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ABSTRACT

We address the problem of computing the Riemannian centrfoid
a constellation of points in a naturally reductive homogerseman-
ifold. We note that many interesting manifolds used in eegin
ing (such as the special orthogonal group, Grassman, sphese
tive definite matrices) possess this structure. We devatoptan-
sic Newton scheme for the centroid computation. This iseaad
by exploiting a formula that we introduce for obtaining theddian
of the squared Riemannian distance on naturally reductiveoge-
neous spaces. Some results of finding the centroid of a diztiste
of points in these spaces are presented, which evidenceidoeatic
convergence of the Newton method derived herein. These u@mp
simulation results show that, as expected, the Newton rddihe a
faster convergence rate than the usual gradient-basedamhes.

1. INTRODUCTION AND MOTIVATION

Due to its quadratic convergence rate near the solution,tdiesv

method has for a long time been the method of choice for opti-

mization problems, especially when high precision is resgiin
all fields from engineering to numerical analysis where iused
extensively to obtain many digits of precision. Intrinsiewton al-
gorithms for optimization problems with orthogonality anxitary
constraints are discused in [1] and [2]. The focus of thisspapon
deriving an intrinsic Newton algorithm for computing thenter of
mass in naturally reductive homogeneous spaces.

1.1 Applications of Center of Mass Computation Moakher in
his study of SO(3) [3] mentions the study of plate tectonics and
sequence-dependent continuum modeling of DNA where axeer
tal observations are obtained with a significant amount &fenthat
needs to be smoothed. Manton confirms this need in [4] and fu
ther broadens the applications to fuzzy control, robotigs ésion.
Pennec [5] states that positive definite symmetric mat@cesom-
monly used as covariance matrices for statistical chaiiaateon of
deformations and encoding of principle diffusion direngdn Dif-
fusion Tensor Imaging (DTI), expanding the range of appilice to
medicine. Computation of centers of mass also find apptinatfor
analyzing shapes in medical imaging, see [6]. Center of ass
putation is also a mandatory step when considering the sixteof
the K-means algorithm to manifolds.

It is important to note that all of the manifolds mentionedd a
many other commonly used fall under the class of naturatiyice
tive homogeneous spaces (see [7] for an introduction) densil in
this paper. The Grassman manifold)( sphere$), positive definite

matrices §) and the special orthogonal grouf®) are only a subset
of spaces that share this property.

1.2 State of the art Several approaches to the optimization of this
cost function exist, most of them relying on gradient methoHor
example Moakher has a study [3] of the problen$ifi(3) in which
he presents solutions to particular cases. Manton [4] ptesegra-
dient method applicable to compact Lie groups proven to bbe-gl
ally convergent as long as the points are close enough toatheh
Hiper and Manton [8] developed a Newton method for this cost
function on the orthogonal group. The algorithm presente@én-
nec in [5] for the space of positive definite matrices is algoaalient
descent method.

1.3 Problem Formulation Let M be a naturally reductive homoge-
neous space [7] and = {p1,...,pr} C M a constellation of?
points. Letd : M x M — R be the function that returns the intrinsic
distance of any two points on the manifold and define a costim
Cx : M — Ras

P

D dpna)? = kn(a)

=1 =1

Cx(q) = @

N —

where the functiong:;,, : M — R consider the distance to each
point individually and are defined ds, (¢) = 1/2 d(pi,¢)>. The
Fréchet mean set of the constellation is defined as the setuifons
to the optimization problemn ¢ (X') = argmin ., Cx(q). Each
element of the setv;(X') will be called a centroid oft’. Note that
depending on the manifold/ a generic constellation might have
more than one centroid (for example if the sphere is consitieith
a constellation consisting of two antipodal points, all tguator
points are centroids). The set of points at which the fumcfib)
attains a local minimum is called the Karcher mean set ane-is d

IJ_wo'[ed asmy(X). The objective will be to find a centroid for the

given constellation (which in the applications of interskbuld be
unique), but the possibility of convergence to a local mimimis not
dealt with. If the points on the constellation are close gtio each
other, itis known that the global set;(X’) has a single element and
so the centroid is unique as stated in [4] and [9].

