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Abstract— The paper addresses the problem of bottom-
following for autonomous underwater vehicles by taking into
account the terrain characteristics ahead of the vehicle, as mea-
sured by two echo sounders. The methodology used to solve this
problem amounts to posing it as a discrete time path following
control problem where a conveniently defined error state space
model of the plant is augmented with bathymetric (i.e. depth)
preview data. A piecewise affine parameter-dependent model
representation is used to accurately describe the AUV linearized
error dynamics for a pre-defined set of operating regions. For
each region, the synthesis problem is stated as a state feedback
H2 control problem for affine parameter-dependent systems and
solved using Linear Matrix Inequalities (LMIs). The resulting
nonlinear controller is implemented within the scope of gain-
scheduled control theory using the D-methodology. Simulation
results obtained with a full nonlinear model of the INFANTE
AUV are presented and discussed.

I. INTRODUCTION

This paper describes a solution to the problem of bottom-

following controller design for autonomous underwater vehi-

cle (AUV) taking into account the bathymetric characteristics

ahead of the vehicle measured by two echo sounders. The

proposed solution is applied to the control of the prototype

INFANTE AUV, built and operated by the Instituto Superior

Técnico of Lisbon, Portugal.

Preview control algorithms have been widely used to

improve the overall closed loop performance obtained with

limited bandwidth feedback compensators when future infor-

mation on the commands or disturbances is available. A se-

ries of papers on application of the Linear Quadratic preview

control theory to the design of vehicle active suspensions can

be found in the literature. Special emphasis should be given

to the pioneering work of Tomizuka [1], where the optimal

preview control problem is formulated and solved, and the

impact of different preview lengths on the overall suspension

performance is discussed. An alternative method is presented

by Prokop and Sharp [2] that consists of incorporating the

disturbance or reference dynamics into the design model and

then solving the resulting linear quadratic control problem.

More recently, Takaba [3] addressed the problem of robust

LQ/H∞ servomechanism design with preview action for

polytopic uncertain systems using Linear Matrix Inequalities.
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For linear control systems design, this paper exploits the

use of a discrete time state feedback H2 preview controller

synthesis algorithm. In the approach pursued here, the results

presented in [3], [4], [5] are used to develop a Linear Ma-

trix Inequality (LMI) based H2 preview controller synthesis

algorithm for affine parameter-dependent systems. For large

preview intervals, the technique proposed in the paper leads

to LMI optimization problems involving a large number

of variables. To overcome this limitation, an alternative

algorithm for computing the feedforward gain matrix is

used that exploits the particular structure of the augmented

preview system.

In the paper, linear state feedback preview controllers are

synthesized for a finite number of piecewise affine parameter-

dependent discrete time plant models. Each of these models

consists of the discrete equivalent of the generalized error

linearization for each of the AUV operating regions deter-

mined by a well-defined box in the parameter space (defined

by the vehicle’s total speed and angle of attack). The adopted

error space is in line with the solutions presented in [6],

[7], [8] and exhibits high directionality accuracy, by taking

into account the current vehicle orientation in the definition

of the reference velocities. Related work in the area with

applications to helicopters can be found in [9], where the

authors apply a similar technique to a rotorcraft terrain-

following problem.

The final implementation of the resulting non-linear gain

scheduled controller uses the D-methodology described in

[10] which guarantees a fundamental linearization property

and eliminates the need to feedforward the values of the state

variables and inputs at trimming. A key question underlying

the design of sensor based bottom-following control systems

is the computation of the bottom elevation data from sonar

measurements. In this paper, the technique adopted exploits

the sensor geometry to efficiently build the seabed profile

ahead of the vehicle.

The paper is organized as follows. Section II introduces

a nonlinear model for the vertical plane dynamics of the

INFANTE AUV. Section III, in which the problem of

bottom-following is formulated, introduces briefly the path-

dependent error space used to describe the vehicle dynamics.

Section IV states the preview control problem. Section V

describes the methodology adopted for H2 linear controller

design where an LMI synthesis technique is applied to

affine parameter-dependent systems. Section VI presents the

reconstruction technique used to build the reference path

from sonar profiler measurements. Section VII focuses on the

implementation of the nonlinear bottom-following controller



for the INFANTE AUV. Finally, simulation results obtained

with a full nonlinear dynamic model of the vehicle are

presented in Section VIII.

