
UNCERTAINTY vs PERFORMANCE TRADE-OFFS IN ROBUST

FEEDBACK CONTROL: A MIMO CASE STUDY

J.F. Vasconcelos†, M. Athans†∗, S. Fekri†∗∗, C. Silvestre† and P. Oliveira†

Abstract— We use a non-trivial MIMO three-cart Mass-
Spring-Dashpot (MSD) system to demonstrate how perfor-
mance (disturbance-rejection) is reduced as the level of un-
certainty in one or two real parameters is increased in the
presence of unmodeled dynamics. All designs are carried out
by the mixed-µ robust synthesis methodology. Comparisons are
made (a) in the frequency-domain, (b) by RMS values of key
signals and (c) in time-domain simulation results.

I. INTRODUCTION

All LTI models of real dynamic systems are subject to

uncertainty. For each LTI model we must take into ac-

count unmodeled dynamics and uncertain real parameters,

as well as unmeasurable exogenous plant disturbances and

sensor noise. The design of a MIMO dynamic compensator,

and of the resulting robust feedback system, must possess

guarantees of both stability-robustness and performance-

robustness to the explicit performance specifications posed

by the control system designer.

Fortunately, in the past decade or so, the mixed-µ design

methodology [4], [5] and MATLAB software [1], utilizing

the so-called D,G-K iteration, have been developed that can

indeed be used to design robust MIMO feedback control sys-

tems with the requisite stability- and performance-robustness

guarantees. However, there is a scarcity of complex MIMO

numerical studies that demonstrate the very important trade-

offs between performance and uncertainty. One of the possi-

ble reasons is that the commercial version of the Robust

Toolbox [1] in MATLAB does not fully implement the

complete mixed-µ compensator design process.

In this paper we use two-input two-output (TITO) Mass-

Spring-Dashpot (MSD) test example to illustrate key per-

formance vs uncertainty trade-offs. We have used a ”beta”

version of the mixed-µ software (provided to us by Prof.

Gary Balas) which fully implements the mixed-µ D,G-K

iteration, leading to the best possible robust compensator.

Of course, since we deal with a MIMO design, ”directional

properties” quantified by the Singular Value Decomposition
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(SVD) are also important. A similar study [3] examined

similar trade-offs for a simpler SISO MSD example.

Loosely speaking, the mixed-µ compensator design pro-

cess ”detunes” an optimal H∞ compensator, designed for

the nominal plant, to hedge for the uncertain real parame-

ters. The greater the parametric uncertainty the smaller the

guaranteed performance. In this study we shall focus upon

the deterioration of disturbance-rejection as the parametric

uncertainty increases.

The paper is organized as follows. In Section II we discuss

the MSD dynamics, uncertain real parameters, unmodeled

dynamics and the open-loop frequency-domain analysis. In

Section III we present the specific performance specifications

using frequency-domain weights; we also define two cases,

one involving a single uncertain parameter (a spring stiffness)

and another that, in addition, involves an uncertain mass. In

this manner, we can examine the performance deterioration

when we add another uncertain real parameter, in terms of

performance weights, disturbance-rejection and output RMS

tables. In Section IV we discuss the characteristics of the

robust compensators, obtained by the mixed-µ method, in

the frequency-domain. The trade-offs in terms of frequency

domain disturbance-rejection SVD plots are also presented.

In Section V we show time-transients which also illustrate

the deterioration in disturbance-rejection as the parametric

uncertainty increases. Section VI presents some brief con-

clusions.

II. PLANT MODEL

The Mass-Spring-Dashpot (MSD) system, depicted in

Fig. 1, is composed by three masses, denoted by m1, m2 and

m3, interconnected by elastic springs and dashpots elements,

whose stiffness and damping coefficients are denoted by k1,

k2, k3, and b1, b2, b3, respectively. The control inputs u1 and

u2 are applied to masses m1 and m3, respectively, and are

affected by an unknown bounded pure time-delay.

