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Abstract— A new quaternion sensor based homing integrated

guidance and control law is presented to drive an underactuated

autonomous underwater vehicle (AUV) towards a fixed target,

in 3D, using the information provided by an Ultra-Short

Baseline (USBL) positioning system. The guidance and control

law is firstly derived using quaternions to express the vehicle’s

attitude kinematics, which are directly obtained from the time

differences of arrival (TDOA) measured by the USBL sensor.

The dynamics are then included resorting to backstepping

techniques. The proposed Lyapunov based control law yields

global asymptotic stability (GAS) in the absence of external

disturbances and is further extended, keeping the same prop-

erties, to the case where constant known ocean currents affect

the vehicle’s dynamics. Finally, a globally exponentially stable

(GES) TDOA and range based nonlinear observer is introduced

to estimate the ocean current and uniform asymptotic stability

is obtained for the overall closed loop system. Simulations

are presented illustrating the performance of the proposed

solutions.

I. INTRODUCTION

In the recent past several sophisticated Autonomous Un-

derwater Vehicles (AUVs) and Remotely Operated Vehicles

(ROVs) have been developed, affording the marine science

community with not only advanced but also cost-effective

ocean research tools [1], [2], and [3]. The control of these

vehicles has naturally been subject of intense work but while

the control of fully actuated vehicles is nowadays fairly well

established, as evidenced by the large body of publications,

see [4], [5], [6], and the references therein, the control of

underactuated vehicles is still an active field of research.

To address the problem of stabilization of an underactuated

vehicle a variety of solutions has been proposed in the

literature, [7], [8], [9], and [10]. In [11] and [12] two

solutions are offered to solve the trajectory tracking problem.

In [13] a solution to the problem of following a straight line

is presented and in [14] a way-point tracking controller for

an underactuated AUV is introduced. It turns out that all the
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aforementioned references share a common approach: the

vehicle position is computed in the inertial coordinate frame

and the control laws are developed in the body frame. Sensor

based control has been a hot topic in the field of computer

vision where the so-called visual servoing techniques have

been subject of intensive research effort during the last years,

see [15], and [16] for further information.
This paper addresses the design of an integrated guidance

and control law to drive an underactuated AUV to a fixed tar-

get, in 3D. The solution to this problem, usually denominated

as homing in the literature, is central to drive the vehicle to

the proximity of a base station or support vessel. Once the

vehicle is close enough to the base station a different control

strategy should be adopted. In this paper it is assumed that

an acoustic transponder is installed on a predefined fixed

position in the mission scenario, denominated as target in

the sequel, and an Ultra-Short Baseline (USBL) sensor, com-

posed by an array of hydrophones and an acoustic emitter, is

rigidly mounted on the vehicle’s nose, as depicted in Fig. 1.

During the homing phase the USBL sensor interrogates the

transponder and synchronizes, detects and records the time of

arrival as measured by each receiver. The implementation of

the control laws requires the vehicle’s linear velocity relative

to the water, as provided by a Doppler velocity log, and the

vehicle attitude and angular velocity measured by an Attitude

and Heading Reference System (AHRS).
The paper is organized as follows. In Section II the homing

problem is introduced and the dynamics of the AUV are

briefly described, whereas the USBL model is presented in

Section III. A Lyapunov based guidance and control law is

firstly derived, in Section IV, using quaternions to express

the vehicle’s attitude kinematics, which are directly obtained

from the USBL data. This control law is then extended to

include the dynamics of the vehicle resorting to backstepping

techniques and, in Section V, it is further extended to the case

where known constant ocean currents affect the vehicle’s

dynamics. Global asymptotic stability (GAS) is achieved in

both cases. Afterwards, a globally exponentially stable (GES)

TDOA and range based nonlinear observer is proposed to

estimate the ocean current and uniform asymptotic stability

is guaranteed for the overall closed loop system. Simulation

results are presented and discussed in Section VI and finally

Section VII summarizes the main results of the paper.