II. VEHICLE DYNAMICS

This section describes the dynamic model of the IN-

FANTE AUV in the vertical plane [11]. The vehicle is 4.5m

long, 1.1 m wide and 0.6 m high. It is equipped with two

main thrusters (propellers and nozzles) for cruising and fully

moving surfaces (rudders, bow planes and stern planes) for

vehicle steering and diving in the horizontal and vertical

planes, respectively. The notation used and the structure of

Fig. 1. The INFANTE Vehicle

the vehicle model are standard [11], [12]. The variables u

and w denote surge and heave speeds, while θ , q, x, and z

denote pitch, pitch rate, x position, and depth, respectively.

The symbols δb and δs represent the bow and stern plane

deflections, respectively. With this notation and neglecting

the roll stable motion, the dynamics of the AUV in the

vertical plane can be written in compact form as

mu̇ = Xuuu2 +Xwww2 +Xqqq2 +u2Xδbδb
δ 2

b + (1)

u2Xδsδs
δ 2

s +Xu̇u̇+T,

ẋ = ucos(θ)+wsin(θ), (2)

mẇ = muq+(W −B)cos(θ)+
ρ

2
L2Zwuw+ (3)

ρ

2
L3Zquq+

ρ

2
L2u2

[

Zδb
δb +Zδs

δs

]

+

ρ

2
L3Zẇẇ+

ρ

2
L4Zq̇q̇,

ż = −usin(θ)+wcos(θ), (4)

Iyq̇ = zCBBsin(θ)+
ρ

2
L3Mwuw+

ρ

2
L4Mquq+ (5)

ρ

2
L3u2[Mδb

δb +Mδs
δs]+

ρ

2
L4Mẇẇ+

ρ

2
L5Mq̇q̇,

θ̇ = q, (6)

where equations (1), (3), and (5) describe the surge, heave,

and pitch motion, respectively, X(.), Z(.), and M(.) are hydro-

dynamic derivative terms, and zCB represents the metacentric

distance. Equations (2), (4), and (6) capture the vehicle kine-

matics. See [11] for numerical values of the hydrodynamic

parameters. The variables m, L, W , B, and Iy are the vehicle’s

mass, length, weight, buoyancy, and moment of inertia about

the y axis, respectively and ρ is the density of the water.

III. ERROR SPACE

The problem of steering the vehicle along a predefined

path, which ultimately allows for definition of a bottom-

following controller, can be converted into a regulation prob-

lem by expressing the state of the vehicle in a conveniently

defined error space. This definition requires the introduction

of two coordinate systems: the Serret-Frenet frame, {T},

with origin at the point on the path closest to the vehicle

and coordinate axes corresponding to the tangent and normal

vectors defined at that point; and the desired body reference

frame, {C}, determined as if the vehicle were following the

path with zero error, see Fig. 2. Notice that {C} is highly

dependent on the vehicle dynamics. However, as will be

seen later, {C} will never have to be computed explicitly. A
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Fig. 2. Coordinate frames: Inertial {I}; Body {B}; Serret Frenet {T};
Desired body {C}

reference for the tangent velocity is also required, with vr =
[Vr 0]T denoting the desired linear velocity in 2D, expressed

in {T}.

Given these definitions, and simplifying the error space

presented in [6] for the 2D case, the vector xe =
[ve qe dT θe] ∈ R

5; ve ∈ R
2 and output ye ∈ R

2 can be

introduced with

xe =









ve

qe

dT

θe









=









v−R(γT −θ)vr

q−qC

(x− xC)sin(γT )+(z− zC)cos(γT )
θ −θC









(7)

and ye = ve + R(γT − θ)[0 dT ]T , where v = [u w]T , vectors

[x z] and [xC zC] are the origins of {B} and {C} respectively,

expressed in {I}, θC is the pitch angle that represents the

orientation of {C} with respect to {I}, qC is the respective

time derivative, γT is the flight path angle, and R(η) repre-

sents the rotation by angle η . It is straightforward to verify

that the vehicle follows the path with tangent velocity vr and

orientation θC if and only if xe = 0.