Position sensors y1 and y2, corrupted by measurement

noises θ1 and θ2, are included on masses m2 and m3.

The performance outputs positions z1 and z2 are defined on

masses m2 and m3 in order to minimize their displacements.

From the system configuration, it is immediate that the con-

trol is partially non-collocated because of the performance

specifications represented by z1. The two disturbances d1 and

d2 act on the same masses where the performance outputs

are defined, and thus d1 cannot be directly compensated by

a control input.



Fig. 1. Mass-Spring-Dashpot system

A. System Dynamics

Based on Newton’s laws, the MSD plant dynamics are

derived to yield the augmented state model

[

ẋ(t)
v̇(t)

]

=

[

0 I3×3

A21 A22

] [

x(t)
v(t)
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u(t) (1)

where the state variables x(t), state noise d(t) and inputs
u(t) are described by
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ˆ
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and mi, xi and vi are the mass, position and velocity of

the mass indexed by i = 1, 2, 3, ki and bi are the elastic

and damping coefficients and ui and di are the forces and

disturbances acting on the system, respectively.

The state performance output z(t) is defined on x2(t)
and x3(t). The performance state variables are monitored

by position sensors y(t) corrupted by additive noise

z(t) =

[

x2(t)
x3(t)

]

, y(t) = z(t) +

[

θw 1(t)
θw 2(t)

]

zpx(t) = Wpxz(t), zpu(t) = Wpuu(t) (4)

where zpx(t) and zpu(t) are performance vectors, Wpx and

Wpu are performance weights and θw(t) is the measurement

noise.

For the current case, the known physical parameters are

m1 = m2 = 1 Kg, b1 = b2 = b3 = b4 = 0.05 Ns/m (5)

k2 = 0.15 N/m, k3 = 1.00 N/m, k4 = 0.20 N/m

B. System Disturbances

The state disturbances are modeled as low-frequency col-

ored noise generated by a prewhitening process

d(s) = Wd(s)ξ(s)

Wd(s) =
α

s + α
I2×2 (6)

where α is the cut-off frequency and ξ(s) is a zero-mean,

Gaussian white noise, with unit intensity Ξ = I2×2. The

cut-off frequency is set to α = 2 rad/sec.

The measurement noise θw(t) is a zero-mean, Gaussian

white noise with covariance given by

θw(s) = Wθ(s)θ(s)

Wθ(s) =

[

Θ
1

2

11 0

0 Θ
1

2

22

]

(7)

where Θ11 = Θ22 = 10−6 and θ(s) is a zero-mean,

Gaussian white noise, with unit intensity.

C. Uncertain Parameters

As shown in Fig. 1, the plant includes two uncertain

parameters in the control time delay, given by time constants

τ1 and τ2, and two other associated to mass m3 and the

elastic coefficient k1 values. These are modeled according

to the mixed-µ synthesis methodology, resorting to either

structured or unstructured models.

1) Structured Uncertainty: The structured uncertain pa-

rameters k1 and m3 are described by

k1 = k̄1 + δk1
k̃1 (8)

m3 = m̄3 + δm3
m̃3 (9)

where k̄1 and m̄3 are the nominal values, k̃1 and m̃3 are the

uncertainty levels and the variables δk1
∈ R and δm3

∈ R

determine the structured uncertainties values and satisfy

‖δk1
‖ ≤ 1 and ‖δm3

‖ ≤ 1. The parametric uncertainties

are described in the system in the form of lower loop LFT

transfer function [1].

The structured uncertain parameters values are

k1 ∈
[

0.25 1.75
]

N/m → k̄1 = 1 N/m, k̃1 = 0.75 N/m

m3 ∈
[

0.20 1.80
]

Kg → m̄3 = 1 Kg, m̃3 = 0.8 Kg (10)

2) Unstructured Uncertainty: The control channels pure

time-delays are infinite-dimensional systems, so they cannot

be modeled by a finite number of state variables. Assuming

that the time-delays are neglected, the resulting multiplicative

error is eM (s) = e−sτ − 1.

