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Abstract: Many optimization problems formulated on Riemannian manifolds
involve their intrinsic Riemannian squared distance function. A notorious and
important example is the centroid computation of a given finite constellation
of points. In such setups, the implementation of the fast intrinsic Newton
optimization scheme requires the availability of the Hessian of this intrinsic
function. Here, a method for obtaining the Hessian of this function is presented for
connected locally-symmetric spaces on which certain operations, e.g. exponential,
logarithm and curvature maps, are easily carried out. Particularly, naturally
reductive homogeneous spaces provide the needed information, hence applications
will be shown from this set. We illustrate the application of this theoretical result in
two engineering scenarios: (i) centroid computation and (ii) maximum a posteriori
(MAP) estimation. Our results confirm the quadratic convergence rate of the
intrinsic Newton method derived herein.
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1. INTRODUCTION AND MOTIVATION

Due to its quadratic convergence rate near the so-
lution, Newton’s method has for a long time been
the method of choice for optimization problems,
especially when high precision is required. This is
true in many fields, from engineering to numerical
analysis where it is used extensively to obtain
many digits of precision. Intrinsic quasi-Newton
and Newton algorithms for optimization problems
on smooth manifolds have been discussed (among
others) in (Gabay, 1982) and in (Edelman et
al., 1998) and (Manton, 2002). Applications can
be found in robotics (Belta and Kumar, 2002), sig-
nal processing (Manton, 2005), image processing
(Helmke et al., 2004), etc.

Implementation of the intrinsic Newton scheme
relies on the availability of the intrinsic Hessian

of the function to be optimized. In this paper,
our interest lies on those optimization problems
involving the intrinsic squared Riemannian dis-
tance. As a special case, this subsumes the class
of optimization problems known as centroid com-
putation.

Many applications of centroid computation exist
in the literature. For example (Moakher, 2002)
mentions centroid computation in SO(3) for the
study of plate tectonics and sequence-dependent
continuum modeling of DNA. In these, experimen-
tal observations are obtained with a significant
amount of noise that needs to be smoothed. Pos-
itive definite symmetric matrices are used as co-
variance matrices in (Pennec et al., 2004) for sta-
tistical characterization of deformations and en-
coding of principle diffusion directions in Diffusion



Tensor Imaging (DTI), expanding the range of
applications to medicine. Computation of centers
of mass also find applications for analyzing shapes
in medical imaging, see (Fletcher et al., 2004).
It is also a mandatory step when considering the
extension of the K-means algorithm to manifolds.

Most of these approaches rely on gradient meth-
ods for computing the intrinsic Riemannian cen-
troid with a few exceptions: Hiiper and Manton
in (Hiiper and Manton, 2005) developed a New-
ton method for the special orthogonal group and
(Absil et al., 2004) introduced a Newton method
applicable to Grassmann manifolds which oper-
ates on an approximation of the intrinsic cost
function, yielding the intrinsic centroid.

1.1 Contribution We present and discuss a
method for computing the intrinsic Hessian of the
Riemannian squared distance function for locally
symmetric Riemannian manifolds. This builds on
our previous work in (Ferreira et al., 2006). In this
paper we simplify the description of the intrinsic
Hessian by providing a concise matrix expression
in each tangent space. This entails an appre-
ciable simplification with respect to (Ferreira et
al., 2006), e.g. the need for parallel translation
of tangent vectors is dropped, thus relaxing the
amount of required differential geometric func-
tions initially imposed.

Adding to the already described cases of the
embedded sphere S", special orthogonal group
SO(n) and symmetric positive definite matrices
Sym™(n), the method will also be shown to work
for the special Euclidean group SE(n) and the
Grassmann manifold G(n,p). Notice that the real
projective plane P™ is a particular case of the
Grassmann manifold (P" = G(n+ 1,1)). As an
example of other applications, a simple example
of MAP estimation is described and results are
shown.