II. PROBLEM STATEMENT

Let {I} be an inertial coordinate frame, and {B} the

body-fixed coordinate frame, whose origin is located at the



center of mass of the vehicle. Consider p = [x, y, z]T

as the position of the origin of {B}, described in {I},

v = [u, v, w]T the linear velocity of the vehicle relative to

{I}, expressed in body-fixed coordinates, ω = [p, q, r]T the

angular velocity, also expressed in body-fixed coordinates,

and λ = [φ, θ, ψ]T the vector of the Euler angles of roll,

pitch and yaw. The vehicle kinematics can be written as

ṗ = Rv λ̇ = Q(λ)ω, (1)

where R = I

B
R = ( B

I
R )T is the rotation matrix from

{B} to {I}, verifying Ṙ = RS(ω), and S(x) is the

skew-symmetric matrix such that S(x)y = x × y with ×
denoting the cross product. The vehicle’s dynamic equations

of motion, can be written in a compact form as
{

Mv̇ = −S(ω)Mv − Dv(v)v − gv(R) + bvuv

Jω̇ = −S(v)Mv − S(ω)Jω − Dω (ω)ω − gω (R) + uω ,
(2)

where M = diag{mu,mv,mw} is a positive definite di-

agonal mass matrix, J = diag{Jxx, Jyy, Jzz} is a positive

definite inertia matrix, uv = τu is the force control input

that acts along the xB axis, uω = [τp, τq, τr]
T is the

vector of torque control inputs that affect the rotation of the

vehicle about the xB , yB and zB axes, respectively, Dv(v) =
diag{Xu + X|u|u|u|, Yv + Y|v|v|v|, Zw + Z|w|w|w|} is the

positive definite matrix of the linear motion drag coefficients,

Dω(ω) = diag{Kp+K|p|p|p|,Mq +M|q|q|q|, Nr +N|r|r|r|}
is the matrix of the rotational motion drag coefficients,

bv = [1, 0, 0]T , gv(R) = RT [0, 0, W − B]T rep-

resents the gravitational and buoyancy effects, W and B
respectively, on the vehicle’s linear motion, and gω(R) =
S(rB)RT [0, 0, B]T accounts for the effect of the center

of buoyancy displacement relatively to the center of mass

on the vehicle rotational motion. Assume that the vehicle is

neutrally buoyant, i.e., W = B and therefore gv(R) = 0.
The homing problem considered in this paper can be stated

as follows:
Problem Statement. Consider an underactuated AUV with

kinematics and dynamics given by (1) and (2), respectively.

Assume that a target equipped with an acoustic transponder

is placed in a fixed position. Design a sensor based inte-

grated guidance and control law to drive the vehicle towards

a well defined neighborhood of the target using the time

differences of arrival and range to the target as measured

by an USBL sensor installed on the AUV.

Fig. 1. Mission Scenario

III. USBL MODEL

During the homing phase the vehicle is assumed to be far

away from the acoustic emitter, that is, the distance from

the vehicle to the target is much larger than the distance

between any pair of receivers. Therefore, the plane-wave

approximation is valid. Let ri = [xi, yi, zi]
T ∈ R

3, i =
1, 2, . . . , N , denote the positions of the N acoustic

receivers installed on the USBL sensor and consider a plane-

wave traveling along the opposite direction of the unit vector

d = [dx, dy, dz]
T . Notice that both ri and d are expressed

in the body frame and the later corresponds to the direction

of the target. Let ti be the time of arrival of the plane-wave

at the ith receiver and VS the velocity of propagation of the

sound in water, assumed to be constant and known. Then,

assuming that the medium is homogeneous and neglecting

the velocity of the vehicle, which is a reasonable assumption

since ‖v‖ << VS , the time difference of arrival between

receivers i and j satisfies

ti − tj = − [dx (xi − xj) + dy (yi − yj) + dz (zi − zj)] /VS .

