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Abstract—A new sensor based homing integrated guidance the control laws are developed in body frame. Sensor based
and control law is presented to drive an underactuated au- control has been a hot topic in the field of computer vision
tonomous underwater vehicle (AUV) towards a fixed target, in  \uhere the so-called visual servoing techniques have been

3D, using the information provided by an Ultra-Short Base Line . . . .
(USBL) positioning system. The guidance and control law is SUPject of intensive research effort during the last years, see

firstly derived for the vehicle’s kinematics expressed as the time [15] and [16] for further information.
differences of arrival (TDOAs) measured by the USBL sensor This paper addresses the design of an integrated guidance

assuming the target at the infinity, and then extended for the and control law to drive an underactuated AUV to a fixed
dynamics of an underactuated AUV resorting to backstepping target, in 3D. The solution for this problem, usually denom-

techniques. The proposed Lyapunov based control law yields . . . . - .
almost global asymptotic stability (AGAS) in the absence of inated as homing in the literature, is central to drive the

external disturbances and is further extended, keeping the same Vehicle to the vicinity of a base station or support vessel. Itis
properties, to the case where known ocean currents affect the assumed that an acoustic emitter is installed on a predefined
vehicle’s dynamics. Simulations are presented and discussed fixed position in the mission scenario, denominated as target
that illustrate the performance and behavior of the overall in the sequel, and an Ultra-Short Baseline (USBL) sensor,
closed loop system. e
composed by an array of hydrophones, is rigidly mounted

on the vehicle’s nose. During the homing phase the target
continuously emits acoustic waves that are received by the

Advances in sensing devices, materials, and computation@SBL hydrophone array and the time of arrival measured by
capabilities have provided the means to develop sophisticategch receiver, is synchronized, detected, and recorded. In the
underwater vehicles which nowadays display the capabikpproach followed, it is assumed, for the sake of simplicity,
ity to perform complex tasks in challenging and uncertaifhat the target is placed at the infinity, where the planar
operation scenarios. In the last years several sophisticatgglve approximation is valid. That is the distance between
Autonomous Underwater Vehicles (AUVs) and Remotelghe source and the array is large when compared with both
Operated Vehicles (ROVs) have been developed, endoghe wavelength and the distance between the USBL sensors.
ing the scientific community with advanced research tools Lyapunov based guidance and control law is firstly derived
supported in onboard complex mission and vehicle contr@ising the vehicle’s kinematics directly expressed in terms of
systems [1], [2], and [3]. the time differences of arrival (TDOASs) obtained from the

The topic of guidance and control of underwater vehicleg)SBL data. The resulting control law is then extended for the
has been the subject of intense research in the past decadig®amics of an underactuated AUV resorting to backstepping
The control of fully actuated robotic vehicles is nowadaysechniques. Afterwards, this strategy is further extended to
fairly well understood, as evidenced by the large body ohe case where known ocean currents affect the vehicle’s
publications, see [4], [5], [6], and the references thereirdynamics and almost global asymptotic stability (AGAS) is
However, the control of underactuated autonomous vehicleghieved in both cases. The implementation of the control
is still an active field of research. To tackle the problem ofaws also requires the vehicle’s linear velocities, relative
stabilization of an underactuated vehicle a variety of soluo the water and to the ground, as provided by a Doppler
tions have been proposed in the literature, see [7], [8], [9%elocity log, and the vehicle attitude and angular velocities
and [10]. In [11], [12], and [13] three solutions are proposegheasured by an Attitude and Heading Reference System
to solve the trajectory tracking problem. In [14] a solution(AHRS).
for the problem of following a straight line is presented and The paper is organized as follows. In Section Il the homing
in [13] a waypoint tracking controller for an underactuategroblem is introduced and the dynamics of the AUV are
AUV is introduced. It turns out that all the aforementionedoriefly described. Section Il presents the USBL model,
references share a common approach that is the vehigléereas in Section IV a solution for the control and guidance
position is computed in the inertial coordinate frame an@roblem in the absence of external perturbations is proposed.