1.4 Contribution The contribution of this paper is the construction
of a Newton algorithm to compute centroids of constellagionnat-
urally reductive homogeneous spaces, henceforth dengtd&biS.
These manifolds are created as a quotient space of a Lie g¥duyp
a closed Lie subgroup!/ C G with certain properties (see [7] for
an introduction on these manifolds). This paper focusesiercase
G = GL(n,R), the set of invertible matrices. We achieve the al-
gorithm construction by deriving a formula for the intriagiessian



of the cost function considered in (1), which holds for thasegjory
of smooth manifolds. In fact, our result is valid for a widange of
manifolds since they only need to be locally symmetric Rienian
manifolds (see [7] [10] and [11] for an introduction). Hoveevthe
need for carrying out some intrinsic computations such asllpa
transport of vectors and Riemannian log maps, restrictgviheedi-
ate feasibility of the approach mainly to NRHS.

1.5 Paper Organization Section 2 starts by reviewing Newton'’s

method on Riemannian manifolds and then presents our tmeore

needed for actual computation of the Hessian matrix for asec
Sections 3-5 illustrates the application of our Newton rodtifor
particular scenarios: we consider examples in the unitrepBe (n)

geodesic ball centered ate M andd, : B.(p) — R the function
returning the distance from. Let~ : [0, r] — B.(p) denote the unit
speed geodesic connectipdo ¢ € B(p), wherer = d(p, q). De-

fine the functiork, : Be(p) — R, ky(q) = 2d,(q)* and consider
any Xy, Y, € T,M. Then

Hess(kp)q(Xq,Yy) = <XC|1|7Yq”> +
+r§cki(r) <X(I{Eé> <YqL7Eé> .

whereEé is the parallel transport along of an orthonormal basis

(4)

and S(n). The performance of our algorithm is compared to theE;', € T, M which diagonalizes the linear operat® : T,M —

usual gradient-based approaches and shown to outperferm ffi-
nally conclusions are drawn in section 6.

2. HESSIAN OF THE RIEMANNIAN SQUARED DISTANCE
IN NATURALLY REDUCTIVE HOMOGENEOUS SPACES

2.1 Review of Newton’s Method in Riemannian Manifolds Let
g € M henceforth designate thieh iterate in an optimization
method. Newton’s method on a manifold is essentially theesam
in R"™ (see [1], [2] and [12] for some generalizations). It genesat
search directior, € Tg, M as the solution of the linear system

H -dy, = —grad f(qx) , @

function andgrad f(qx) € T, M is its gradient. Some care is
needed though, since the Hessian and the gradient are niotgs s
to find as inR™, but are in fact given as the solutions(@f), X, =
(grad f(q), Xq) andHess f(q)(Xq,Yy) = (Vx, grad f,Yq) for

g € MandX,,Y, € T,M are any tangent vector&jf ), denotes
the differential of the functiorf at the pointg and V denotes the
Levi-Civita connection of the manifold.

Once a Newton direction has been obtained, it should be edeck

if it's a descent direction (its dot product with the gradieector
should be negative). If so, the update equadipm = expq, (ardr),
can be used to obtain a better estimate, wheres a step size, given
for example by Armijo’s rule and the Riemannianp map provides
a means of travel on the manifold (it shall be described iti@ec
2.4). If the dot product is negative, a standard negativedigra di-
rection should be used.

Using linearity of the gradient and the Hessian, the costtfan
in equation (1) allows for the decomposition

L L
grad Cx(q) = Y _gradky, (q) = — > _ logy(pn)
=1 =1

L
Hess Cv(q) = > Hess ky, (q) | ©)
=1

where the Riemanniatbg map was used (it will be described in
section 2.4). Although the gradient is readily computeds(iasy
to check the result using normal coordinates), deternanatf the
Hessian is more involved. The next section describes howltae
late it.

2.2 Calculating the Hessian

TpM, R(X,) = R(Xp,7(0))¥(0) with eigenvalues\;, this means
R(E;,) = MEj,. Also,

Vv=X/tanh(v/=Xt) A <0
C)\(t) = % A=0
VA/ tan(v/At) A>0

Here the|| and L signs denote parallel and perpendicular orthogo-
nal components of the vector with respect to the velocitiovex -,

e, Xy = Xf + X, (X5 XY ) = 0.and (X[, 4(d)) = 0.

Due to paper length constraints, the proof of this theorenots
presented. It can be found in [13]. The proof is establisheexs
loiting some results about Jacobi fields [9] together wiith fact

2.3 Algorithm skeleton

Input ConstellationX’ = {p1,...,pr.} € M

Output Karcher Meary € my(X)

Initialization: choosegy € M and tolerance > 0. Setk = 0.

