
A 2D HOMING STRATEGY FOR

AUTONOMOUS UNDERWATER VEHICLES

Pedro Batista ∗,1 Carlos Silvestre ∗ Paulo Oliveira ∗

∗ Instituto Superior Técnico
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Abstract: This paper presents a new sensor based integrated guidance and control
law to solve the homing problem of an underactuated autonomous underwater
vehicle (AUV), in the horizontal plane, using the information provided by an
Ultra-Short Base Line (USBL) positioning system. Global asymptotic stability
(GAS) is achieved in the presence (and absence) of constant known ocean currents
and simulation results are provided to illustrate the performance and behavior of
the overall closed loop system.
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1. INTRODUCTION

The need to know and explore the ocean and its
frontiers has driven the scientific community, in
the recent past, to develop not only advanced
but also cost-efficient research tools such as Au-
tonomous Underwater Vehicles (AUVs) and Re-
motely Operated Vehicles (ROVs) (Sarradin et
al., 2002; Silvestre and Pascoal, 2004; Silvestre et
al., 1998). The control of these vehicles has natu-
rally been subject of growing interest, and while
the control of fully actuated vehicles is nowadays
fairly well understood, as evidenced by the large
body of publications, e.g. (Isidori, 1995; Nijmei-
jer and van der Schaft, 1990; Sastry, 1999) and
the references therein, the control of underactu-
ated vehicles is still an open field of research. To
solve the problems of stabilization and trajectory
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tracking of an underactuated vehicle several so-
lutions have been proposed in the literature, see
(Wichlund et al., 1995; Reyhanoglu, 1996; Pet-
tersen and Nijmeijer, 1998; Mazenc et al., 2002)
and (Aguiar and Hespanha, 2003; Aguiar et al.,
2003), respectively. In (Indiveri et al., 2000) a
solution to the problem of following a straight line
is presented and in (Aguiar and Pascoal, 2002)
a way point tracking controller for an under-
actuated AUV is introduced. It turns out that
in all the aforementioned references the vehicle’s
position is computed in the inertial coordinate
frame and the control laws are developed in the
body frame, disregarding onboard sensors. Sensor-
based control has been a hot topic in the field of
computer vision where the so-called visual servo-
ing techniques have been subject of an intensive
research effort during the last years, see (Cowan et
al., 2002; Malis and Chaumette, 2002) for further
information.

This paper addresses the design of an integrated
guidance and control law to drive an underactu-
ated AUV to a fixed target, in 2D. The solution of
this problem, usually denominated as homing in
the literature, is central to drive the vehicle to the



vicinity of a base station or support vessel. Once
the vehicle is close enough to the base station a
different control strategy should be adopted. In
the paper it is assumed that an acoustic transpon-
der is installed on a predefined fixed position in
the mission scenario, denominated as target in
the sequel, and an Ultra-Short Baseline (USBL)
sensor, composed by an array of hydrophones and
an acoustic emitter, is rigidly mounted on the
vehicle’s nose. During the homing phase the USBL
sensor interrogates the transponder and synchro-
nizes, detects and records the time of arrival mea-
sured by each receiver. The implementation of
the control law also requires the vehicle’s linear
velocities, relative to the water and to the ground,
as provided by a Doppler velocity log, and the
vehicle attitude and angular velocities measured
by an Attitude and Heading Reference System
(AHRS).

The paper is organized as follows. In Section 2 the
homing problem is introduced and the dynamics
of the horizontal plane of the AUV are briefly
described, whereas the USBL model is presented
in Section 3. A Lyapunov based guidance and
control law is derived, in Section 4, using the
vehicle’s kinematics directly expressed in terms
of the time differences of arrival (TDOAs) and
range to the target obtained from the USBL data.
This control law is then extended to include the
dynamics of the vehicle resorting to backstepping
techniques. Afterwards, this strategy is further ex-
tended, in Section 5, to the case where known con-
stant ocean currents affect the vehicle’s dynamics.
Global asymptotic stability (GAS) is achieved in
both cases. Simulation’ results are presented and
discussed in Section 6, and finally Section 7 sum-
marizes the main results of the paper.