The multiplicative error magnitude can be approximated

by an upper bound high-pass transfer function Wτi(s) with

a pole placed near the frequency ω = π
τi

. For the µ-synthesis

methodology, the magnitude and phase of the transfer func-

tion Wτi(s) are shaped by a delta block ∆τi(s) ∈ C that

satisfies ‖∆τi(s)‖∞ ≤ 1 and introduces a phase uncertainty

in the range of ±180 ◦.

The control channel time-delays upper bounds are

τi ≤ 0.03 s, i = 1, 2 (11)
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Fig. 2. Open-loop disturbance to output singular values, Tdy(s)
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Fig. 3. Open-loop control to output singular values, Tuy(s)

so the Wτi(s) transfer function pole is set near the maximum

time-delay frequency and the gain adjusts the upper bound

magnitude to the eM (s) transfer function. The frequency

weight block is defined as

zτ (s) = Wτ (s)u(s)

Wτ (s) = 2.1
s

s + 40
I2×2 (12)

D. Frequency Domain Analysis

The singular values of the disturbance and control to

state performance transfer functions, Tdy(s) and Tuy(s)
respectively, are presented in Fig. 2 and Fig. 3. As expected,

increasing the spring stiffness k1 or decreasing mass coef-

ficient m3 will open the system bandwidth, and vice-versa.

The zeros in Fig. 2 reflect the placement of disturbances in

the masses where sensors are installed. The absence of zeros

in Fig. 3 evidences the fact that control input u1(t) is not

collocated on a mass associated with the performance vector.

For the problem at hand, the system amplifies the frequen-

cies where d(s) has more power, ω < 2 rad/sec. Therefore,

the open-loop dynamics naturally amplify the disturbance

and the controller must change the directionality of the

closed-loop system to properly filter out the disturbance

effects in the output vector.

III. PERFORMANCE-ROBUSTNESS

The performance-robustness and stability-robustness re-

quirements are introduced in the generalized plant, shown

in Fig. 4, under the form of frequency weights. The

performance-robustness requirements are introduced us-

ing frequency weights in the output variables, whereas

the stability-robustness specifications are associated to the

weights defined in Section II.

Fig. 4. Generalized plant

This section details the performance-robustness specifi-

cations and the mixed-µ synthesis setup to find the best

performance given the parametric uncertainty interval. The

influence of the number of uncertainties and the impact of

uncertainty levels k̃1 and m̃3 in the system performance are

discussed.

A. Performance Specifications

The disturbance must be rejected, as much as possible,

in the closed-loop system. The state performance weights,

defined on mass 2 and mass 3 positions, introduce good

disturbance-rejection in the frequency range where the dis-

turbance d(s) has most of its power

Wpx(s) =
Apα

s + α

[

A1 0
0 A2

]

(13)

where α = 2 rad/sec and A1 and A2 shape the directionality

of the system. The Ap performance weight reflects the

best possible disturbance-rejection and is determined in the

µ-synthesis procedure.

The controller inputs power is available at low frequencies

but actuation is expensive at high frequencies

Wpu(s) =
10(s + 102)

s + 106
I2×2 (14)

The controller specifications (14) limit the bandwidth of the

closed-loop system.

As detailed in [2], the performance-robustness specifica-

tions are satisfied by introducing an additional performance

delta block ∆p(s) in the µ-synthesis methodology.

B. Mixed-µ Synthesis Setup

The µ-synthesis is applied to find the largest possible

performance weight Ap for the MSD plant, thus yielding the

best disturbance-rejection possible. Based on the experience

drawn from extensive simulations, the singular structured

value µ upper bound, denoted by µ̄, is considered to mono-

tonically increase with the performance weight Ap.



