conclusions and suggestions for further research

The paper offered a solution to the problem of steering
a fleet of wheeled robots along a set of given spatial
paths, while keeping a desired inter-vehicle formation
pattern. The methodology proposed builds on lineari-
zation techniques and draws heavily on previous work
on the implementation of gain-scheduled controllers.
Using this set-up, path following and inter-vehicle
coordination are essentially decoupled. Path following
for each vehicle amounts to reducing a conveniently
defined error vector to zero. Vehicle coordination is
achieved by adjusting the speed of each of the vehicles
along its path, according to information on the position
of the remaining vehicles only. This allowed for a simple
analysis of the resulting coordinated path following
control system. The resulting control system is simple
to implement and avoids feedforwarding the desired
speed of all the vehicles. In fact, only the velocity of
one of the vehicles is required, the other vehicles recruit-
ing their velocities automatically to keep the formation.
The paper considered different vehicle configurations
and addressed some of the problems that arise when
the vehicles or the communications network fail.
In particular, it was shown in the case of vehicle failure
how the remaining vehicles adjust their speeds to try and
maintain formation. The work reported was but a first
attempt to derive simple, easy to implement control
systems for coordinated path following. Further work
is required to fully address the problems that arise
when communications fail temporarily. Extending the
results to a full nonlinear setting and applying them to
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the control of more complex vehicles (air and marine
robots) is also a subject for future research.
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