This control law is further extended in Section V to the

This work was supported by the _Portuguese FCT POSI programme undeise where the vehicle dynamics are disturbed by constant
framework QCA Il and by the project MAYA of the AdI. . .,

The work of P. Batista was supported by a PhD Student ScholarshipfroKnOWn ocean currents. Simulation’ results are presented and
the POCTI Programme of FCT, SFRH/BD/24862/2005. discussed in Section VI, and finally Section VII summarizes
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the main results of the paper. the vehicle towards the target using the time differences of
arrival of the acoustic signal as measured by an USBL sensor

Il. PROBLEM STATEMENT installed on the AUV.
Let {I} be an inertial coordinate frame, afd3} the
body-fixed coordinate frame, whose origin is located at the 1. USBL MODEL
center of mass of the vehicle. Consider= [z, y, z]7 as ) ] o
the position of the origin of B}, described in{I}, v = During the homing approach phase the vehicle is far away

[u, v, w]T the linear velocity of the vehicle relative 0} from the acoustic emitter, that is, the distance from the
ex7préssed in body-fixed coordinates, and= [p, ¢, 7|7 the vehicle to the target is much larger than the distance between

angular velocity, also expressed in body-fixed coordinate@nY Pair of receivers. Therefore, the plane-wave assumption

YR , : i g oy 21T € R34 —
The vehicle kinematics can be written as is valid. Letr; = [z, y;, z]" €R%, i=1,2 ..., N,
) denote the positions of th&¥ acoustic receivers installed on
p= ,RA)v A=QN)w (1) the USBL sensor and consider a plane-wave traveling along

the opposite direction of the unit vectdr= [d,, d,, d.]7,
as shown in Figure 1. Notice boif} andd are expressed in
the body frame.

whereR = [R = (PR)7 is the rotation matrix from
{B} to {I}, verifying R = RS(w), and S(x) is the skew-
symmetric matrix such th&(x)y = x xy, with x denoting

the cross product.
The vehicle’s dynamic equations of motion, can be written
in a compact form as

{ Mv = —S(w)Mv — Dy (v)v — gv(R) + byuy
Jw =-S(v)Mv — S(w)Jw — Dy (w)w — gu(R) + Buus

2
where

- M = diag{m.,, m,, m,,} IS a positive definite diagonal
mass matrix;

- J = diag{J,, Jyy, J.-} is a positive definite inertia
matrix;

- uy = T is the force control input that acts along the Fig. 1. Plane Wave and the USBL system
TR axis;

- u, = [, 7,]7 are the torque control inputs that affect Let ¢; be the instant of time of arrival of the plane-
the rotation of the vehicle about thg; and zp axes, wave ati'" receiver andV,, the velocity of propagation
respectively; of the sound in water. Then, assuming that the medium

. _ di is homogeneous and neglecting the velocity of the vehicle,
Dy(v) = diagiXy + Xjujulul, Yy + Yiew[vl, Zu +  ich'is 3 reasonable assumption sifjed| <<V, the time

Zywjw|wl} is the matrix of the linear motion drag gtference of arrival between receiversand j satisfies

coefficients;

- Dy (w) = diag{k, + Kppplpl, My + Migglals N + Vi (ti = 1)) = = [da (i — 25) + dy (i — ;) +d= (i = 2;)]
Nyyr|r|} is the matrix of the rotational motion drag (3)
coefficients; .

- by =[1, 0, 0]” andB,, = {0 Lo Denote byAy = #1 ~tp, Bo =t — s, ..., Ay =

v T 001| "’ ty_1 —ty all the possible combinations of TDOASs, and let

- gv(R) = RT[0, 0, W — B]” represents the gravita- & = [A1, Az, -+, Ay]". Define also
tional and buoyancy effect$} and B respectively, on T
the vehicle’s linear motion; r, = [z1 — 2, Ty — 3, -, TN_1 — TN]