2. PROBLEM STATEMENT

Let {I} be an inertial coordinate frame, and
{B} a body-fixed coordinate frame, whose origin
is located at the center of mass of the vehicle.
Consider p = [x, y]T as the position of the origin
of {B}, described in {I}, ψ the orientation of the
vehicle relative to {I}, v = [u, v]T the linear
velocity of the vehicle relative to {I}, expressed
in body-fixed coordinates, and ω the angular
velocity. The vehicle kinematics can be written as

ṗ = I

B
R (ψ)v ψ̇ = ω (1)

where R = I

B
R = ( B

I
R )T is the rotation matrix

from {B} to {I}, verifying Ṙ = RS(ω), and S(x)
is the skew-symmetric matrix

S(x) =

[

0 −x

x 0

]

The vehicle’s dynamic equations of motion can be
written in a compact form as

{

Mv̇ = −S(ω)Mv − Dv(v)v + luv

Jω̇ = −dω(ω)ω + uω
(2)

where M = diag{mu,mv} is the positive defi-
nite diagonal mass matrix, Dv(v) = diag{du +
d|u|u|u|, dv + d|v|v|v|} captures the hydrodynamic
damping effects on the linear velocity, dω(ω) =
dω +d|ω|ω|ω| captures the hydrodynamic damping

effects on the angular velocity, and l = [1, 0]
T
.

The control inputs uv = τu and uω = τω are the
surge force and the yaw torque, respectively.

The homing problem considered in this paper can
be stated as follows:

Problem Statement. Consider an underactuated
AUV with kinematics and dynamics given by (1)
and (2), respectively. Assume that the vehicle
is moving in a horizontal plane where a target
equipped with an acoustic transponder is placed in
a fixed position. Design a sensor based integrated
guidance and control law to drive the vehicle to-
wards a well defined neighborhood of the target
using the time differences of arrival and range
to the target as measured by an USBL sensor
installed on the AUV.

3. USBL MODEL

During the homing approach phase the vehicle
is far away from the acoustic emitter, that is,
the distance from the vehicle to the target is
much larger than the distance between any pair of
receivers. Therefore, the plane-wave assumption is
valid. Let ri = [xi, yi]

T ∈ R
2, i = 1, 2, . . . , N ,

denote the positions of the N acoustic receivers
installed on the USBL sensor and consider a
plane-wave traveling along the opposite direction
of the unit vector d = [dx, dy]T , as shown in
Figure 1. Notice both ri and d are expressed in
the body frame.

Fig. 1. Plane Wave and the USBL system

Let ti be the instant of time of arrival of the
plane-wave at ith receiver and VS the velocity
of propagation of the sound in water, assumed
to be constant and known. Then, assuming that
the medium is homogeneous and neglecting the
velocity of the vehicle, which is a reasonable
assumption since ‖v‖ << VS , the time difference
of arrival between receivers i and j satisfies

VS (ti − tj) = − [dx (xi − xj) + dy (yi − yj)] (3)

Denote by ∆1 = t1 − t2, ∆2 = t1 − t3, . . . , ∆M =
tN−1 − tN , where M = N (N − 1) /2, all the



possible combinations of TDOA, and let ∆ =

[∆1, ∆2, · · · , ∆M ]
T
. Define

rx = [x1 − x2, x1 − x3, · · · , xN−1 − xN ]T

ry = [y1 − y2, y1 − y3, · · · , yN−1 − yN ]T

and HR ∈ R
M×2 as HR = [rx, ry]. Then, the

generalization of (3) for all TDOAs yields

∆ = −
1

VS

HRd (4)

Define also HQ ∈ R
2×2 as

HQ =
1

VS

H
T
RHR

which is assumed to be non-singular. This turns
out to be a weak hypothesis as it is always true
if, at least, 3 receivers are mounted in noncolinear
positions. In those conditions HR has maximum
rank and so does HQ. Then,

d = −H
−1

Q
H

T
R∆ (5)

which directly relates the direction of the target
to the TDOA vector.

4. CONTROLLER DESIGN

In this section an integrated nonlinear closed loop
guidance and control law is derived that solves
the homing problem stated earlier in Section 2.
Assuming there are no ocean currents, the idea
behind the control strategy proposed here is to
steer the vehicle directly towards the emitter. The
synthesis of the guidance and control law resorts
extensively to the Lyapunov’s direct method and
backstepping techniques.

Consider a first error variable z1 defined as the
angle θ between the vehicle’s x axis and the
direction of the target d, i.e,

z1 := θ

This error variable is directly obtained, using the
4-quadrant inverse tangent, from the direction of
the target, which in turn is directly related to the
TDOA vector through (5). To force the vehicle to
move towards the target, consider a second error
variable defined as

z2 := [1, 0]v − Vd

where Vd is a positive constant that corresponds
to the desired velocity during the homing stage.
When z1 and z2 converge to zero, the vehicle
is moving with positive surge speed Vd and its
x axis is pointing to the target. However, these
two conditions are not sufficient to ensure that
the vehicle is driven towards the target during
the homing stage as the sway speed is left free.
Nevertheless, it will be shown that, with the
control law based upon these two error variables,
the sway velocity converges to zero, which suffices,
in conjunction with the convergence of z1 and z2
to zero, to achieve the desired behavior of the
vehicle during the homing stage.