TABLE I

D,G-KIT PERFORMANCE RESULTS (k1 UNCERTAIN, A1 = A2)

k̃1 Ap ‖Tξz(0)‖ RMS(z1) RMS(z2)

0.75 23.28 3.51 × 10−2 1.40 × 10−2 3.51 × 10−2

0.50 63.80 1.44 × 10−2 1.04 × 10−2 2.27 × 10−2

0.25 134.93 7.18 × 10−3 7.80 × 10−3 8.24 × 10−3

≈ 0 223.25 4.27 × 10−3 7.63 × 10−3 1.22 × 10−2

Using the bisection search algorithm, the adopted proce-

dure tries to find the largest Ap such that the norm of the

smallest destabilizing structured uncertainty is greater than

unity [2], i.e., µ̄ < 1. In other words, given the uncertainty

blocks defined in Sections II and III-A, there is no valid ∆(s)
that destabilizes the system. The D-K and D,G-K iterations

are run by the dgit and dgkit commands included in

the Robust Control Toolbox of Matlab 7.1 [1] and in the

beta version software package kindly provided by Prof. Gary

Balas.

The µ-synthesis properties are studied by varying the

number of parametric uncertainties and their uncertainty

level, represented by k̃1 and m̃3. Also, the performance

weights A1 and A2 relative values are modified to evidence

directionality aspects with respect to the nominal setting

A1 = A2 = 1.

C. Performance-Robustness Results

1) Single Parametric Uncertainty: The performance re-

sults for a parametric spring stiffness uncertainty k1, com-

puted for the worst-case disturbance, are detailed in Table I.

The norm ‖‖ denotes the maximum singular value at DC.

It is obvious that smaller uncertainty levels k̃1 yield better

output performance weight Ap. That is, if the stability-

robustness specifications are less demanding, then bet-

ter performance-robustness specifications are obtained, and

the closed-loop will yield better disturbance-rejection and

command-following.

The values of the state performance weight Ap are not

linear with respect to k̃1, as depicted in Fig. 5. As the

uncertainty level k̃1 grows, the control problem becomes

harder and Ap tends to zero, which means that it is not

possible to achieve performance-robustness with essentially

unknown dynamics.

The disturbance-rejection gain for low frequencies

‖Tξz(0)‖ decreases with the uncertainty and is about 1

Ap
,

as expected. The RMS value of the mass positions x2(t)
and x3(t) tends to decrease, reflecting better performance-

robustness. In spite of this tendency, µ-synthesis is designed

using an H∞ control methodology, so it is not mandatory

that the performance vector H2 norm (i.e. RMS) decreases

as the uncertainty level k̃1 becomes smaller.

The performance-robustness results for asymmetric per-

formance weights cases (A1 = 5, A2 = 1) and (A1 = 1,
A2 = 5) are detailed in Tables II and III, respectively.

The problem of non-collocated control makes mass 2

position harder to control, so the performance specification

associated to z1(t) is more difficult satisfy than for z2(t).

TABLE II

D,G-KIT PERFORMANCE RESULTS (k1 UNCERTAIN,A1 = 5, A2 = 1)

k̃1 Ap ‖Tξz(0)‖ RMS(z1) RMS(z2)

0.75 4.93 0.101 1.35 × 10−2 7.58 × 10−2

0.50 12.71 4.77 × 10−2 9.56 × 10−3 3.81 × 10−2

0.25 26.04 2.32 × 10−2 7.98 × 10−3 2.35 × 10−2

≈ 0 45.60 1.06 × 10−2 7.51 × 10−3 2.60 × 10−2

TABLE III

D,G-KIT PERFORMANCE RESULTS (k1 UNCERTAIN,A1 = 1, A2 = 5)

k̃1 Ap ‖Tξz(0)‖ RMS(z1) RMS(z2)

0.75 13.43 2.22 × 10−2 2.11 × 10−2 2.42 × 10−2

0.50 39.25 1.42 × 10−2 1.31 × 10−2 1.73 × 10−2

0.25 88.40 8.56 × 10−3 1.03 × 10−2 3.66 × 10−3

≈ 0 135.85 6.91 × 10−3 1.10 × 10−2 5.52 × 10−3

Consequently, the performance weight Ap for A1 = 5A2 is

lower than for A2 = 5A1, while the disturbance-rejection at

low frequencies ‖Tξz(0)‖ is more efficient for A2 = 5A1

than for A1 = 5A2.