The output vector ye corresponds to a combination of error

vector components expressed in the body coordinate system,

which is used for tracking purposes. By including ve and

dT in ye, both the velocity and position errors are being

considered, with the distance vector expressed in the current

body frame.



Assuming that the reference path is a straight line, it

satisfies V̇r = 0 and q̇C = 0, and the simplified error dynamics

can be written as














v̇e = v̇− Ṙ(−θ)R(γT )vr −R(−θ) d
dt

R(γT )vr

q̇e = q̇

ḋT = −ue sin(θ − γT )+we cos(θ − γT )
θ̇e = q− θ̇C.

(8)

Notice that at trimming d
dt

R(γT )vr = 0 and qC = θ̇C = 0.

However to account for the preview action these terms are

included in the dynamics. Further details on the derivation

of the error dynamics can be found in [6].

A. Error linearization and discretization

For a given straight line path (qC = 0), linear speed Vr, and

flight path angle γT , define uC as the constant input vector that

satisfies (1), (3), and (5) at equilibrium (u̇ = 0, ẇ = 0, q̇ = 0),

with v = R(γT −θC)vr, and θ = θC. Then, the linearization of

(8) with output vector ye about the equilibrium point xe = 0,

u = uC results in

δ ẋe = Ae(ζ )δxe +Be(ζ )δu, (9)

δye = Ce(ζ )δxe, (10)

where Ae(ζ ), Be(ζ ), and Ce(ζ ) denote the Jacobians eval-

uated at the equilibrium condition parameterized by ζ =
[Vr,γT ]T .

The discrete time equivalent of the linear continuous

time model (9) is obtained using a zero-order hold on the

inputs. Let T be the sampling time and define, with obvious

abuse of notation, the augmented discrete time state xd(k) =
[xe(k)

T , xi(k)
T ]T , where xi(k) corresponds to the discrete time

integral of ye. Using this notation, the discrete error dynamics

can be written as

xd(k +1) = A(ζ )xd(k)+B(ζ )u(k), (11)

where A(ζ ) =

[

eAe(ζ )T 0

Ce(ζ ) I

]

and B(ζ ) =
[

∫ T
0 eAe(ζ )τ dτBe(ζ )

0

]

for ζ constant.

IV. PREVIEW PROBLEM FORMULATION

Better AUV bottom-following performance with limited

bandwidth compensators can be achieved by taking into

account, in the control law, the seabed characteristics ahead

of the AUV obtained from measurements of two echo

sounders. The technique used in this paper to develop a

tracking controller amounts to augmenting the discrete time

error space dynamics with a description of the future seabed

evolution as seen by the sensors installed on the AUV.

With the objective of including future path disturbances in

the discrete time error space dynamics (11), assume that the

AUV moves with constant speed along a given reference

path that results from the concatenation of straight lines.

A detailed analysis of the error dynamics (8) suggests the

introduction of vector
[

−
(

R(−θ)
d

dt
R(γT )vr

)T

, 0, 0, −θ̇C

]T

(12)

as the perturbation to be previewed. To this effect, and

assuming that there is a discontinuity in the reference path

resulting from the concatenation of two straight lines that

will be crossed by the vehicle at time t = t0, the elements of

vector (12) result in

d

dt
R(γT )vr = δ (t − t0)

(

R(γT (t+0 ))−R(γT (t−0 )
)

vr

θ̇C = δ (t − t0)
(

θC(t+0 )−θC(t−0 )
)

where δ (t − t0) is the Dirac’s delta function. From (9) the

resulting linear error dynamics can be written as

δ ẋe = Ae(ζ )δxe +Be(ζ )δu+W (ζ )δw, (13)

with injection matrix W (ζ ) =−





R(−θC) 02×1

01×2 0

01×2 1



. Using this

interpretation, the seabed disturbance signal, as seen from

the AUV, can be modeled as s(t) = ∑i s(ti)δ (t − ti), where

s(ti) represents an intensity vector, and ti corresponds to

the ith concatenation point crossing time. The corresponding

discretization is given by

xd(k +1) = A(ζ )xd(k)+B(ζ )u(k)+B1(ζ )s(k), (14)

where B1(ζ ) = [(eAe(ζ )TW (ζ ))T , 0]T is obtained from the

impulse invariant discrete equivalent of the injection matrix

W (ζ ). It is assumed that the sampling period is sufficiently

small to consider the reference path changes synchronized

with the sampling time. Once again, with obvious abuse of

notation, s(k) ∈ R
s corresponds to

s(k) =

[(

R(γT (t+k ))−R(γT (t−k )
)

vr

θC(t+k )−θC(t−k )

]

.