To synthesize the control law, define the Lyapunov
function

V1 =
1

2
z2
1 +

1

2
z2
2

The time derivative of V1 is given by

V̇1 = z1ż1 + z2ż2 = z1θ̇ + z2[1, 0]v̇

The derivative v̇ is directly obtained from the dy-
namics of the vehicle (2). The derivative of θ can
be written, after a few algebraic manipulations, as

θ̇ = −ω +
dS(1)v

r

where r is the range to the target as measured
by the USBL sensor. Notice that the first term
corresponds to the rotation of the vehicle and the
second to the induced rotation due to the linear
velocity of the vehicle. Now, V̇1 can be written as

V̇1 = z1

(

−ω +
dS(1)v

r

)

+z2[1, 0]M−1 (luv − [S(ω)Mv + Dv(v)v])

Setting uv equal to

uv =
[1, 0]M−1 [S(ω)Mv + Dv(v)v] − k2z2

[1, 0]M−1l
(6)

where k2 > 0 is a control gain, and ω equal to ωd,

ωd := k1z1 +
dS(1)v

r

where k1 is a second positive scalar control gain,
V̇1 becomes negative definite. Although uv is a
real control variable, the same cannot be said
about ω, which was regarded here as a virtual con-
trol variable. Following the standard backstepping
technique, define a third error variable

z3 = ω − ωd

and the augmented Lyapunov function

V2 = V1 +
1

2
z2
3 =

1

2
z2
1 +

1

2
z2
2 +

1

2
z2
3

The time derivative V̇2 can be written as
V̇2 = −k1z2

1 − k2z2
2

+z3

(

1

J
[−dω(ω)ω + uω ] − ω̇d − z1

)

Now, setting

uω = dω(ω)ω + J (ω̇d + z1 − k3z3) (7)

where k3 > 0 is a control gain, one obtains V̇2

negative definite. The time derivative ω̇d is not
presented here for the sake of simplicity.

The following theorem states the main result of
this section.

Theorem 1. Consider a vehicle with kinematics
and dynamics given by equations (1) and (2),
respectively, moving without ocean currents, and
suppose the homing problem stated in Section 2
to be defined outside a ball of radius Rmin and
centered at the target’s position. Further assume
that

Rmin >
mu

dv

Vd (8)

Then, with the control law (6)-(7), the error vari-
able z = [z1, z2, z3]

T converges globally exponen-
tially fast to zero. Moreover, the sway velocity
converges to zero, thus solving globally the hom-
ing problem stated in Section 2.



PROOF. Before going into the details a sketch of
the proof is first offered. The convergence of the
error variable z is a straightforward application
of the Lyapunov’s second method. The analysis of
the vehicle’s sway equation of motion, when z con-
verges to zero, allows to conclude the convergence
to zero of the sway velocity.

The function V2 is, by construction, continuous,
radially unbounded, and positive definite. More-
over, with the control law (6)-(7), the time deriva-
tive V̇2 results in V̇2 = −k1z

2

1
−k2z

2

2
−k3z

2

3
, which

is negative definite. Thus, the origin z = 0 is a
globally asymptotically stable equilibrium point.
Furthermore, as there exists λ > 0 such that
V̇2 ≤ −λV2 it is straightforward to conclude,
resorting to the Comparison Lemma, that V2(t) ≤
V2(0)e−λt which implies that the error variable z

converges exponentially fast to zero.

To complete the stability analysis all that is left
to do is to show that the sway velocity converges
to zero. The dynamics of the sway velocity can be
written as

v̇ = −
mu

mv

uω −
dv + d|v|v |v|

mv

v

Taking the limit of the angular velocity when z
converges to zero yields

lim
z→0

ω = −
v

r

On the other hand, u converges to the desired
velocity Vd. Therefore, when z converges to zero,
the dynamics of the sway velocity can be written
as

v̇ = −
dv + d|v|v |v| − mu

Vd

r

mv

v

During the homing stage the vehicle is operating
outside a ball of radius Rmin centered at the
target’s position. Thus, r > Rmin which, in
conjuction with assumption (8), allows to write

dv + d|v|v |v| − mu
Vd

r
> 0

from which follows that the sway velocity con-
verges to zero, thus completing the proof.