(3)

Denote by ∆1 = t1 − t2, ∆2 = t1 − t3, . . . , ∆M = tN−1 −
tN all the possible combinations of TDOA, where M =
N (N − 1) /2, and let ∆ = [∆1, ∆2, · · · , ∆M ]

T
. Define

rx := [x1 − x2, x1 − x3, · · · , xN−1 − xN ]T ,

ry := [y1 − y2, y1 − y3, · · · , yN−1 − yN ]T ,

rz := [z1 − z2, z1 − z3, · · · , zN−1 − zN ]T ,

and HR ∈ R
M×3 as HR = [rx, ry, rz]. Then, the

generalization of (3) for all TDOA yields ∆ = −HRd/VS .

Define also HQ := HT
RHR/VS ∈ R

3×3, which is assumed

to be non-singular. This turns out to be a weak hypothesis

as it is always true if, at least, 4 receivers are mounted in

noncoplanar positions. In those conditions HR has maximum

rank and so does HQ. Then,

d = −H
−1
Q H

T
R∆, (4)

which directly relates the direction of the target, as seen from

the AUV, to the TDOA vector.

IV. CONTROLLER DESIGN

In this section an integrated nonlinear closed loop guid-

ance and control law is derived for the homing problem

stated earlier in Section II. Assuming that there are no ocean

currents the idea behind the control strategy proposed here

is to steer the vehicle directly towards the emitter. The

synthesis of the guidance and control law resorts extensively

to the Lyapunov’s direct method and backstepping techniques

whereas the kinematic error takes the form of a quaternion

directly obtained from the TDOA provided by the USBL

sensor.

To drive the vehicle with constant forward speed towards

the target, define a first error variable as

z1 := [1, 0, 0]v − Vd,

where Vd > 0 is the desired vehicle velocity during the

homing phase. When z1 converges to zero, the surge speed



converges to Vd. However, this single error variable is not

sufficient to ensure that the vehicle is driven towards the

target as the attitude of the vehicle is not constrained. Using

(4), an attitude error can be defined in terms of a rotation

matrix Re implicitly defined by

Re[1, 0, 0]T := −H
−1
Q H

T
R∆. (5)

When Re is the identity matrix, the vehicle’s x axis is

aligned with the direction of the target. Expressing Re as

Re(q), where q is a unit quaternion corresponding to the

same rotation, then the direction of the target is aligned

with the body-fixed frame x axis when q = ±(1, 0, 0, 0).
Define q = [q0,q

T
v ]T as the vector representation of q,

where q0 and qv are the so-called scalar part and vector

part, respectively. It is now possible to define two new error

variables to represent the attitude error,

z2 := q0 − 1

and

z3 := qv.

Driving z1, z2 and z3 to zero is still insufficient to ensure

the correct behavior of the vehicle during the homing phase

as the sway and heave velocities are left free. However, it

will be shown that, with the control law based upon these

three error variables, the sway and heave velocities will also

converge to zero, which completes a set of sufficient condi-

tions to drive the vehicle towards the target. The quaternion

dynamics are given by

q̇ =
1

2
D(ωg)q, (6)

where

D(ωg) =

[

0 −ω
T
g

ωg S(ωg)

]

and ωg = −ω + ωl, with ωl = v × d/ρ. Notice that the

first term represents the vehicle rotation velocity while the

second term ωl denotes the induced rotation velocity due

to the linear vehicle displacement. The range to the target,

as measured by the USBL sensor, is represented by ρ. The

rotation matrix Re is chosen to preserve smoothness over

time, which is always possible as the right side of (5) is

continuous and continuously differentiable.

To synthesize the control law, consider the Lyapunov

function

V1 :=
1

2
z2
1 + z2

2 + z
T
3 z3.

After some computations it can be shown that the time

derivative V̇1 can be written as

V̇1 = z1

(

[1, 0, 0]M−1
bvuv − [1, 0, 0]M−1 [S(ω)Mv

+Dv(v)v + gv(R)]) + z
T
3 (−ω + ωl) .