1.2 Paper Organization The paper is struc-
tured as follows:

e Section 2 provides a short review of Newton’s
method on Riemannian manifolds and also
presents the main result of this article - the
matrix version of the Hessian of the Rieman-
nian squared distance function in a given
tangent space. This enhances our previous
result in (Ferreira et al., 2006) and describes
it in an implementation-friendly format.

e To construct the Hessian, several differential-
geometric operations on the manifold are
needed, e.g. computation of the curvature
tensor. Section 3 mentions a method for ob-
taining the needed computational tools for
a class of commonly used manifolds: natu-
rally reductive homogeneous spaces (all the
manifolds mentioned earlier fall under this

category, here SE(n) is seen as SO(n) x
R™). Further, when dealing with constant
sectional curvature manifolds, we show how
to decrease the computational complexity of
the algorithm.

e Section 4 illustrates the application of the
theory to the problem of intrinsic cen-
troid computation by a Newton method.
A pseudo-code implementation of the algo-
rithm is given. Results for the special Eu-
clidean group, the Grassmann manifold and
real projective plane are presented. Another
application, concerning MAP position esti-
mation in the context of robot navigation is
shown as well.

e Finally, some conclusions are drawn and di-
rections for future work are delineated in
section 5.

2. HESSIAN OF THE RIEMANNIAN
SQUARED DISTANCE FUNCTION

2.1 Review of Newton’s Method in Rie-
mannian Manifolds Let g € M henceforth des-
ignate the kth iterate in an optimization method
formulated on a Riemannian manifold M. New-
ton’s method on a manifold is essentially the same
as in R™ (see (Edelman et al., 1998), (Manton,
2002) and (Hiiper and Trumpf, 2004) for some
generalizations). It generates a search direction
di € Ty, M as the solution of the linear system

H - dip = —grad f(qr) , 1)

where H is the bilinear Hessian tensor of the
smooth cost function f M — R evalu-
ated at ¢r and grad f(qx) € Tg M is its gra-
dient. Some care is needed though, since the
Hessian and the gradient are not as simple
to find as in R™, but are in fact given as
the solutions of (df),X, = (grad f(q), X,) and
Hess f(q)(Xq,Yq) = (Vx, grad f,Y,), where ¢ €
M and X,,Y, € T,M are any tangent vectors.
Here (df), denotes the differential of the function
f at the point ¢ and V denotes the Levi-Civita
connection of the manifold. Here, (-, -} denotes the
inner product on T, M.

Once a Newton direction has been obtained, it
should be checked if it’s a descent direction (its
inner product with the gradient vector should
be negative). If so, the update equation gr11 =
expq, (axdy), can be used to obtain a better esti-
mate. Here oy is a step size, given for example by
Armijo’s rule, and exp denotes the Riemannian
exponential map. If the inner product is negative,
a safe negative gradient direction should be used.

Although the gradient is usually easy to compute,
determination of the Hessian is more involved.
The next section describes a method to calculate
it on particular Riemannian manifolds (connected



and locally-symmetric where the curvature tensor
and Riemannian logarithm maps are known).

2.2 Hessian in Matrix Form This section
starts with a slightly upgraded version of the main
result presented in (Ferreira et al., 2006), stating:

Theorem 1. Consider M to be a connected locally-
symmetric n-dimensional Riemannian manifold
with curvature endomorphism R. Let B.(p) be a
geodesic ball centered at p € M and ), : Bc(p) —
R the function returning the intrinsic (geodesic)
distance to p. Let v : [0,7] — B(p) denote
the unit speed geodesic connecting p to a point
q € B.(p), where r = r,(q), and let 4, = 4(r)
be its velocity vector at ¢. Define the function
kp : Be(p) — R, ky(z) = 3rp(2)? and consider
any Xg,Y, € T,M. Then

Hess(kp)q(Xg,Yq) = <XqHan> +

ZCtg)\i (T) <XqL7 EZq> <}/q; E’Lq> .
i=1

where {E;,} C T,M is an orthonormal basis
which diagonalizes the linear operator R : T, M —
T,M, R(Xq) = R(Xg,¥q)¥q with eigenvalues A;,
this means R(E;,) = A\iE;,. Also,