- g.(R) = S(rz)RT[0, 0, B]T accounts for the effect vy = [y1— Y2 Y1 — Yz 0 YN—1 — YN]

of the center of buoyancy displacement relatively to the
center of mass on the vehicle rotational motion.
Assume that the vehicle is neutrally buoyant, iJ#,= B and Hr € RM*3 as Hg = [r,, ry, r.]. Then, the
and thereforeg, (R) = 0. Further consider that the vehicle’s generalization of (3) for all TDOAs yields
added masses associated with the sway and heave motions

T
r, = [21*22, 21 — 23, "'vZN—1*ZN]

are similar, that isn,, ~ m,,, which constitutes a reasonable A = —iHRd 4)
assumption for most ROV like underwater vehicles. p
The homing problem considered in this paper can be stated

Due to the plane-wave assumption, that assumes the target
at the infinity, the direction of propagation expressed in the
inertial frame is constant. Therefore, the time derivative of
&4) can be written as

as follows:

Problem Statemen€onsider an underactuated AUV with
kinematics and dynamics given t) and (2), respectively.
Assume that there is a target placed in a fixed position, i
3D, that emits continuously a known acoustic wave. Design A iH S(w)d
a sensor based integrated guidance and control law to drive Y, R




To write the time derivative of the TDOA vectaA in After a few computations, the time derivati¥é can be

closed form, defindl, € R**? as written as
1 y = 71
Ho — —H%HR Va = 2z[1, 0, O)M ™ " byuy
Vb —2 ([1, 0, O)M ™" [S(w)Mv + D, (v)v])

which is assumed to be non-singular. This turns out to be@hoosing
weak hypothesis as it is always true if, at least, 4 receivers o
are mounted in noncoplanar positions. In those conditions Uy = [1, 0, )M ™" [S(w)Mv + Dy (v)v + gv(R)]

Hp has maximum rank and so dokk,. Then, [1, 0, O]M~'by
kozo
_ _pg-lygT et S 6
d=-Hg HpA 1, 0, )M~ by ©)
and 1 where k2 > 0 is a control gain, the time derivative of
A = ——HRS(w)HélHEA (5) becomesl, = —ky23 which yields global asymptotic
Vo stability of z,. Furthermore the convergence is exponentially
which corresponds to a closed form for the dynamicgdof fast. . _ _
assuming the target at the infinity. The time derivativel;, after some algebraic manipula-

tions, can be written as

IV. CONTROLLER DESIGN T = wTS([1, 0, O]T)HélHﬂA
In this section an integrated nonlinear closed loop guid- _ _ o _
ance and control law is derived for the homing problenfollowing the standard backstepping technique it is possible
stated earlier in Section Il. Assuming there are no ocedf régardw as a virtual control input that can be used to
currents the idea behind the control strategy proposed heré®ke Vi < 0. This is achieved by settin®.,” w equal to
to steer the vehicle directly towards the emitter. The synthesBw ™ wd, Where
of the guidance and control law resorts'extensivgly to the wa = —K;S([L, 0, O]T)HEH%A
Lyapunov’s direct method and backstepping techniques.

To steer the vehicle towards the target, consider first tr@ndK; = diag{0, k12, k13}, k12 > 0, k13 > 0, is a control

error variable gain matrix. To accomplish this define a third error variable
1
z1:=A+ Vprz z3=B," (w—waq)

As z; converges to zero, the vehicle aligns itself in the direc2Nd the augmented Lyapunov function

tion of the target. However, this condition is not sufficient to 1 5 1 1 7

ensure the desired behavior of the vehicle during the homing Vs=Vi+gz323 = gz Hiz + 52323
phase as it can still move away from the target. In order 9pe time derivative ofi; can be written as

avoid that, define a second scalar error variable .