Setting uv as

uv =
[1, 0, 0]M−1 [S(ω)Mv + Dv(v)v + gv(R)] − k1z1

[1, 0, 0]M−1bv

,

(7)

where k1 is a positive scalar control gain, and ω = ωd, with

ωd := k2z3+ωl where k2 is a second positive scalar control

gain, the time derivative V̇1 becomes V̇1 = −k1z
2

1
−k2z

T
3
z3,

which is strictly non-positive.

Although uv is an actual control input, the same cannot be

said about ω, which was regarded here as a virtual control

input. Following the standard backstepping technique, define

a fourth error variable

z4 := ω − ωd

and the augmented Lyapunov function

V2 := V1 +
1

2
z

T
4 z4 =

1

2
z2
1 + z2

2 + z
T
3 z3 +

1

2
z

T
4 z4.

The time derivative of V2 can be written, after some more

computations, as

V̇2 = −k1z
2
1 − k2z

T
3 z3 + z

T
4

(

J
−1 [−S(v)Mv

−S(ω)Jω − Dω (ω)ω − gω (R) + uω ] − ω̇d − z3) .

Now, setting

uω = S(v)Mv + S(ω)Jω + Dω (ω)ω + gω (R)

+J (ω̇d + z3 − k3z4) , (8)

where k3 is a third scalar positive control gain, finally yields

V̇2 = −k1z
2

1
− k2z

T
3
z3 − k3z

T
4
z4. The time derivative ω̇d is

not presented here for the sake of simplicity.

The following theorem is the main result of this section.

Theorem 1: Consider a vehicle with kinematics and dy-

namics given by equations (1) and (2), respectively, moving

in the absence of ocean currents and suppose the homing

problem stated in Section II defined outside a ball of radius

Rmin and centered at the target’s position. Further assume

that

Rmin >
mu

min {Yv, Zw}
Vd. (9)

Then, with the control law (7)-(8), the equilibrium point

z =
[

z1, z
T
3
, zT

4

]T
= 0 is globally asymptotically stable and

the sway and heave velocities converge to zero, thus solving

globally the homing problem stated in Section II.

Proof: The Lyapunov function V2 is, by construction,

continuous, radially unbounded and positive definite. With

the control law (7)-(8), the time derivative V̇2 results in

V̇2 = −k1z
2
1 − k2z

T
3 z3 − k3z

T
4 z4, (10)

which is negative semi-definite. Therefore, V2 is nonincreas-

ing along all state trajectories, which remain bounded for

all time. Moreover, V2 approaches its own limit. Resorting

to LaSalle’ Theorem, it follows from (10) that z1, z3 and

z4 converge to zero. Because q is a unit quaternion, q2
0

+
qT

v qv = 1. Thus, when z3 converges to zero, q approaches

±(1, 0, 0, 0) which means that Re → I [17]. Therefore, the

vehicle’s x axis aligns itself with the desired direction.

To complete the stability analysis all that is left to do is

to show that the sway and heave velocities also converge

to zero. Expanding the dynamics of the sway and heave

velocities as in (2) yields
{

v̇ = −
Yv+Y|v|v|v|

mv
v + mw

mv
pw − mu

mv
ur,

ẇ = −
Zw+Z|w|w|w|

mw
w − mv

mw
pv + mu

mw
uq.

(11)



Now, after a few straightforward computations it is possible

to conclude that, when z converges to zero, the angular

velocity converges to

lim
z→0

ω =
1

ρ
[0, w,−v]T .

On the other hand, when z1 converges to zero, u converges

to Vd. Thus, when z converges to zero, the dynamics of the

sway and heave velocities can be written as the Linear Time

Varying System (LTVS) driven by a vanishing disturbance

d(t)
[

v̇

ẇ

]

= A(t)

[

v

w

]

+ d(t), (12)

where

A(t) =





−
Yv+Y|v|v|v|− mu

ρ
Vd

mv

mw

mv
p

− mv

mw
p −

Zw+Z|w|w|w|− mu
ρ

Vd

mw



 .