Loop: - Compute intrinsic gradienf, = grad f(q) € Tq, M.

-if |gx| < € setqg = i and return.

- compute Newton directiod.

-if <dk7gk> > 0 setdy = — k.

- apply Armijo rule to obtairy, ~ argmin,, s expq, (ads).

- setqr41 = expq, (ardy). Please note that due to finite
precision limitations, after a few iterations the result
should be enforced to lie on the the manifold.

- setk — k + 1 and re-run the loop.

2.4 Implementation Considerations To implement equation (4)
some intrinsic manifold computations need to be carried diite
next sections, describing the application of the algoritona spe-
cific set of manifolds contain the actual functions. The exguial
map sends a vectak, € T, M to a point on the manifold. Ify
is the unique geodesic such tha{0) = p and+(0) = X,, then
expp(Xp) = v(1). In generalexp, is only defined on a neighbor-
hood of the origin inT},, M, however a NRHS is complete, which
meansezp, has domairil, M. On a sufficiently small open neigh-
borhood, this map is a diffeomorphism. Its inverse functiaown
as the logarithm, when defined, retur® = log,(q) such that,
v(0) = p, (1) = q and4(0) = X,. There is another important
function which parallel transports a given vector along adgsic.
Sopary(Xp,Yp) : TpM x T,M — T,M parallel translates the

vectorY,, along the geodesic with the same characteristics as before.

Theorem 2.1 Consider a locally-symmetric n-dimensional Rieman-We note that in NRHS manifolds these operations are easyrtp ca

nian manifoldM with curvature endomorphisiR. Let B.(p) be a

out, e.g. see the closed form solutions in sections 3-5.



Fig. 1. lllustration of the orthonormal base needed.

A few remarks on how to obtain the orthonormal base{ g€t}
are in order. First le{F;} C T,M be any orthonormal base and
construct the symmetric matrik = [a;;] wherea;; = (F,, R(F})).
Let A = VDVT be its eigenvalue decomposition (EVD), where
D = diag(A1, ..., \n) reveals the necessaly andV = [v;;] are
used to construck;, = S°7_, vk, F}y. Finally, each element of this
base is parallel translated toresulting in the se{E.} C T,M.
Please note that thege are associated with the sectional curvature
of the manifold, so constant sectional curvature spacew dfir an
important simplification of equation (4):

Hess(kp)q(Xq, Yy) = <X(‘I‘,Yq”> Frea(r) <X;,Yj> . 5)

where the constant is the sectional curvature. Note that the com-
putational weight of calculating an EVD for every point iretbon-
stellation at every iteration of the Newton method is eliated.

Whichever formula is used, (4) or (5) depending on the méahifo
considered, equation (3) characterizes the Hessian ofotefunc-
tion considered from the individual Hessians, one for eagihtpn
the constellation.

The constellation was populated with random pojits S(n) gen-
erated ag; = pi/||pi]| wherep, € R™*" is randomly generated.
In order to satisfy some distance constraints the last coatel was
enforced to be positive, i.e. all points were generated emptsitive
half sphere. Note that this is a constant sectional curgaspace
so equation (5) may be used to calculate the Hessian. Thésresu
obtained when considerir§(4) with a constellation with 10 points
are presented in figure 2. The Newton quadratic convergeneés
evident as is the linear rate associated with the gradiettiode
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Fig. 2. Distance to optimum value ifi(4) C R® with 10 random
generated points.

Now that a means to obtain the value of the Hessian for any two

tangent vectors is known, it is necessary to find its matgpxesenta-
tion. For that, consider any orthonormal bgd#.} C 7, M and ap-
ply equation (4) or (5) to each pair of vectors, ilé.= [h;;] where
hij = Hess (Cx)q(E%, E3). Note that this matrix representation is
valid only on this base, so it is necessary to write the gradiector

in this base when solving equation (2), iggad(f), = > -, gz-Eé
whereg; = (grad(f),, Ey). Once the linear systedl - d = —g

is solved ford, the solution is once again expressed in this basis, so

the Newton direction igy = > | di E,.
The following sections compare results obtained using oo p

posed Newton method and the standard gradient method (:olylmonstlr

used (e.g. [5]) which iterates, ;1 = expg, (— grad Cx(gx)).