Vs = — [S([l oo}T)Hg;HﬁA] K, [S([l 00/")H; ' HEA

] N —23"B, I [S(V)MV + S(w)Jw + Dy (w)w + gu (R)]
where V; is a positive constant that corresponds to the TB. T (w)— S(1 00T H-"HEA
desired velocity during the homing stage. Wherconverges T73 B (wd —S(100]")Hg Hr )
to zero, the surge velocity converges to the desired velocity +z3" B, I 'Bou,
V4. Since the vehicle is correctly aligned #; is driven
to zero, one could think that ensuring that bathand z;
converge to zero, the_vehicle would always approach thg, & — (BwTJ71Bw>*1 {BwT (37 [S(v)Mv + S(w)Jw
target. However, this is not true as the sway and heave

2 =1, 0, 0]v — Vj

Setting

velocities are left free. Despite that, it will be shown that, +Dy (w)w + gw (R)] + wa — S([1 0 O]T)HZngﬂA)
with the control law based upon these two error variables, ~K323] @)
these velocities converge to zero, which completes a set of _ - o ) )
sufficient conditions that solves the problem at hand. where K is a positive definite control gain matrix, one
To synthesize the control law start by defining the Lya®btainsVs <0, with &4 given by
punov functions . Wy =KiS([10 O}T)S(w)HéngA
Vi=gz1 Hiz The following theorem states the main result of this
where section.
e\ (e e Theorem 1:Consider a vehicle with kinematics and dy-
Hp = (HQ HR) (HQ HR) namics given by equations (1) and (2), respectively, moving
and without ocean currents. Then, with the control law (6) and

) (7), the error variable, converges globally asymptotically to
V= 572 (5)  zero and almost global asymptotic stability is warranted for



the error variableg; andzs. Furthermore, the sway, heave To complete the stability analysis all that is left to do is
and roll velocities converge to zero, solving the homind0 show that the sway, heave and roll velocities converge to

problem stated in Section II. zero. The dynamics of the sway and heave velocities can be
Proof: Before going into the details a sketch of the'Vritten as

proof is first offered. The convergence of the error variables[ 37 [ -2 eiltl s ) ; T

in z;, 22 and z3 is a straightforward application of the || — Cmy,_Zet bl || w + g

Lyapunov’s second method. The analysis of the vehicle’s v s o

equations of motion, when,, 2z, andzs converge to zero,
allows to conclude the convergence to zero of the sway, Taking the limit of the pitch and yaw velocities when=

heave, and roll velocities. (z1,22,23) converges to zero yields
The Lyapunov functiori; is, by construction, continuous, . T .
radially unbounded and positive definite. With the control lim g, r]” =0

law (6), the time derivativel’, results negative definite. ,
Therefore, the originzs = 0 is a global asymptotic stable ON the other handy converges to the desired velocity.

equilibrium point. Furthermore, since Therefore, the dynamics _of the sway and heavg velocities can
) ) be regarded as a linear time varying system with an external
Vo = —kozi = —2kaVa disturbance that converges to zero. It can be shown that,

2, converges exponentially fast to zero. usu:g theg a.ssumptm?? :" "“j[“l)tlhe fllnearb'ttlme varlylng ‘
The function V3 is, also by construction, continuous,Sys em (9) is asymptotically stable, for arbitrary values o

radially unbounded and positive definite for feasible valueg'_ ThErefore, since the extemal 'npgt' r;]ere regard%d has a
of z;. This can be easily shown as W; is expanded one Isturbance, converges to zero, so do the sway and heave

: velocities.
obtains . . Lo .
1 1 The roll velocity motion equation is similar to the equation
Vs = 3 (d-11, 0, O]T)T (d—11, 0, 0]") + §Z§Z3 of a stable pendulum affected by a disturbance that converges

to zero. From [18] one can conclude that this angular velocity

> 0Vaz(1, 0,07 nas 0oz £0Azs 0 also converges to zero, therefore completing the proali

Moreover, with the control law (7), the time derivatiié

results in V. CONTROL IN THE PRESENCE OF OCEAN CURRENTS
: Teoetoer T e In this section the results from the previous sections are
Vs = —|S([100]" )Hg, HRA} K, [S([l 00]" )Hg HRA} generalized for the case where known ocean currents are
T present. Consider that the vehicle is moving with water
—23 Kszs relative velocityv,., expressed in the body-fixed coordinate
C : : . o ; ame, and that the water is also moving with constant
which is negative semi-definite and it is also straightforwar elocity v.. relatively to the inertial frame, expressed in body-
to show that fixed coordinates. Then, the dynamics of the vehicle can be
. 2 rewritten as
V3=0%< (21 =0,23 =0)V levrI,Z;),:O
p