Assuming a preview length of p samples, let xs(k) =
[s(k)T ,s(k + 1)T , ...,s(k + p)T ]T ∈ R

(s(p+1))×1 be the vector

containing all the preview inputs at instant k. The discrete

time dynamics of vector xs(k) can be modeled as a FIFO

queue, given by

xs(k +1) = Dxs(k)+Bss(k + p+1), (15)

where

D =

















0 I 0 · · · 0

0 0 I · · · 0
...

...
. . .

. . .
...

0 0 0
. . . I

0 0 0 · · · 0

















, Bs =











0

0
...

I











.

Combining the dynamic representation of the seabed (15)

with (14) yields the augmented system

x(k +1) = Āx(k)+ B̄ss(k)+ B̄u(k), (16)

where

x(k) =

[

xd(k)
xs(k)

]

, Ā =

[

A H

0 D

]

, B̄s =

[

0

Bs

]

, B̄ =

[

B

0

]

,

and H = [B1,0,0, · · · ,0] represents the injection matrix of

the preview signals into the error dynamics. Notice that the

D matrix is stable and therefore the augmented system (16)



preserves the stabilizability and detectability properties of the

original plant.

With the present technique, the preview information is

retrieved at p points selected along the path, equally spaced

by the distance dp = Vt(k)T . The scalar Vt(k) corresponds to

the norm of the projection of the vehicle’s velocity vector v

on the path, computed at instant k, which can be obtained

from Vt = [1 0]R(θ − γT )v. This fact turns out to be of

utmost importance, since it allows to naturally redefine the

controller visibility distance as a function of the vehicle’s

speed, preserving the size of the preview input vector.

V. DISCRETE TIME CONTROLLER DESIGN

This section briefly presents a solution to the problem of

discrete time state feedback H2 preview control for affine

parameter-dependent systems. In the approach pursued in this

paper, results presented in [4], [5], [3] were used to develop

the LMI based controller synthesis algorithm. Much of the

work in this area is well rooted in the theory of LMIs, which

are steadily becoming a standard tool for advanced control

system design. In fact, LMIs provide a powerful formulation

framework as well as a versatile design technique for a wide

variety of linear control problems. Since solving LMIs is a

convex optimization problem for which numerical solvers are

now available, an LMI based formulation can be seen as a

practical solution for many control problems.

A. Theoretical background

K
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G(ζ )

�

--
w z

xu

Fig. 3. Feedback interconnection

In what follows, the standard set-up and nomenclature

used in [13] is adopted, leading to the state-space feedback

system represented in Fig. 3. Consider the generalized affine

parameter-dependent system G(ζ ) as a function of the slowly

varying parameter vector ζ . It is assumed that ζ is in a

compact set Θ ⊂ R
q. Suppose that the parameter set Θ can

be partitioned into a family of regions that are compact

closed subsets Θi, i = 1, . . . , N and cover the desired AUV

flight envelope. In the ith parameter region Θi, the dynamic

behavior of the closed-loop system admits the realization
{

x(k +1) = A(ζ )x(k)+Bw(ζ )w(k)+B(ζ )u(k)
z(k) = Cz(ζ )x(k)+E(ζ )u(k), u(k) = Kx(k),

(17)

where x(k) is the state vector. The symbol w(k) denotes

the input vector of exogenous signals (including commands,

disturbances and preview signals), z(k) is the output vector of

errors to be reduced during the controller design process, and

u(k) is the vector of actuation signals. Matrices A(ζ ), Bw(ζ ),
B(ζ ), Cz(ζ ), and E(ζ ) are affine functions of the parameter

vector ζ = [ζ1, . . . , ζq]
T ∈ Θi, e.g. A(ζ ) = A(0) + ζ1A(1) +

. . . + ζqA(q). The generalized affine parameter-dependent

system G(ζ ) consists of the plant to be controlled, together

with appended weights that shape the exogenous and internal

signals and the preview dynamics presented in Section IV.

