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Abstract: The paper addresses the problem of path-following for autonomous underwater
vehicles by taking into account the future reference path characteristics, as seen from the
vehicle. The methodology used to solve the path-following control problem amounts to
posing it as a discrete time path following control problem where a conveniently defined
error state space model of the plant is augmented with reference preview data. A piecewise
affine parameter-dependent model representation is used to accurately describe the AUV
linearized error dynamics for a pre-defined set of operating regions. For each region, the
synthesis problem is stated as a state feedbackH2 control problem for affine parameter-
dependent systems and solved using Linear Matrix Inequalities (LMIs). The resulting
nonlinear controller is implemented within the scope of gain-scheduled control theory
using the D-methodology. Simulation results obtained with the INFANTE AUV nonlinear
vertical plane model are presented and discussed.
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1. INTRODUCTION

This paper describes a solution to the problem of path-
following controller design for autonomous underwa-
ter vehicle (AUV) taking into account the future ref-
erence path characteristics, as seen from vehicle. An
application is made to the control of the vertical plane
of the prototype INFANTE AUV, built and operated
by the Instituto Superior T́ecnico of Lisbon, Portugal.

Preview control algorithms have been widely used to
improve the overall closed loop performance obtained
with limited bandwidth feedback compensators when
future information on the commands or disturbances
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POSConhecimento Program that includes FEDER funds and by
project MAYASub of the AdI. The work of R. Cunha was sup-
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is available. A series of papers on application of the
Linear Quadratic preview control theory to the design
of vehicle active suspensions can be found in the lit-
erature. Special emphasis should be given to the pi-
oneering work of Tomizuka Tomizuka (1976), where
the optimal preview control problem is formulated and
solved, and the impact of different preview lengths on
the overall suspension performance is discussed. More
recently, Takaba Takaba (2000) addressed the problem
of robust servomechanism with preview action mixed
LQ/H∞ design for polytopic uncertain systems using
Linear Matrix Inequalities (LMIs).

For linear control systems design, the paper exploits
the use of a discrete time state feedbackH2 preview
controller synthesis algorithm. In the approach pur-
sued in this paper, results presented in Takaba (2000);
Ghaoui and Niculescu (1999) are used to develop the
LMI basedH2 preview controller synthesis algorithm
for affine parameter-dependent systems.



In the paper, linear state feedback preview controllers
are synthesized for a finite number of piecewise affine
parameter-dependent discrete time plant models. Each
of these models consists of the discrete equivalent
of the generalized error linearization for each of the
AUV operating regions determined by a well-defined
box in the parameter space (vehicle’s total speed and
angle of attack). The adopted error space is in line
with the solutions presented in Cunha and Silvestre
(2005); Silvestre (2000) and exhibits high directional-
ity accuracy, by taking into account the current vehicle
orientation in the definition of the reference velocities.
Related work in the area with applications to heli-
copters can be found in Paulino et al. (2006a), where
the authors apply a similar technique to a rotorcraft
terrain-following problem.

The final implementation of the resulting non-linear
gain scheduled controller uses the D-methodology
described in Kaminer et al. (1995) which guarantees a
fundamental linearization property and eliminates the
need to feedforward the values of the state variables
and inputs at trimming.

The paper is organized as follows. Section 2 intro-
duces a nonlinear model for the vertical plane dy-
namics of the INFANTE AUV. Section 3 introduces
briefly the path-dependent error space used to describe
the vehicle dynamics. Section 4 states the preview
control problem. Section 5 describes the methodology
adopted forH2 linear controller design where an LMI
synthesis technique is applied to affine parameter-
dependent systems. Section 6 focuses on the imple-
mentation of the nonlinear path-following controller
for the INFANTE AUV. Finally, simulation results
obtained with the full nonlinear dynamic model are
presented in Section 7.