VA t/ tan(vVAt) A>0
ctgy(t) = 1 A=0.
V=At/tanh(vV=Xt) A<0

Here the || and L signs denote parallel and or-
thogonal components of the vector with respect
to the velocity vector of 7, i.e. X, = X, + X,*,

(X X,1) =0, and (X,%,4) =0

The improvement relative to (Ferreira et al.,
2006), which might be unnoticed at first sight, is
the point of the manifold M at which the self-
adjoint operator R is diagonalized, i.e. at point q.
Previously, the diagonalization took place at p €
M and the result was then parallel-transported to
g (where it is needed). Here, we see that parallel
translation is no longer required, and better yet
this allows for the formula to be written in matrix
notation as described next. Note that the theo-
rems are formulated intrinsically, and nowhere is it
assumed an embedded manifold characterization.
This means that the presented work is indepen-
dent of the representation chosen for the manifold
M, which can range from simple cartesian prod-
ucts of submanifolds of R, quotient manifolds or
any other abstract construction.

Theorem 2. Under the same assumptions as above,
consider {Fiq} C TyM an orthonormal basis.
If Xy € TyM is a vector, let the notation X
denote the column vector describing the decom-
position of X, with respect to the basis {Fiq},

ie. [X]l = <Xq,Fiq>, let Rj, be the matrix with
entries [Ry|;; = <F R(qu)> and consider the

lq,
eigenvalue decomposition Ry = EAET. Here ),
will be used to describe the i’th diagonal element
of A. Then the Hessian matrix (a representation
for the bilinear Hessian tensor on the finite di-
mensional tangent space with respect to the fixed
basis) is given by:

Hy, = EXET (2)

where ¥ is diagonal with elements o; given by o; =
ctgy, (r). Hence Hess(ky)q(Xq,Yy) = XTHY.

This result follows from theorem 1 by decompos-
ing each vector with respect to the considered
basis and noting that, due to the symmetries of
the curvature endomorphism, the operator has a
null eigenvalue associated with the eigenvector .

3. IMPLEMENTATION

3.1 Naturally Reductive Homogeneous
Spaces The theory of naturally reductive ho-
mogeneous spaces, henceforth denoted by NRHS,
provides a practical way of obtaining the needed
curvature endomorphism R, Riemannian expo-
nential and logarithm maps for those cases where
the manifold M can be written as a coset space
G/H of a group G, acting on M transitively
and by isometries, with isotropy subgroup H.
The situation is particularly favorable from the
computational viewpoint if G can be taken as
SO(n) or GL(n), given the easy formula (matrix
exponential) for its one parameter subgroups. If
certain additional properties are verified (e.g. ex-
istence of a Lie subspace as defined for exam-
ple, in (O’Neil, 1983)), all of the required maps
can be found from the corresponding maps in G.
For a description of these spaces see for example
(O’Neil, 1983). Many manifolds in engineering
can be described by this construction, particularly
all the manifolds mentioned are NRHS (Grass-
mann, sphere, special orthogonal group, special
Euclidean group, positive definite matrices and
the projective plane). Note though that the NRHS
set is not a subset of connected locally symmetric
manifolds, hence care should be taken to ensure
that the particular manifold on which optimiza-
tion is to be performed verifies these conditions.
For example, the Stiefel manifold (the set of k
dimensional orthogonal frames in R") is an NRHS
space but is not locally symmetric, except in the
cases where £k = 1 which results in the sphere.
Note that when k = n the Stiefel is not connected
(it is actually O(n)).

3.2 Special Considerations Spaces with con-
stant sectional curvature deserve special mention.
In these spaces, it is easily seen that the eigen-
values of the operator R are the constant value
of the curvature, except for one, which is 0 and



is associated with eigenvector ¥,. Hence, if X is
the value of the curvature, the matrices can be
decomposed as follows:
00
_ (s AL _
E—hq’yq] A—)\[OI]

where ;qu is an orthonormal complement of 7,.
Thus the Hessian matrix becomes:

. . . . T
Hi =%y + ctg(r)ig e
=Yg%a + ctgy(r)(I —Ag7a)
= ctgy(r)] + (1 —ctgy(r)¥gYa - (3)

This removes the need for the numerical compu-
tation of the eigenvalue decomposition.