Given G(ζ ), an LMI approach for the synthesis of state

feedback H2 controllers for polytopic systems is used to

compute K = [Kd , Ks], where Kd and Ks represent the state

feedback and feedforward gain matrices respectively, see [4],

[9] for further details.

For augmented discrete time dynamic systems that include

large preview intervals p > 50, the controller synthesis tech-

nique proposed in [4] leads to LMI optimization problems

involving a large number of variables, which cannot easily

be solved using the tools available today. To overcome this

limitation, an alternative algorithm for the computation of

the feedforward gain matrix is adopted that exploits the

particular structure of the augmented preview system, see

[9].

VI. REFERENCE PATH

The preview-based tracking controller presented in the

previous sections can be applied to bottom-following for

AUVs using different range sensing techniques. In this

paper, a setup is considered wherein two narrow beam echo

sounders, mounted underneath the underwater vehicle, scan

the seabed along the vehicle’s direction of forward motion,

see Fig. 4. As a result of this setup, a vector of reference

points expressed in the inertial coordinate system is available

and the full preview vector xs(k) can be computed at every

sampling instant.
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Fig. 4. Sensor readings and elevation offset to obtain the data points used
in the algorithm

The method adopted to build the reference path from

measurement data is now briefly introduced. The output

of the echo sounders, expressed in the inertial frame {I},

is saved in a vector sorted by increasing values of the x

coordinate, after being added the offset that the vehicle

should keep above the seabed, herein designated by elevation

offset, see Fig. 4. These points are then converted into a

path composed by the concatenation of a set of straight

lines according to the following algorithm. At each sampling

time the algorithm starts by considering an anchor point that

corresponds to the last way point visited by the vehicle; this

will be the starting point of the current algorithm iteration.



Afterwards, the algorithm creates a series of way points

equidistant by approximately NwVtT , each one corresponding

to the centroid of data points located inside a ball of radius

NwVtT . The way points are then interpolated by straight

lines to approximate the seabed profile. Using centroids

to compute the way points avoids sudden changes in the

reference path between sampling instants when new data

points are added. This simple reference building technique

presents a relatively high immunity to sonar sensor noise.

If a large number of data points are available, the centroids

provide some inertia to the inclusion of new data points,

and for reasonable values of Nw the way points are always

located over or very near a cloud of data points.

VII. IMPLEMENTATION

The design and performance evaluation of the overall

closed loop system were carried out using the model de-

scribed in Section II.

In the application presented here the vehicle is expected

to follow a reference path, in the vertical plane, composed

by the concatenation of straight lines. During the controller

design phase the considered AUV’s flight envelope was

parameterized by ζ = [Vr,γT ]T (equivalently by [u,w]T ) and

partitioned in 19 regions, see [14] for details. For each

operating region, the elements of the discrete time state space

matrices were obtained from the linearization of the error

dynamics over a dense grid of operating points and then

approximated by affine functions of ζ using a Least Squares

Fitting. For a relatively dense grid of evaluated operating

points, the affine approximation results in a maximum ab-

solute error between entries of the matrices of less than 3%

and, an average absolute error of less than 1.4%.

To implement the controller in the scope of gain schedul-

ing control theory, a state feedback gain matrix Ki =
[Kd i, Ksi], i = 1, . . . ,19 was computed for each of the

operating regions using the technique presented in Section

V. During the controller design phase the regions were

defined so as to overlap thus avoiding fast switching between

controllers. The disturbance input matrix B̄w was set to

B̄s and the state and control weight matrices C̄1 and D̄12,

respectively, were set to yield the following performance

vector z(k) = [z1(k)
T z2(k)