5. CONTROL IN THE PRESENCE OF
OCEAN CURRENTS

Consider that the vehicle is moving with water
relative velocity vr in the presence of a known
ocean current vc, both expressed in body-fixed
coordinates. It is further assumed that the current
velocity is constant in the inertial frame. The
dynamics of the vehicle can then be rewritten as
{

Mv̇r = −S(ω)Mvr − Dvr
(vr)vr + luv

Jω = −dω(ω)ω + uω
(9)

and the vehicle’s velocity relative to the inertial
frame, expressed in body-fixed coordinates, is
v = vr + vc. Under these conditions the strategy
synthesized in Section 4 does not solve the homing
problem in the presence of currents, as the new

control objective is to align the velocity of the
vehicle relatively to the inertial frame towards the
target instead of the x axis of the vehicle.

Consider the vehicle reference relative velocity
vR := [Vd, 0]T . The error variable z2, which
accounts for the surge speed, is naturally modified
to

z2 := [1, 0]vr − Vd

The idea now is to redefine the error variable z1
so that the effect of the ocean current is included.
In order to do so, define a new coordinate system
{E} as follows: let the x axis of {E} have direc-
tion d and the y axis have direction S(1)d, all
expressed in the body-fixed frame. The rotation
matrix from {E} to {B} is simply given by

B

E
R =

[

d S(1)d
]

where d, using (5), is directly obtained from the
TDOA of the USBL sensor. Notice that, in the
new coordinate frame, {E}, the target’s direction
d is, by construction,

E(d) = [1, 0]T (10)

Denote by E
(

vO
r

)

the velocity of the vehicle
relative to the water, expressed in {E}, when
the vehicle is moving directly towards the target
with speed Vd and zero sway velocity. Then, the
relationship

E
(

vO
r

)

+ E(vc)

‖ E(vO
r ) + E(vc)‖

= E(d)

is satisfied. Using (10), it is straightforward to
conclude that

[0, 1] E
(

v
O
r

)

= − [0, 1] E(vc)

Since
∥

∥

E
(

vO
r

)∥

∥ = Vd, there are only two possible

values left for the first component of E
(

vO
r

)

.
However, this component can be shown to be al-
ways positive under the assumption that Vd > Vc,
which is a reasonable hypothesis. In fact, if this
was not true, it could be impossible for the vehicle
to approach the target as its relative velocity could
be insufficient to counteract a direct opposing
water current. Thus, the signal ambiguity is solved
and E

(

vO
r

)

uniquely defined. This objective rel-
ative velocity plays now the role that direction d
played in Section 4 and the error variable z1 is
now redefined as

z1 := θe

where θe is the angle between the vehicle’s x axis
and the desired relative velocity vector vO

r . When
z1 and z2 are zero, the vehicle is moving directly
towards the target if its sway velocity is zero.
However, this velocity was left free but again, as in
Section 4, it will be shown that with the control
based upon these two error variables, the sway
velocity also converges to zero.

To synthesize the control law, consider the same
Lyapunov function as in Section 4

V1 =
1

2
z2
1 +

1

2
z2
2

The time derivative of V1 is given by

V̇1 = z1ż1 + z2ż2 = z1θ̇e + z2[1, 0]v̇



After long but straightforward algebraic manipu-
lations, the time derivative of θe can be written
as

θ̇e = −ω +

∥

∥vO
r + vc

∥

∥

V 2
d

D

(

v
O
r

)T
S(1)

(

v −

(

vO
r

)T
d

(vO
r )T

d

d

)

Now, the derivative of V1 reads as

V̇1 = z1

∥

∥vO
r + vc

∥

∥

V 2
d

D

(

v
O
r

)T
S(1)

(

v −

(

vO
r

)T
d

(vO
r )T

d

d

)

− z1ω

+z2[1, 0]M−1 (luv − [S(ω)Mvr + Dvr
(vr)vr])

Setting

uv =
[1, 0]M−1 [S(ω)Mvr + Dvr

(vr)] − k2z2

[1, 0]M−1l
(11)

where k2 is a positive control gain, and ω equal to
ωd,

ωd := k1z1 +

∥

∥vO
r + vc

∥

∥

V 2
d

D

(

v
O
r

)T
S(1)

(

v −

(

vO
r

)T
d

(vO
r )T

d

d

)

where k1 is another positive control gain, V̇1

becomes negative definite. Since ω is not a real
control variable, and using the same technique as
in Section 4, consider a third error variable defined
as z3 = ω − ωd and the augmented Lyapunov
function

V2 = V1 +
1

2
z2
3 =

1

2
z2
1 +

1

2
z2
2 +

1

2
z2
3

The time derivative of V2 can be written as

V̇2 = −k1z2
1 − k2z2

2

+z3

(

1

J
[−dω(ω)ω + uω] − ω̇d − z1

)

For the sake of simplicity, the derivative ω̇d is not
presented here. Now, setting

uω = dω(ω)ω + J (ω̇d + z1 − k3z3) (12)

where k3 > 0 is a control gain, V̇2 is made negative
definite.