Now, due to the fact that p also converges to zero and using

(9), there exists t0 such that for all t > t0 the eigenvalues of

the symmetric matrix E(t) = 1

2

[

A(t) + AT (t)
]

, which are

all real, remain strictly in the left-half complex plane. Thus,

the LTVS (12) is asymptotically stable, which concludes this

proof.

V. CONTROL IN THE PRESENCE OF OCEAN CURRENTS

In this section the results from the previous section are

generalized for the case where constant ocean currents are

present. Firstly, the integrated guidance and control law

synthesized in the previous section is modified assuming

that the ocean current is known. Afterwards, a globally

asymptotically stable observer that relies on the information

provided by the USBL sensor is proposed. Finally, the

stability of the complete closed loop system is addressed.

A. Controller Design

Consider that the vehicle is moving with water relative

velocity vr in the presence of an ocean current vc, both

expressed in body-fixed coordinates. It is further assumed

that the current velocity is constant in the inertial frame.

The dynamics of the vehicle can then be rewritten as
{

Mv̇r = −S(ω)Mvr − Dvr (vr)vr + bvuv

Jω̇ = −S(vr)Mvr − S(ω)Jω − Dω (ω)ω − gω (R) + uω

(13)

and the vehicle’s velocity relative to the inertial frame,

expressed in body-fixed coordinates, is v = vr + vc.

In this new mission scenario the control strategy synthe-

sized in Section IV cannot be directly used, as the new

control objective is to align the velocity of the vehicle relative

to the inertial frame with the target’s direction instead of the

x axis of the vehicle. However, if the attitude error could

be expressed as in Section IV, a similar control law could

perhaps be used.

Consider the vehicle reference relative velocity vR =
[Vd, 0, 0]T , expressed in {B}. The error variable z1, which

accounts for the surge speed, is naturally modified to z1 :=
[1, 0, 0]vr − Vd. Redefining the quaternion error q to cor-

rectly express the new attitude error, the error variables z2

and z3 may remain unchanged. In order to do so, define a

new coordinate system {E} based on the direction of the

emitter as follows: let the x axis of {E} have direction d,

the y axis the direction of ix ×d, where ix = [1, 0, 0]T , and

the z axis have the direction of d × (ix × d), all expressed

in the body-fixed frame. The rotation matrix from {E} to

{B} is given by

B

ER =
[

d ix×d

‖ix×d‖
d×(ix×d)

‖d×(ix×d)‖

]

, (14)

where d, using (4), is directly obtained from the TDOA

provided by the USBL sensor. When d is parallel to ix,

(14) does not define a rotation matrix. In this particular case,

the rotation can be defined, e.g., by B

E
R = I, d = ix

and B

E
R = diag{−1, 1,−1}, d = −ix. Notice that, in

the coordinate system {E}, the target’s direction d is, by

construction,
E(d) = [1, 0, 0]T . (15)

Denote by E
(

vO
r

)

the velocity of the vehicle relative to the

water, expressed in {E}, when the vehicle is moving directly

towards the target with speed Vd and no lateral velocity.

Then, the relationship

E
(

vO
r

)

+ E(vc)

‖ E(vO
r ) + E(vc)‖

= E(d)

is satisfied. Using (15), it is straightforward to conclude that
[

0 1 0

0 0 1

]

E
(

v
O
r

)

= −

[

0 1 0

0 0 1

]

E(vc) .