2. VEHICLE DYNAMICS

This section describes the dynamic model of the IN-
FANTE AUV in the vertical plane Silvestre (2000).
The vehicle is4.5m long,1.1m wide and0.6m high.
It is equipped with two main thrusters (propellers and
nozzles) for cruising and fully moving surfaces (rud-
ders, bow planes and stern planes) for vehicle steering
and diving in the horizontal and vertical planes, re-
spectively. The notation used and the structure of the

Fig. 1. The INFANTE Vehicle

vehicle model are standard Silvestre (2000); Fossen
(1994). The variablesu andw denote surge and heave

speeds, whileθ , q, x, andz denote pitch, pitch rate,
x position, and depth, respectively. The symbolsδb
andδs represent the bow and stern plane deflections,
respectively. With this notation and neglecting the roll
stable motion, the dynamics of the AUV in the vertical
plane can be written in compact form as
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mẇ = muq+(W−B)cos(θ)+
ρ
2

L2Zwuw+ (3)

ρ
2

L3Zquq+
ρ
2

L2u2 [
Zδb

δb +Zδsδs
]
+

ρ
2

L3Zẇẇ+
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where equations (1), (3), and (5) describe the surge,
heave, and pitch motion, respectively,X(.), Z(.), and
M(.) are hydrodynamic derivative terms, andzCB rep-
resents the metacentric distance. Equations (2), (4),
and (6) capture the vehicle kinematics. See Silvestre
(2000) for numerical values of the hydrodynamic pa-
rameters. The variablesm, L, W, B, and Iy are the
vehicle’s mass, length, weight, buoyancy, and moment
of inertia about they axis, respectively andρ is the
density of the water.

3. ERROR SPACE

The problem of steering the vehicle along a prede-
fined path, which ultimately allows for definition of
a bottom-following controller, can be converted into
a regulation problem by expressing the state of the
vehicle in a conveniently defined error space. This
definition requires the introduction of two coordinate
systems: the Serret-Frenet frame,{T}, with origin at
the point on the path closest to the vehicle and coor-
dinate axes corresponding to the tangent and normal
vectors defined at that point; and the desired body ref-
erence frame,{C}, determined as if the vehicle were
following the path with zero error, see Fig. 2. Notice
that{C} is highly dependent on the vehicle dynamics.
However, as will be seen later,{C} will never have
to be computed explicitly. A reference for the tangent
velocity is also required, withvr = [Vr 0]T denoting the
desired linear velocity in 2D, expressed in{T}.
Given these definitions, and simplifying the error
space presented in Cunha and Silvestre (2005) for the
2D case, the vectorxe = [ve qe dT θe] ∈ R5; ve ∈ R2

and outputye∈ R2 can be introduced with

xe =




ve

qe

dT

θe


 =




v−R(γT −θ)vr

q−qC

(x−xC)sin(γT)+(z−zC)cos(γT)
θ −θC


 (7)
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Fig. 2. Coordinate frames: Inertial{I}; Body {B};
Serret Frenet{T}; Desired body{C}

and ye = ve + R(γT − θ)[0 dT ]T , wherev = [u w]T ,
vectors[x z] and[xC zC] are the origins of{B} and{C}
respectively, expressed in{I}, θC is the pitch angle
that represents the orientation of{C} with respect
to {I}, qC is the respective time derivative,γT is the
flight path angle, andR(η) represents the rotation
by angleη . It is straightforward to verify that the
vehicle follows the path with tangent velocityvr and
orientationθC if and only if xe = 0.

The output vectorye corresponds to a combination of
error vector components expressed in the body coor-
dinate system, which is used for tracking purposes.
By including ve and dT in ye, both the velocity and
position errors are being considered, with the distance
vector expressed in the current body frame.

Assuming that the reference path is a straight line, it
satisfiesV̇r = 0 and q̇C = 0, and the simplified error
dynamics can be written as





v̇e = v̇− Ṙ(−θ)R(γT)vr −R(−θ)
d
dt

R(γT)vr

q̇e = q̇
ḋT = −uesin(θ − γT)+wecos(θ − γT)
θ̇e = q− θ̇C.

(8)
Notice that at trimmingd

dt R(γT)vr = 0 andqC = θ̇C =
0. However to account for the preview action these
terms are included in the dynamics. Further details on
the derivation of the error dynamics can be found in
Cunha and Silvestre (2005).

3.1 Error linearization and discretization

For a given straight line path (qC = 0), linear speedVr ,
and flight path angleγT , defineuC as the constant input
vector that satisfies (1), (3), and (5) at equilibrium
(u̇ = 0, ẇ = 0, q̇ = 0), with v = R(γT − θC)vr , and
θ = θC. Then, the linearization of (8) with output
vectorye about the equilibrium pointxe = 0, u = uC

results in

δ ẋe = Ae(ζ )δxe+Be(ζ )δu, (9)

δye =Ce(ζ )δxe, (10)

whereAe(ζ ), Be(ζ ), andCe(ζ ) denote the Jacobians
evaluated at the equilibrium condition parameterized
by ζ = [Vr ,γT ]T .