The following theorem is the main result of this
section.

Theorem 2. Consider a vehicle with kinematics
and dynamics given by equations (1) and (9),
respectively, moving in the presence of constant
known ocean currents and suppose the homing
problem stated in Section 2 to be defined outside
a ball of radius Rmin and centered at the target’s
position. Further assume that

Rmin >
mu

dv

2Vd (13)

Then, with the control law (11)-(12), the error
variable z = [z1, z2, z3]

T converges globally expo-
nentially fast to zero. Moreover, the sway velocity
converges to zero, thus solving globally the hom-
ing problem stated in Section 2 in the presence of
constant known ocean currents.

PROOF. The proof of the theorem follows the
same steps of the proof of Theorem 1. The Lya-
punov function V2 is continuous, radially un-
bounded, positive definite, and its time derivative,

with the control law (11)-(12), is made negative
definite. Moreover, there exists λ > 0 such that
V̇2 ≤ −λV2. Thus, the error variable z converges
exponentially fast to zero. Taking the limit of the
angular velocity when z converges to zero yields

lim
z→0

ω = −

∥

∥vO
r + vc

∥

∥

Vd

v

r

Since the surge velocity converges to Vd, the
dynamics of the sway velocity can be written
(when z to zero) as

v̇r = −
dv + d|v|v |vr| − mu

‖vO
r

+vc‖
r

mv

vr

Now, notice that
∥

∥vO
r + vc

∥

∥ < 2Vd which, in
conjunction with assumption (13), allows to write

dv + d|v|v |vr| − mu

∥

∥vO
r + vc

∥

∥

r
> 0

from which follows that the sway velocity also
converges to zero, thus completing this proof.

6. SIMULATION RESULTS

In this section a computer simulation is presented
to illustrate the performance of the proposed
solutions. The simulation was carried out with
a simplified model of the horizontal plane of the
SIRENE vehicle, assuming it is directly actuated
in force and torque (Silvestre et al., 1998).

In this simulation the vehicle has to coun-
teract a constant ocean current with velocity
[−0.5, −0.5]T m/s, expressed in the inertial frame.
The vehicle starts at position [0, 500]T m and
the acoustic transponder is located at position
[500, 500]T m. The control parameters were cho-
sen as follows: k1 = 0.025, k2 = 0.04 and k3 = 20.
The desired velocity was set to Vd = 2 m/s, and a
semi-spherical symmetric USBL sensor with seven
receivers was placed on the vehicle’s nose. Figure
2 shows the trajectory described by the vehicle,
whereas Figures 3 and 4 display the evolution
of the vehicle’s velocities and control inputs, re-
spectively. From the figures it can be concluded

0 50 100 150 200 250 300 350 400 450 500

350

400

450

500

550

600

650

700

x (m)

y
 (

m
)

Fig. 2. Trajectory described by the vehicle in the
presence of currents

that the vehicle is driven towards the target de-
scribing a smooth trajectory. The control inputs
are smooth and the angular and sway velocities
converge to zero, as expected.
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Fig. 3. Time evolution of body-fixed velocities of
the vehicle in the presence of currents

0 50 100 150 200 250 300 350
0

50

100

150

200

t (s)

u
u
 (

N
)

0 50 100 150 200 250 300 350

−6000

−4000

−2000

0

t (s)

u
ω

 (
N

.m
)

Fig. 4. Time evolution of control inputs in the
presence of currents

7. CONCLUSIONS

The paper presented a new homing sensor based
integrated guidance and control law to drive an
underactuated AUV to a fixed target in 2D using
the information provided by an USBL positioning
system. The guidance and control laws were firstly
derived for the vehicle’s kinematics expressed as
TDOAs and range to the target as measured by
the USBL sensor and then extended to the dy-
namics of an AUV resorting to backstepping tech-
niques. Global asymptotic stability was achieved
for the guidance and control law in the presence
(and absence) of known ocean currents. Simula-
tions were presented and discussed to illustrate
the performance of the proposed solutions.
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