Note that since we do not have access to the optimum, the 'aﬁtlthoughSO(:%)

value given by the Newton algorithm is used as such. If thdigra
algorithm converges to the same point, this is assumed todiedst
estimate for the local minimizer.

3. S(N) - THE SPHERE

This n-dimensional manifold is described as theSet) = {z €
R™ |zl 1} whose tangent space at a pojnte S(n) is
TpS(n) = {x € R™ : pTa = 0}. Letp,q € S(n), Xp, Yy, Zp €
T,S(n) ands is the norm ofX,,. It can be shown that for the ambient
metric(X,,Yy) = X, Yy!

o expy(X,) = peos(s) + %sin(s).

o logy(q) = (¢ — p(p" q)) srrzy Wherea = arccos(p” q).
o pary(Xp,Yy) =
—(Xp/s,Yp) (sin(s)p + (1 — cos(s)) Xp/5) + Y.

o R(Xp,Yp) Zp = (Yp,Zp) Xp — (Xp, Zp) Yp.

4. SO(N) - SPECIAL ORTHOGONAL GROUP

Thisn(n—1)/2 dimensional manifold represents the set of rotations
of R™ and is described aSO(n) = {z € M,(R) : 2"z = id}
(M, (R) is the set ofr x n matrices with real entries) whose tangent
space at a point € SO(n) isT,SO(n) = {pk : k € K(n,R)},
where/C(n, R) denotes the set of x n skew-symmetric matrices.
The constellation points are generated usingradecomposi-
tion of a random matrix, guaranteeing that the result restrio
SO(n) by checking the sign of the determinant. No other con-
aints were enforced so the points should spread thrdwegiviole
manifold and not restrict to a particular neighborhood. eNttat
has constant curvature, the same does not apply
for higher order manifolds so the general equation (4) habketo
used. The results shown in figure 3 were obtained using aeltamst
tion of 10 points onSO(4). Note that this is a higher dimensional
manifold than the previous sphere example (6 degrees adree
compared to 4). Lep,q € SO(n), Xp, Yy, Z, € T,SO(n). We
have the following closed-form expressions for the ambigatric
(Xp,Yp) = tr{X; Yo }:

expp(Xp) = pexp(p” X,), whereexp denotes the matrix
exponential function.

logy(q) = plog(p”q) wherelog denotes the matrix loga-
rithm.

pary(Xp, Yp) = peXp(pTXp/2)pTYp eXp(pTXp/Q).
R(X,,Yy) - Zp = —2 [[Xp, Y] . Zp] where the brackets
denote the lie bracket at poipt

Again, it is clear that the Newton method is converging at a
guadratic rate, as opposed to the linear rate of the grantietitod.
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Fig. 3. Distance to optimum value i8O(4) C M4 (R) with 10
random generated points.

5. S(N)-SYMMETRIC POSITIVE DEFINITE MATRICES

Thisn(n+1)/2 dimensional manifold is described as theSet) =
{z € M,(R)

space at a poinp € S(n) is Tp,S(n) = {z : z € S(n,R)},

whereS(n,R) denotes the set of x n symmetric matrices. Let
p,q € S(n), Xp,Yp, Zp € T,S(n). When considering the metric

(Xp, Yp) = tr{X ] p~'Y,p~'} we have, see [13]

o expy(X,) =p'/?exp(p~ /2 X,p~1/?)p!/2.

o logy(q) = p'/*log(p~"/2qp~"/?)p"/%.

o pary(Xp,Yp) = pl/QQpil/QYppil/QQpl/Q, where@ =
exp(p™ '/ X,p~ 12 /2).

o R(X,,Yp) Zp = 1/A(Zpp™tO — Op~'Z,), whereO =
prilyp - YppilXp-

In this example 30 points 06(3) (a 6 dimensional manifold)

were generated to form a constellation to which the algoritias
been applied. This manifold has the particularity of haviramn-

positive sectional curvature, guaranteeing the uniqueokthe cen-
troid. The points were generated around a nominal point bgvie

ing geodesics departing from this point with tangent vextdreying
a Gaussian distribution. This constellation constructr@thod and
the manifold considered resembles the one described ifT [ .re-

sults are shown in figure 4. Once again the quadratic conveege

rate of the Newton method outperforms the gradient method.

6. CONCLUSIONS

-2 = 7, with positive eigenvalugswhose tangent
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Fig. 4. Distance to optimum value i§(3) C M3(R) with 30 ran-
dom generated points.
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