The discrete time equivalent of the linear continuous
time model (9) is obtained using a zero-order hold
on the inputs. LetT be the sampling time and de-
fine, with obvious abuse of notation, the augmented
discrete time statexd(k) = [xe(k)T , xi(k)T ]T , where
xi(k) corresponds to the discrete time integral ofye.
Using this notation, the discrete error dynamics can
be written as

xd(k+1) = A(ζ )xd(k)+B(ζ )u(k), (11)

where A(ζ ) =
[

eAe(ζ )T 0
Ce(ζ ) I

]
and B =




∫ T

0
eAe(ζ )τ dτBe(ζ )

0




for ζ constant.

4. PREVIEW PROBLEM FORMULATION

Better AUV bottom-following performance with lim-
ited bandwidth compensators can be achieved by tak-
ing into account, in the control law, the seabed char-
acteristics ahead of the AUV obtained from measure-
ments of two echo sounders. The technique used in
this paper to develop a tracking controller amounts
to augmenting the discrete time error space dynamics
with a description of the future seabed evolution as
seen by the sensors installed on the AUV.

With the objective of including future path distur-
bances in the discrete time error space dynamics (11),
assume that the AUV moves with constant speed along
a given reference path that results from the concatena-
tion of straight lines. A detailed analysis of the error
dynamics (8) suggests the introduction of vector

[
−

(
R(−θ)

d
dt

R(γT)vr

)T

, 0, 0, −θ̇C

]T

(12)

as the perturbation to be previewed. To this effect, and
assuming that there is a discontinuity in the reference
path resulting from the concatenation of two straight
lines that will be crossed by the vehicle at timet = t0,
the elements of vector (12) result in

d
dt

R(γT)vr = δ (t− t0)
(
R(γT(t+0 ))−R(γT(t−0 )

)
vr

θ̇C = δ (t− t0)
(
θC(t+0 )−θC(t−0 )

)

whereδ (t− t0) is the Dirac’s delta function. From (9)
the resulting linear error dynamics can be written as

δ ẋe = Ae(ζ )δxe+Be(ζ )δu+W(ζ )δw, (13)

with injection matrix W(ζ ) = −



R(−θC) 02×1

01×2 0
01×2 1


.

Using this interpretation, the seabed disturbance sig-
nal, as seen from the AUV, can be modeled ass(t) =
∑i s(ti)δ (t − ti), where s(ti) represents an intensity
vector, andti corresponds to theith concatenation



point crossing time. The corresponding discretization
is given by

xd(k+1) = A(ζ )xd(k)+B(ζ )u(k)+B1(ζ )s(k),
(14)

whereB1(ζ ) = [(eAe(ζ )TW(ζ ))T , 0]T is obtained from
the impulse invariant discrete equivalent of the injec-
tion matrix W(ζ ). It is assumed that the sampling
period is sufficiently small to consider the reference
path changes synchronized with the sampling time.
Once again, with obvious abuse of notation,s(k) ∈Rs

corresponds to

s(k) =
[(

R(γT(t+k ))−R(γT(t−k )
)

vr

θC(t+k )−θC(t−k )

]
.

Assuming a preview length ofp samples, letxs(k) =
[s(k)T ,s(k + 1)T , ...,s(k + p)T ]T ∈ R(s(p+1))×1 be the
vector containing all the preview inputs at instantk.
The discrete time dynamics of vectorxs(k) can be
modeled as a FIFO queue, given by

xs(k+1) = Dxs(k)+Bss(k+ p+1), (15)

where

D =




0 I 0 · · · 0
0 0 I · · · 0
...

...
.. .

. . .
...

0 0 0
... I

0 0 0 · · · 0




, Bs =




0
0
...
I


 .

Combining the dynamic representation of the seabed
(15) with (14) yields the augmented system

x(k+1) = Āx(k)+ B̄ss(k)+ B̄u(k), (16)

where

x(k) =
[
xd(k)
xs(k)

]
, Ā =

[
A H
0 D

]
, B̄s =

[
0
Bs

]
, B̄ =

[
B
0

]
,

andH = [B1,0,0, · · · ,0] represents the injection ma-
trix of the preview signals into the error dynamics.
Notice that theD matrix is stable and therefore the
augmented system (16) preserves the stabilizability
and detectability properties of the original plant.