Since
∥

∥

E
(

vO
r

)
∥

∥ = Vd, there are only two possible values left

for the first component of E
(

vO
r

)

. However, this component

can be shown to be always positive under the assumption

that Vd > Vc, which is a reasonable assumption. In fact, if

this assumption is not satisfied, it can be impossible for the

vehicle to approach the target as its relative velocity may be

insufficient to counteract the ocean current. Thus, the signal

ambiguity is solved and E
(

vO
r

)

uniquely defined. Now, an

error definition equivalent to (5) can be written as

Re[Vd, 0, 0]T := v
O
r . (16)

The same control strategy as in Section IV can be applied

with minor changes in the control law: the relative velocity

is now used to feed the control law uv and the quaternion

attitude error is obtained from (16). The induced rotation ωl

also changes but is here omitted for the sake of simplicity

[18]. The control law is now given by

uv =
[1, 0, 0]M−1 [S(ω)Mvr + Dvr (vr)] − k1z1

[1, 0, 0]M−1bv

(17)

and

uω = S(vr)Mvr + S(ω)Jω + Dω (ω)ω + gω (R)

+J (ω̇d + z3 − k3z4) . (18)

Global asymptotic stability is achieved, as in Section IV, for

Rmin >
2mu

min {Yv, Zw}
Vd. (19)



B. A Globally Exponentially Stable Ocean Current Observer

In the previous section it was assumed that the velocity

of the ocean current was known, which is perfectly feasible

using an extra sensor, e.g., a Doppler velocity log when the

vehicle is close to the seabed. However, when the vehicle

is far from the sea bottom its inertial velocity is no longer

available onboard and therefore an alternative solution must

be adopted. In this section, a nonlinear observer that makes

use of the TDOA and target range measurements provided by

the USBL sensor, and the water relative velocity supplied by

a Doppler velocity log is proposed, and its stability analyzed.

The position of the target expressed in the body frame can

be obtained directly from the USBL data. Using (4), it can

be written

e = −ρH−1
Q H

T
R∆. (20)

As the emitter is fixed in the universal frame, the time

derivative of its position expressed in the body frame is given

by ė = −vr − vc − S(ω)e. Because the current is assumed

to be constant (in the inertial frame), the time derivative of

the current expressed in the body frame simply results in

v̇c = −S(ω)vc. A globally exponentially stable observer for

the water velocity expressed in the body frame is presented

in the following theorem.

Theorem 2: Consider the observer in the body coordinate

frame given by

˙̂e = −vr − v̂c − S(ω)e + [S(ω) + kobsI] (e − ê) (21a)

˙̂vc = −S(ω)v̂c − (e − ê) , (21b)

where ê is the estimate of the emitter’s position, e is the

observed variable, given by (20), v̂c is the estimate of the

velocity of the current, all expressed in the body-fixed frame,

and kobs > 0 is an observer gain. Then, the estimation errors

ẽ = e − ê (22a)

ṽc = vc − v̂c (22b)

converge globally exponentially fast to zero.

Proof: The time derivatives of the errors ẽ and ṽc can

be written, after some computations, as

˙̃e = −ṽc − [S(ω) + kobsI] ẽ (23a)

˙̃vc = −S(ω)ṽc + ẽ. (23b)

Considering the global diffeomorphic coordinate transforma-

tion zobs = T(R)[ẽT , ṽT
c ]T , where

T(R) =

[

R 03×3

03×3 R

]

,

a linear time invariant exponentially stable system is obtained

for the new variable zobs, from which follows that the origin

of (23) is globally exponentially stable.

C. Closed-loop stability analysis

The presence of an observer to estimate the velocity of

the ocean current introduces an error ũω = ûω − uω in the

control input uω . Indeed, due to the error ṽc in the velocity

of the ocean current, the control law (18) is now replaced by

ûω = S(vr)Mvr + S(ω)Jω + Dω (ω)ω + gω (R)

+J
(

ˆ̇ωd + ẑ3 − k3ẑ4

)

, (24)

where ˆ̇ωd, ẑ3 and ẑ4 are the estimates of ω̇d, z3, and z4,

respectively. Notice that the error of the velocity of the

current appears both directly and indirectly, as some of the

variables depend implicitly on the velocity of the current,

namely vO
r and the quaternion q. However, the maps from

ṽc to ṽO
r and q̃ are smooth and the origin of ṽc is mapped

onto the origin in both cases.