. . . Jw=-S(v,)Mv, — S(w)Jw — D, —gu(R) 4+ Bouw
It is now important to prove that the equilibrium point not @ (vr)Mv (w)Jw (@)w —gw(R) + (1110)

coincident with the origin wheré’; = 0, that corresponds  5nq the vehicle’s velocity relative to the inertial frame,
to the situation where the vehicle is aligned towards th@xpressed in body-fixed coordinatesyis= v, + v..

opposite direction of the target, is an unstable equilibrium \ynqer these conditions it is possible to conclude that the
point. To show that consider the function guidance and control strategy synthesized in Section IV does

{ Mv, = =S(w)Mv, — Dy, (v:)Vr + byt

1 TH, 5. 1 8 not solve the current homing problem, as the new control
0T g% HL% T 52323 ®)  objective is to align the velocity of the vehicle relatively to
where the inertial frame towards the target instead of thaxis of
2= A — irj the vehicle. Consider the vehicle reference relative velocity

v, " vg = [Vg, 0, 0]T that corresponds to a desired velocity

relative to {/} and expressed idB} of vy = vr + v..

The vehicle is moving towards the target when the velocity

Vi = |S([10 O]T)HEQIHEA} K, {S([l 0 O]T)H;HQA} vector v is aligned with the direction of the target, which
corresponds to a TDOA vector given by

The time derivative of (8) can be written as

T
+Zg K323

1

Since V;(0) = 0, V;(z;,23) can assume strictly positive Ag = —VHRdd
values arbitrarily close to the origin and is positive definite P
in a neighborhood of the origin, then the origin ®f is Where
unstable ([17], Theorem 4.4). Therefore, the only stable dg =
equilibrium point of V3 is the origin (0,0). Thus, almost
global asymptotic convergence of the error varialflesz;)  Obviously the previous statement is only valid ¥; +
to the origin is achieved. V.cos(6.) > 0, whereV, cos(6.) represents the projection

VR + Ve
Ve + vell



of the current on the vehicle’s axis. Otherwise, it would where K; = diag{0, k12, k13}, k12 > 0, ki3 > 0, is a
be impossible for the vehicle to approach the target. control gain matrix. To accomplish this, consider a third error
To solve the homing problem in the presence of currentgariable defined as

consider the error variables T
z3 = B, (w—wy)

1
z1:= A+ —Hgdy

v, and the augmented Lyapunov function
and L L p L p
Va=Vi+= =-z1H =
=1, 0, 0]v, — Vi 3 1+ 223 Z3 2Z1 LZ1 + 2Z3 z3

The convergence of the error variable to zero can be The time derivative of; can be written as

achieved following a similar procedure as the one presentgd _ Va {S([l’ 0, O]T)wC]TKls([l, 0, )7 w.
in Section V. Defining the Lyapunov function Ve + vell
. 1, —ziB," (J*1 [S(V)Mv + S(w)Jw + Dy (w)w + g (R)])
2 = 549 Ve
2 +z3 B, (—wd + HVRiJiVHS([L 0, O}T)wc)

it is straightforward to show that setting

-1 +Z§BwTJ_1Bwuw
[1, 0, O)M ! [S(w)Mv, + D,,_(v,)v,]