All manifolds with an NRHS structure (possibly
others where isometries are known) allow for an-
other, sometimes important, optimization. Sup-
pose that there’s a privileged point o € M where
computations are ‘cheaper’ to carry out. Since
there’s a group G acting transitively on M by
isometries, an element g, € G can be found such
that o = g, - q, where ¢ € M is the current
Newton estimate. Applying this isometry to the
whole constellation yields {p. : p} = g, - pi}, i.e.,
a new constellation ‘centered’ at o. The result is
that all optimization steps can be carried out at o
simply by pre-applying go and after the Newton it-
eration applying g, ! to the new estimate. Besides
simplifying the computation of the Riemannian
curvature, logarithm and exponential maps, it also
allows for a tangent basis {F;,} to be fixed for all
iterations.

4. RESULTS

4.1 Centroid Computation Let M be a con-

nected locally-symmetric Riemannian manifold
and X = {p1,...,p} C M a constellation of
L points. Let r : M x M — R be the function
that returns the intrinsic distance of any two
points on the manifold and define a cost function
Cy:M — R as

N~

L p
Cx(q)=5Y rpa)®=> kp(@), (4)
=1 =1
where the functions k, : M — R consider the
distance to each point individually and are de-
fined as ky,(q) = 1/2 r(pi, q)?. The Fréchet mean
set of the constellation is defined as the set of
solutions to the optimization problem my(X) =
argmin ¢ r Cx(q). Each element of the set m ()
will be called a centroid of X'. Note that depending
on the manifold M a generic constellation might
have more than one centroid (for example if the
sphere is considered with a constellation consist-
ing of two antipodal points, all the equator points
are centroids). The set of points at which the
function (4) attains a local minimum is called the
Karcher mean set and is denoted as my(X). The

objective will be to find a centroid for the given
constellation (which in the applications of interest
should be unique), but the possibility of conver-
gence to a local minimum is not dealt with. If
the points on the constellation are close enough to
each other, it is known that the global set mf(X)
has a single element and so the centroid is unique
as stated in (Manton, 2004) and (Karcher, 1977).

Using linearity of the gradient and the Hessian
operators (meaning in particular that if f,g :
M — R then Hess(f + g) = Hess f + Hess g and
grad(f + g) = grad f + grad g), the cost function
in equation (4) allows for the decomposition

L L
grad Cx(q) = ) _ gradky, (¢) = — Y _ logy(pn)
=1 =1

L
HessCx(q) = Z Hess kp, (q) » (5)
=1

where the fact that the gradient of the squared
Riemannian distance function is the symmetric
of the Riemannian log map is used (as stated in
(Lee, 1997) as a corollary to Gauss’s lemma).

Here is the outline of the Newton method as
applied to this problem:

Input: Constellation X = {p1,....,pL} € M
Output: Karcher Mean ¢q € my(X)
Initialization:

Choose qp € M, tolerance € > 0. Set k « 0.
Loop:

e * Apply initial isometry f to constellation
and taking the current estimate g to o.

e Compute intrinsic gradient g, = grad Cx(q) €
Ty, M by equation 5.

o If |gi| < € set ¢ = g and return.

e Compute Hessian matrix H = Zlel H,
where each H; is given by equation 2 or 3.

e Compute Newton direction dj, as the solution
of the system Hdy = —gy.

o If <dk7gk> Z 0 set dk = —0Gk-

e Apply Armijo rule (a popular line search
algorithm, see for example (Bertsekas, 1999))
to obtain
Q) A argming, s expy, (ady).

o Set gpr1 = expg, (ardy). Please note that
due to finite precision limitations, after a few
iterations the result should be enforced to lie
on the manifold.

e * If initial isometry was applied, set qxi1 «—
S (@)

e Set k — k + 1 and re-run the loop.

Where the steps marked with an asterisk are
optional computational optimizations.