T z3(k)
T ]T where

z1 =
[√

20 ue,
√

8 we,
√

0.1 qe,
√

30 dT ,θe,xi1,

√
0.1 xi2,

√
10 xi3

]T

z2 = [W1(z) δb,W2(z) δc]
T
,

z3 =
[√

5 δb,
√

5 δc,
√

0.1 TC

]T

and Wj(z), j = 1,2 are second order high pass filters im-

plemented by the strictly proper transfer function Wj(z) =
90(z−0.999)
(z−1)(z−0.9) that weights the bow and stern control surface

signals with the objective of limiting their bandwidth. Fur-

thermore, the third integral state xi3 corresponds to discrete

time integral action on the bow control surface δb which

introduces a ”washout” to ensure zero bow plane deflection

at trimming, see [7].
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Fig. 5. Implementation setup using gain scheduling and the D-methodology

The final implementation scheme, presented in Fig. 5,

was achieved using the D-methodology described in [10].

This methodology moves all integrators to the plant input,

and adds differentiators where they are needed to preserve

the transfer functions and the stability characteristics of the

closed loop system. The D-methodology implementation has

several important features that are worthwhile emphasizing:

i) auto-trimming property - the controller automatically gen-

erates adequate trimming values for the actuation signals and

for the state variables that are not required to track reference

inputs; ii) the implementation of anti-windup schemes is

straightforward, due to the placement of the integrators at the

plant input. The width of the preview interval suitable for a

given vehicle is a compromise between the time-constants as-

sociated to the vehicle’s dynamics, the computational power

available onboard, and the actual sonar range. In the present

case, for a maximum vehicle speed of 2.5m/s, and assuming

a sonar range of 50m provided by a 600KHz pencil beam

sonar, it will be reasonable to consider a preview interval of

15s, to which corresponds a preview length of 150 samples.

VIII. SIMULATION RESULTS

In this section, a seabed with very sharp transitions is

used to evaluate the performance of the bottom-following

techniques, the control objective is to achieve a constant

15 m bottom elevation offset. Fig. 6 shows that, for constant
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Fig. 6. Trajectories described by the vehicle, with and without preview

slopes, the vehicle trajectory converges to the designated

elevation offset. It also shows that, the inclusion of preview

control action results in a smoother path trajectory, largely

reducing overshoots and the convergency time.

In Fig. 7 a detail including two of the seabed’s slope

transitions shows clearly that the use of preview yields better
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Fig. 7. Detail of the trajectories described by the vehicle, with and without
preview. Blow-up of Fig. 6 for t ∈ [60,120] s.

tracking performance.

The time evolution of the error state vector xe without

preview and with a preview of 15 s is presented in Fig. 8. It

can be observed that due to the preview action, signal activity

clearly precedes the path transition points. The actuation

signals for the same experiments can be compared in Fig. 9,

and it is also clear that, with preview, the excursion of the

resulting actuation signals is significantly reduced, and both

the state and input variables converge to the trimming faster.

The actuation signals also reflect the unavoidable problem
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Fig. 8. Time evolution of the error vector xe(t), with and without preview
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Fig. 9. Time evolution of the actuation u(t) with and without preview

of the additional disturbances introduced by the sonar data

acquisition and processing, which are nevertheless greatly

reduced by the dynamic weights introduced to limit the

closed loop actuators bandwidth.

IX. CONCLUSIONS

This paper presented the design and performance eval-

uation of a bottom-following controller for Autonomous

Underwater Vehicles (AUVs).

Resorting to an H2 controller design methodology for

affine parameter-dependent systems, the technique presented

exploited an error vector that naturally describes the partic-

ular dynamic characteristics of the AUV for a suitable flight

envelope.

An alternative algorithm was used for the computation

of the feedforward gain matrix that avoids solving Linear

Matrix Inequalities involving a large number of unknowns.

For a given set of operating regions, a nonlinear con-

troller was synthesized and implemented under the scope

of gain-scheduling control theory, using a piecewise affine

parameter-dependent model representation.

The effectiveness of the new control laws was assessed

in the MATLAB/Simulink simulation environment with a

nonlinear model of the INFANTE AUV. The quality of the

results obtained clearly indicate that the methodology derived

reduces the path following error and simultaneously smooths

the actuation signal.
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