The stability of the overall closed loop system is addressed

in the following theorem. An additional assumption on the

boundedness of the velocity and acceleration of the vehicle

is needed. This assumption, although strong from the theo-

retical point of view, has a clear physical interpretation as

the propulsion system of the AUV limits the available force

and torque which implies upper bounds for the velocities and

accelerations.

Theorem 3: Consider the nonlinear system consisting of

a vehicle with kinematics and dynamics given by equations

(1) and (13), respectively, the current observer (21) and the

control law given by (17) and (18), where the necessary

variables are replaced by their estimates obtained from the

observer. Consider the homing problem as stated in Theorem

1. Assume (19) and that the velocity and acceleration of

the vehicle are bounded. Then, the equilibrium point z =

[z1, z
T
3
, zT

4
]T = 0 is locally uniformly asymptotically stable

and the sway and heave velocities converge to zero, thus

solving locally the aforementioned problem in the presence

of constant unknown ocean currents.

Proof: Consider the system

ż = f1 (z, ṽc) , (25)

where uv and uω are replaced by (17) and (24), respectively,

and ṽc is here regarded as the system input. Following

the same steps as in Theorem 1 it is straightforward to

conclude that the autonomous system ż = f1 (z,0) has a

uniformly asymptotically stable equilibrium point at the ori-

gin z = 0. Moreover, f1 (z, q̃) is continuously differentiable

and the Jacobian matrices [∂f1/∂z] and [∂f1/∂ṽc], using the

assumption on the boundedness of the velocity and accel-

eration of the vehicle, are bounded in some neighborhood

of (z = 0, ṽc = 0). Thus, the system (25) is locally ISS

(Lemma 5.4, [19]). As the observer error was shown to be

0-GES, it follows from Lemma 5.6 [19] that the origin of the

cascaded system (23) and (25) is uniformly asymptotically

stable. Following the same steps as in Theorem 1, it is

possible to prove that Re → I and that the sway and heave

velocities converge to zero, which concludes this proof.



VI. SIMULATION RESULTS

To illustrate the performance of the proposed integrated

guidance and control law a computer simulation is presented

in this section. In the simulation a simplified model of the

SIRENE vehicle was used, assuming the vehicle is directly

actuated in force and torque [3].
In this simulation the vehicle has to counteract a constant

unknown ocean current with velocity [0, −1, 0]T m/s,

expressed in the inertial frame. An observer with gain

kobs = 5 estimates this current to feed the control law,

as described in Section V. The vehicle starts at position

[0, 0, 50]T m and the acoustic transponder is located at

position [500, 500, 500]T m. A semi-spherical symmetric

USBL sensor with seventeen receivers is assumed to be

placed on the vehicle’s nose. The control parameters were

set to k1 = 0.025, k2 = 0.0005, and k3 = 10 and

the desired velocity set to Vd = 2 m/s. Fig. 2 shows the

trajectory described by the vehicle, whereas Fig. 3 displays

the evolution of the vehicle’s velocities and control inputs.
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Fig. 2. Trajectory described by the vehicle in the presence of currents
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Fig. 3. Time evolution of the vehicle velocities and control inputs in the

presence of ocean currents

As expected, the trajectory and control inputs are smooth

and the angular, sway, and heave velocities converge to zero.

VII. CONCLUSIONS

The paper presented new homing sensor based integrated

guidance and control laws to drive an underactuated AUV

to a fixed target in 3D using the information provided

by an USBL positioning system. Under the presence (and

absence) of constant known ocean currents global asymptotic

stability was achieved with the proposed laws. To estimate

unknown constant ocean currents a globally exponentially

stable observer that also resorts to the USBL data was

presented and local asymptotic stability for the overall closed

loop system was achieved. Simulation results were presented

illustrating the performance of the proposed solutions.
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