The complex-µ synthesis is applied using the D-K iter-

ations, i.e. the version in the commercially available MAT-

LAB software [1], to find the best Ap such that µ̄ < 1 and

δk1
∈ C. As shown in Table IV, this methodology yields

very conservative results. The real parametric uncertainties

play a major role in the system dynamics, thus requiring the

D,G-K algorithm approach for good performance results. For

very small uncertainty levels (k̃1 ≈ m̃3 ≈ 0), the D-K and

D,G-K performance results are similar, as expected.

2) Two Parametric Uncertainties: The performance

weight Ap and low-frequency disturbance-rejection ‖Tξz(0)‖
for parametric uncertainties in spring stiffness k1 and mass

coefficient m3 are shown in Table V and Table VI.

TABLE IV

D-KIT VS D,G-KIT PERFORMANCE (k1 UNCERTAIN,k̃1 = 0.75)

D-Kit D,G-Kit
Ap ‖Tξz(0)‖ Ap ‖Tξz(0)‖

A1 = 1, A2 = 1 5.31 0.123 23.28 3.51 × 10−2

A1 = 5, A2 = 1 1.15 0.279 4.93 0.101
A1 = 1, A2 = 5 5.37 8.70 × 10−2 13.43 2.22 × 10−2
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Fig. 5. Performance weight Ap vs uncertainty level k̃1 (only k1 uncertain)



TABLE V

D,G-KIT PERFORMANCE WEIGHT Ap (k1, m3 UNCERTAIN,A1 = A2)

m̃3

k̃1

0.75 0.50 0.25 ≈ 0

0.80 15.27 42.79 47.19 62.40
0.50 18.95 57.44 127.18 204.12
0.20 20.90 62.85 130.92 216.15
≈ 0 22.98 63.90 134.56 221.62

TABLE VI

D,G-KIT LOW-FREQUENCY DISTURBANCE-REJECTION ‖Tξz(0)‖

(k1, m3 UNCERTAIN,A1 = A2)

m̃3

k̃1

0.75 0.50 0.25 ≈ 0

0.80 6.42 × 10−2 2.27 × 10−2 1.79 × 10−2 1.59 × 10−2

0.50 4.94 × 10−2 1.70 × 10−2 7.70 × 10−3 4.76 × 10−3

0.20 4.06 × 10−2 1.52 × 10−2 7.41 × 10−3 4.42 × 10−3

≈ 0 3.61 × 10−2 1.46 × 10−2 7.05 × 10−3 4.33 × 10−3

Again, higher performance weights Ap are obtained when

the uncertainty levels k̃1 and m̃3 are smaller. In particular,

the Ap values for a very small uncertainty level m̃3 ≈ 0 are

similar to those obtained in the single uncertainty k1 case,

see Table I versus Table V.

Adding a significant m3 uncertainty clearly decreases the

performance of the system, as expected, and only for small

m̃3 the effect of adding one more uncertainty is not so

dramatic.

As shown in Tables V and VI and depicted in Fig. 6(a), for

A1 = A2 the performance weight Ap and the low-frequency

disturbance-rejection ‖Tξz(0)‖ are more influenced by the

spring stiffness uncertainty k̃1 than by the mass uncertainty

m̃3. Physically, this reflects the importance of the uncertainty

k1 in the non-collocated control problem, where the control

input u1(t) influence on mass 2 position is performed mainly

through spring 1.