With the present technique, the preview information is
retrieved atp points selected along the path, equally
spaced by the distancedp = Vt(k)T. The scalarVt(k)
corresponds to the norm of the projection of the vehi-
cle’s velocity vectorv on the path, computed at instant
k, which can be obtained fromVt = [1 0]R(θ − γT)v.
This fact turns out to be of utmost importance, since
it allows to naturally redefine the controller visibility
distance as a function of the vehicle’s speed, preserv-
ing the size of the preview input vector.

5. DISCRETE TIME CONTROLLER DESIGN

This section briefly presents a solution to the problem
of discrete time state feedbackH2 preview control for
affine parameter-dependent systems. In the approach

pursued in this paper, results presented in Ghaoui and
Niculescu (1999); Takaba (2000) were used to develop
the LMI based controller synthesis algorithm. Much
of the work in this area is well rooted in the theory
of LMIs, which are steadily becoming a standard tool
for advanced control system design. In fact, LMIs
provide a powerful formulation framework as well as
a versatile design technique for a wide variety of linear
control problems. Since solving LMIs is a convex
optimization problem for which numerical solvers are
now available, an LMI based formulation can be seen
as a practical solution for many control problems.

5.1 Theoretical background

K

- G(ζ )

¾

--w z

xu

Fig. 3. Feedback interconnection

In what follows, the standard set-up and nomencla-
ture used in Zhou et al. (1995) is adopted, leading to
the state-space feedback system represented in Fig. 3.
Consider the generalized affine parameter-dependent
systemG(ζ ) as a function of the slowly varying pa-
rameter vectorζ . It is assumed thatζ is in a compact
setΘ ⊂ Rq. Suppose that the parameter setΘ can be
partitioned into a family of regions that are compact
closed subsetsΘi , i = 1, . . . , N and cover the desired
AUV flight envelope. In theith parameter regionΘi ,
the dynamic behavior of the closed-loop system ad-
mits the realization

{
x(k+1) = A(ζ )x(k)+Bw(ζ )w(k)+B(ζ )u(k)

z(k) = Cz(ζ )x(k)+E(ζ )u(k), u(k) = Kx(k),
(17)

where x(k) is the state vector. The symbolw(k)
denotes the input vector of exogenous signals (in-
cluding commands, disturbances and preview sig-
nals), z(k) is the output vector of errors to be re-
duced during the controller design process, andu(k)
is the vector of actuation signals. MatricesA(ζ ),
Bw(ζ ), B(ζ ), Cz(ζ ), and E(ζ ) are affine functions
of the parameter vectorζ = [ζ1, . . . , ζq]T ∈ Θi , e.g.
A(ζ ) = A(0) + ζ1A(1) + . . .+ ζqA(q). The generalized
affine parameter-dependent systemG(ζ ) consists of
the plant to be controlled, together with appended
weights that shape the exogenous and internal signals
and the preview dynamics presented in Section 4.

Given G(ζ ), an LMI approach for the synthesis of
state feedbackH2 controllers for polytopic systems
is used to computeK = [Kd, Ks], whereKd and Ks

represent the state feedback and feedforward gain ma-
trices respectively, see Ghaoui and Niculescu (1999);
Paulino et al. (2006a) for further details.

For augmented discrete time dynamic systems that
include large preview intervalsp > 50, the controller
synthesis technique proposed in Ghaoui and Niculescu
(1999) leads to LMI optimization problems involving



a large number of variables, which cannot easily be
solved using the tools available today. To overcome
this limitation, an alternative algorithm for the com-
putation of the feedforward gain matrix is adopted
that exploits the particular structure of the augmented
preview system, see Paulino et al. (2006a).

6. IMPLEMENTATION

The design and performance evaluation of the overall
closed loop system were carried out using the model
described in Section 2.

In the application presented here the vehicle is ex-
pected to follow a reference path, in the vertical plane,
composed by the concatenation of straight lines. Dur-
ing the controller design phase the considered AUV’s
flight envelope was parameterized byζ = [Vr ,γT ]T

(equivalently by[u,w]T ) and partitioned in19regions,
see Paulino et al. (2006b). For each operating region,
the elements of the discrete time state space matri-
ces were obtained from the linearization of the error
dynamics over a dense grid of operating points and
then approximated by affine functions ofζ using a
Least Squares Fitting. For a relatively dense grid of
evaluated operating points, the affine approximation
results in a maximum absolute error between entries of
the matrices of less than3% and, an average absolute
error of less than1.4%.