4.2 The SE(3) C M(3,4) Manifold An exam-
ple on the special Euclidean group SE(3) (seen
as a Riemannian submanifold of M(3,4)) with
a constellation of 5 points is shown in figure 1.
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Fig. 1. Intrinsic centroid computation on SE(3)
with a constellation of 5 points.
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Fig. 2. Intrinsic centroid computation on the
G(6,3) with a constellation of 5 points.

The results, shown in a logarithmic scale, clearly
show the quadratic convergence rate of Newton’s
method and the almost perfectly linear conver-
gence rate of the gradient method. Note the
plateau at a precision of 107! resulting from
numeric precision limitations.

4.3 The G(6,3) = g5t Manifold The
results for G(6, 3), the Grassmann manifold (here
represented as a coset space of SO(n) as in
(Edelman et al., 1998)) of 3 dimensional subspaces
in RS, are shown in figure 2. Again the quadratic
convergence rate of Newton’s method is clear.
Note that this class of manifolds do not admit a
canonic embedding in R”, thus showing that the
presented results are not bound to embeddable
manifolds.

4.4 The P° = G(6,1) Manifold The method
is also valid for the projection space, which is a
special case of the Grassmann manifold. Results
are presented in figure 3 for the manifold P®.

4.5 Robot Navigating in R™ As a simple
application consider a robot moving freely in R".
Its state may be represented as a point T' € SE(n),
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Fig. 3. P° with a constellation of 25 points.

which acts on points in the world referential, tak-
ing them to the local referential. To keep the ex-
periment simple, assume also that there are some
known landmarks in the world {z1,...,x;} € R”
which the robot observes. Hence, in the local
referential, the robot observes the points T x;.
Assuming that the robot is known to be in po-
sition Tp with a certain uniform uncertainty, it
is possible to build a prior knowledge probability
density function as:

o) = Ry e batrT

where K; is a normalizing constant and o2 en-
codes the level of uncertainty. Notice that all
directions are treated equally which is usually not
the case, but to keep the example simple assume
that this description is usefull. Assume also that
the robot’s sensor is not perfect and the obser-
vations obey the following Gaussian probability
distribution:

p(yi|T) = Kye~WiT e)TR™ (yi—T w1)

where, again Ko is a normalizing constant and
R is a matrix encoding the uncertainty of the
sensor. With these assumptions and assuming the
observations are independent, the MAP estimator
of the robot’s position is given by

T* = arg ma Tly1,yo, ...,
gTesEzcn)p( Y1, Y25 s Yk)

which is equivalent to

k
T _ ] A|T)) + log(p(T
arngé%zcn); og(p(yi|T)) + log(p(T))
k

—(yi = Tw) " R™ (ys — Tay)
=1

— 5d(T,Tp)* /o

= arg max
TESE(n)

This is an optimization problem on SE(n). The
gradient of each term is readily available and
the Hessian of the first terms can be obtained
using standard techniques. The result presented
in this paper allows for the Hessian of the last
term to be obtained as well, thus allowing for
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Fig. 4. Distance to optimum MAP estimate for 5
observations, c =1 and R= 1.

a Newton algorithm to be implemented. Figure
4 shows the results when both the gradient and
Newton methods are applied to 5 observations
(using 0 = 1 and R = I). The gradient method
(both with and without the Armijo step selection
rule) is clearly outperformed since the Newton
method takes only 5 iterations to hit the objective
at the given precision.

5. CONCLUSION

A simple formula for the Hessian matrix of the
squared distance function on a connected locally-
symmetric manifold was presented. The range of
manifolds for which the method has been proven
to work comprises the important cases of SO(n),
Sym™*(n), S, SE(n), G(n,p) and P". A simple
example of MAP position estimation was pre-
sented, illustrating how to use the result on other
problems besides centroid computation. Possible
future work involves approximating the general
Hessian expression (2), by a constant sectional
curvature approximation. Although the quadratic
convergence rate should be lost, a super-linear
convergence rate might be possible without the
need for an EVD decomposition. At this stage an
implementation of a K-means clustering algorithm
should be trivial as well.
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