The impact of m3 uncertainty in the system perfor-

mance becomes more noticeable for asymmetric weights

(A1 = 1, A2 = 5), as shown in Fig. 6(b) and presented in

Table VII. In this case, the performance output gain A2 shifts

the control problem focus from mass 2 to the mass 3 position,

so the importance of mass m3 uncertainty in the closed-loop

system performance is emphasized.
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Fig. 6. Disturbance-rejection ‖Tξz(0)‖ vs uncertainty level (k̃1, m̃3)

TABLE VII

D,G-KIT PERFORMANCE WEIGHT Ap (k1, m3 UNCERTAIN,A2 = 5A1)

m̃3

k̃1

0.75 0.50 0.25 ≈ 0

0.80 4.85 11.63 13.75 15.87
0.50 9.47 30.96 64.39 84.45
0.20 13.81 41.09 90.51 135.89
≈ 0 14.63 43.02 99.26 153.03

IV. FREQUENCY-DOMAIN ANALYSIS

The disturbance to performance output closed-loop trans-

fer function Tξz(s) is depicted in Fig. 7(a). In the frequency

domain, the performance-robustness specifications shape the

closed-loop transfer function to yield good disturbance-

rejection in the critical frequencies ω ∈
[

0 2
]

rad/sec,

where d(s) has more power. Smaller uncertainty levels k̃1

allow for better disturbance-rejection, as previously shown

in Table I.

The transfer function performance degrades at high fre-

quencies, due to the bandwidth increase that is closely

related to improving low-frequency disturbance-rejection.

Considering that the d(s) is modeled by low pass frequency

weights (6), the controller synthesis methodology aims at

finding the best controller for the frequencies where the

disturbance has more power, at the cost of inflating the gains

in the other frequency regions. If the disturbance is accurately

modeled, this additional bandwidth does not produce actual

performance degradation. Nonetheless, simulation results for

generic disturbances are discussed in the ensuing.

The disturbance-rejection characteristics are also shown

in the disturbance to control Tξu(s) transfer function, see

Fig. 7(b). The noise amplification is distinct in the frequency

ranges ω ∈
[

0 2
]

rad/sec and ω > 2 rad/sec. Reducing

the uncertainty k̃1 yields more disturbance influence in the

control signal at low frequencies ω ∈
[

0 2
]

rad/sec.

The trade-off between stability-robustness and

performance-robustness is clear in the compensator transfer

function K(s) presented in Fig. 7(c). The compensator gains

are inflated for smaller uncertainties k̃1, and according to the

performance control weights Wpu(s) defined in (14), the

control has most of its power located in the frequency range

ω ∈
[

0 106
]

rad/sec. The poles located near the frequency

ω = 102rad/sec cut the compensator bandwidth where the

zero of Wpu(s) starts to penalize the control signal, to

finally attenuate the compensator power for ω > 106rad/sec.

The stability- and performance-robustness characteristics

also apply for the two uncertainty case, as shown in Fig. 8,

for fixed k̃1 and varying m̃3.

The directionality of the system can be analyzed in Fig. 9.

The compensator modifies the open-loop singular values and

approximates the upper and lower singular value. Hence,

performance vectors z1(t) and z2(t) tend to be equally

influenced by the disturbance when the performance weights

are similar (A1 = A2), see Fig. 9(d).

In the case where the frequency weights introduce direc-

tionality, A1 = 5A2 or A2 = 5A1, the maximum singular
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(c) K(s)

Fig. 7. Maximum singular value (only k1 uncertain, A1 = A2)
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(a) Tξz(s)
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(b) Tξu(s)
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(c) K(s)

Fig. 8. Maximum singular value (k1,m3 uncertain, k̃1 = 0.75, A1 = A2)
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(a) m̃3 = 0.80, k̃1 = 0.75
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(b) m̃3 = 0.80, k̃1 ≈ 0
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(c) m̃3 ≈ 0, k̃1 = 0.75
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(d) m̃3 ≈ 0, k̃1 ≈ 0

Fig. 9. Closed-loop Tξz singular values (k1, m3 uncertain, A1 = A2)
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(a) m̃3 = 0.80, k̃1 = 0.75
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(b) m̃3 ≈ 0, k̃1 ≈ 0

Fig. 10. Closed-loop Tξz singular values (k1, m3 uncertain, A2 = 5A1)

values are approximately five times the value of the minimum

singular value, as shown in Fig. 10.