Uy =

1 M-1b, L _— .
k 11,0, 0] For the sake of simplicity the derivative ab is not
___Te% (11) presented here. Now, setting
[1, 0, O)M~1b, .
: w = (B,"I "B, B,” (37" [S(v)Mv 4 S(w)J
the time derivative ofi, becomesl, = —k,z3. Therefore, " ( ) [ ( [S(v)Mv (w)Jw
z, converges exponentially to zero. +Du (w)w + 8w (R)] + wa
T_o drive_zl to zero, consider the same Lyapunov function _ Va S([1, 0, O}T)wc> _ ngg] (13)
as in Section 1V, Ve + vl
Vi = 1 Tr whereK; € R?*? is a positive definite control gain matrix,
1= 5% LA Vs becomes
Using the fact thalH;, is symmetric the time derivative of Vi _ Va [S([l 0, 07 ) }TK [S([l 0, 07 ) }
V1 |S g|Ven by . 3 = ||VR +Vc|| s Yy c 1 y Yy c
Vi= ZlTHLZ'l —23 K373
Sinpe the veIocity of the fluid ex.pressed. in_the in_ertialwhich is negative semi-definite.
coordinate frame is constant, the time derivativevofis The following theorem is the main result of this section.
Ve = —S(w)v,, and the time derivative ofl; results in Theorem 2:Consider a vehicle with kinematics and dy-
vIS(w)v 1 namics given by equations (1) and (10), respectively, moving

dg=—S(w)dy + )Jve in the presence of ocean currents. Then, with the control
law (11) and (13), the error variable, converges globally

After straightforward algebraic manipulations the timeasymptotically to zero and almost global asymptotic stability

d w
Ve + ve|® Ve + vl

derivative ofz; can be written as is warranted for the error variableszn andzs. Furthermore,
. 1 - the sway, heave and roll velocities converge to zero, solving
z1 = —Hr S(w)Hy HRA + S(w)da the homing problem stated in Section II.
P Proof: The proof of convergence of the error variables
VES(W)ve 1 z1, 22 andzs is similar to the one presented in Theorem 1.

S(w)vR] (12)

Whenz,, z, andzz converge to zero so do the heave and

. ) ) . sway velocities. Using similar arguments as in Theorem 1
Using (12), and after some more algebraic manipulationge resylting roll motion converges to zero which completes

_ L
VR +ve|® Ve +ve|

the time derivative of/; becomes a set of sufficient conditions that ensures that the proposed
. V. control law solves the homing problem. [ ]
Vie —2 wTS([100] )w. gp
Ve + v

VI. SIMULATION RESULTS

To illustrate the performance of the proposed integrated
1 (H*lHTz )T dil v guidance and control laws a computer simulation is presented
Ve + vl @ TTRA 4|t in this section. A simplified model of the SIRENE vehicle
was used, assuming the vehicle is directly actuated in force
and torque [3].
Assume the vehicle has to counteract an ocean current
with velocity [0, —1, 0] m/s, expressed in the inertial
wgq = -K;iS([1, 0, 0]")w, frame. The vehicle starts at positign, 0, 50]” m and the

where
we = Hg?ngz1 —

Just like in Section 1V, it is now possible to regardas a
virtual control input that one can use to maKe < 0. This
is achieved by settin®.,” w equal toB,,” wy,



acoustic pinger is located at positiés00, 500, 500]7 m. VIl. CONCLUSIONS

The control parameters were chosen as follols; = The paper presented a new homing sensor based integrated
diag(0,107%,107%), k» = 0.025 and K5 = diag40,40).  guidance and control law to drive an underactuated AUV to
The desired velocity was set f; = 2 m/s, and a semi- 3 fixed target in 3D using the information provided by an
spherical symmetry USBI-_ sensor with _seventeen receiVe{§sp| positioning system. The guidance and control laws
was placed on the vehicle's nose. Figure 2 shows thgere firstly derived for the vehicle's kinematics expressed
trajectory described by the vehicle, whereas Figures 3 ands¢4 TpoAs measured by the USBL sensor and then extended
display the evolution of the vehicle’s velocities, and contro}g the dynamics of an AUV resorting to backstepping tech-
inputs and Euler angles, respectively. From the figures {fiques. Almost global asymptotic stability was achieved for
the guidance and control law in the presence (and absence)
of known ocean currents. Simulation results are presented
. and discussed that illustrate the performance of the closed
400 loop system.
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