To implement the controller in the scope of gain
scheduling control theory, a state feedback gain matrix
K i = [Kdi , Ksi ], i = 1, . . . ,19 was computed for each
of the operating regions using the technique presented
in Section 5. During the controller design phase the
regions were defined so as to overlap thus avoiding
fast switching between controllers. The disturbance
input matrix B̄w was set toB̄s and the state and con-
trol weight matricesC̄1 and D̄12, respectively, were
set to yield the following performance vectorz(k) =
[z1(k)T z2(k)T z3(k)T ]T where

z1 =
[√

20ue,
√

8 we,
√

0.1 qe,
√

30dT ,θe,xi1,

√
0.1 xi2,

√
10xi3

]T

z2 = [W1(z) δb,W2(z) δc]
T ,

z3 =
[√

5 δb,
√

5 δc,
√

0.1 TC

]T

andWj(z), j = 1,2 are second order high pass filters
implemented by the strictly proper transfer function
Wj(z) = 90(z−0.999)

(z−1)(z−0.9) that weights the bow and stern
control surface signals with the objective of limiting
their bandwidth. Furthermore, the third integral state
xi3 corresponds to discrete time integral action on the
bow control surfaceδb which introduces a ”washout”
to ensure zero bow plane deflection at trimming, see
Silvestre (2000).
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Fig. 4. Implementation setup using gain scheduling
and the D-methodology

The final implementation scheme, presented in Fig. 4,
was achieved using the D-methodology described in
Kaminer et al. (1995). This methodology moves all
integrators to the plant input, and adds differentia-
tors where they are needed to preserve the transfer
functions and the stability characteristics of the closed
loop system. The D-methodology implementation has
several important features that are worthwhile em-
phasizing: i) auto-trimming property - the controller
automatically generates adequate trimming values for
the actuation signals and for the state variables that are
not required to track reference inputs; ii) the imple-
mentation of anti-windup schemes is straightforward,
due to the placement of the integrators at the plant
input. The width of the preview interval suitable for
a given vehicle is a compromise between the time-
constants associated to the vehicle’s dynamics, the
computational power available onboard, and the actual
sonar range. In the present case, for a maximum vehi-
cle speed of2.5m/s, and assuming a sonar range of
50m provided by a600KHzpencil beam sonar, it will
be reasonable to consider a preview interval of15s, to
which corresponds a preview length of150samples.

7. SIMULATION RESULTS

In this section, a reference path with very sharp tran-
sitions is used to evaluate the performance of the
nonlinear path-following controller. Fig. 5 shows that,
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Fig. 5. Trajectories described by the vehicle, with and
without preview

for constant slopes, the vehicle trajectory converges to
the reference path. It also shows that, the inclusion of
preview control action results in a smoother trajectory,
largely reducing overshoots and the convergency time.
In Fig. 6 a detail including two of the path-following
slope transitions shows clearly that the use of preview
yields better tracking performance.
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The time evolution of the error state vectorsxe without
preview and with a preview of15 s experiment is
presented in Fig. 7. It can be observed that signal
activity, due to the preview action, clearly precedes
the path transition points. The actuation signals for the
same experiments can be compared in Fig. 8, and it
is also clear that, with preview of15 s, the excursion
of the resulting actuation signals is always smaller,
and both the state and input variables converge to the
trimming faster.
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Fig. 7. Time evolution of the error vectorxe(t), with
and without preview

8. CONCLUSIONS

This paper presented the design and performance eval-
uation of a path-following controller for Autonomous
Underwater Vehicles (AUVs).

Resorting to anH2 controller design methodology
for affine parameter-dependent systems, the technique
presented exploited an error vector that naturally de-
scribes the particular dynamic characteristics of the
AUV for a suitable flight envelope.

An alternative algorithm was used for the computation
of the feedforward gain matrix that avoids solving
Linear Matrix Inequalities involving a large number
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Fig. 8. Time evolution of the actuationu(t) with and
without preview

of unknowns. For a given set of operating regions, a
nonlinear controller was synthesized and implemented
under the scope of gain-scheduling control theory,
using a piecewise affine parameter-dependent model
representation.

The effectiveness of the new control laws was as-
sessed in the MATLAB/Simulink simulation environ-
ment with a nonlinear model of the INFANTE AUV.
The quality of the results obtained clearly indicate that
the methodology derived reduces the path following
error and simultaneously smooths the actuation signal.
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