Once again, Fig. 9 shows that changes in system

performance-robustness are more influenced by the elastic

coefficient uncertainty k̃1 than by mass 3 uncertainty m̃3

when A1 = A2.

V. TIME-DOMAIN SIMULATIONS

The generalized plant, shown in Fig. 4, was simulated

to study the effects of unmodeled state disturbance in

the system. It is assumed that the real control delay is

τ1 = τ2 = 5 × 10−3 s and that the uncertain parameters are

given by the nominal values k1 = k̄1,m3 = m̄3.

Although the disturbance is modeled by the frequency

weight (6), in the time simulations the noise ξ(t) has an

actual variance of Ξ = 16 I2×2. The simulation results,

depicted in Fig. 11, show that the controller is more efficient

for smaller uncertainties, as expected. Mass position RMS

values are according to the values predicted by analytical

computations.

The RMS values of u1(t) and u2(t) are higher for small

uncertainties, which agree with the results shown in Fig. 7(b)

and Fig. 8(b). The directionality of the system is evidenced

in Fig. 12 for (i) large k̃1, small m̃3 and (ii) small k̃1, large

m̃3. For A2 = 5A1, the accuracy of mass m3 parameter is

more relevant to tackle performance output RMS values than

the spring stiffness uncertainty k1, as expected.

Applying a square-wave signal ξ(t) produces the dis-

turbance d(t) depicted in Fig. 13 and yields the mass

displacements shown in Fig. 14. Clearly, the smaller the
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(a) Mass 2 position
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(b) Mass 3 position
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(c) Control input u1(t)
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(d) Control input u2(t)

Fig. 11. RMS values (White-noise disturbance, A1 = A2)
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(a) Mass 2 position (A2 = A1)
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k̃1, m̃3 = [0.75, 0]
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(b) Mass 2 position (A2 = 5A1)
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(c) Mass 3 position (A2 = A1)
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(d) Mass 3 position (A2 = 5A1)

Fig. 12. RMS values (White-noise disturbance)

uncertainty, the faster is the time response of the system.

These time-domain results are according to the frequency-

domain results discussed in Section IV.

VI. CONCLUSIONS

A robust compensator for a Mass-Spring-Dashpot plant

with two parametric uncertainties was designed using the

mixed-µ synthesis tools. The closed-loop transfer function

was shaped by the compensator to meet the stability-

and performance-robustness requirements in the frequency-

domain. It was observed that the mixed-µ synthesis compen-

sator achieved good performance-robustness and stability-

robustness for the given plant.

Best performance and disturbance-rejection is obtained
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Fig. 13. Filtered Square Wave disturbance
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(a) Mass 2 Position
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(b) Mass 3 Position

Fig. 14. Mass position (Filtered Square Wave disturbance, A1 = A2)

for smaller uncertainties, while very large uncertainties de-

grade the closed-loop performance. The directionality of the

closed-loop transfer function is shaped by the performance

weights. Also, performance weights show that mass 2 po-

sition is more difficult to control than mass 3 position, as

expected from an engineering perspective.

The commercially available complex-µ D-K iterations

yield very conservative performance for real parametric

uncertainties. From the users point of view, D-K and D,G-

K software uses the same configuration parameters, which

makes mixed-µ highly appealing for robust controller syn-

thesis.

Some important questions arise for future work. The

generalization of the mixed-µ synthesis to non-linear systems

is an exciting and complex problem. Also, a more deep

and consistent theoretical basis is required to study which

uncertain parameters are most relevant for the µ-synthesis.
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