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Abstract— A new sensor based homing integrated guidance
and control law is presented to drive an underactuated au-
tonomous underwater vehicle (AUV) towards a fixed target, in
3D, using the information provided by an Ultra-Short Base Line
(USBL) positioning system. The guidance and control law is
firstly derived for the vehicle’s kinematics expressed as the time
differences of arrival (TDOAs) measured by the USBL sensor
assuming the target at the infinity, and then extended for the
dynamics of an underactuated AUV resorting to backstepping
techniques. The proposed Lyapunov based control law yields
almost global asymptotic stability (AGAS) in the absence of
external disturbances and is further extended, keeping the same
properties, to the case where known ocean currents affect the
vehicle’s dynamics. Simulations are presented and discussed
that illustrate the performance and behavior of the overall
closed loop system.

I. I NTRODUCTION

Advances in sensing devices, materials, and computational
capabilities have provided the means to develop sophisticated
underwater vehicles which nowadays display the capabil-
ity to perform complex tasks in challenging and uncertain
operation scenarios. In the last years several sophisticated
Autonomous Underwater Vehicles (AUVs) and Remotely
Operated Vehicles (ROVs) have been developed, endow-
ing the scientific community with advanced research tools
supported in onboard complex mission and vehicle control
systems [1], [2], and [3].

The topic of guidance and control of underwater vehicles
has been the subject of intense research in the past decades.
The control of fully actuated robotic vehicles is nowadays
fairly well understood, as evidenced by the large body of
publications, see [4], [5], [6], and the references therein.
However, the control of underactuated autonomous vehicles
is still an active field of research. To tackle the problem of
stabilization of an underactuated vehicle a variety of solu-
tions have been proposed in the literature, see [7], [8], [9],
and [10]. In [11], [12], and [13] three solutions are proposed
to solve the trajectory tracking problem. In [14] a solution
for the problem of following a straight line is presented and
in [13] a waypoint tracking controller for an underactuated
AUV is introduced. It turns out that all the aforementioned
references share a common approach that is the vehicle
position is computed in the inertial coordinate frame and
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the control laws are developed in body frame. Sensor based
control has been a hot topic in the field of computer vision
where the so-called visual servoing techniques have been
subject of intensive research effort during the last years, see
[15] and [16] for further information.

This paper addresses the design of an integrated guidance
and control law to drive an underactuated AUV to a fixed
target, in 3D. The solution for this problem, usually denom-
inated as homing in the literature, is central to drive the
vehicle to the vicinity of a base station or support vessel. It is
assumed that an acoustic emitter is installed on a predefined
fixed position in the mission scenario, denominated as target
in the sequel, and an Ultra-Short Baseline (USBL) sensor,
composed by an array of hydrophones, is rigidly mounted
on the vehicle’s nose. During the homing phase the target
continuously emits acoustic waves that are received by the
USBL hydrophone array and the time of arrival measured by
each receiver, is synchronized, detected, and recorded. In the
approach followed, it is assumed, for the sake of simplicity,
that the target is placed at the infinity, where the planar
wave approximation is valid. That is the distance between
the source and the array is large when compared with both
the wavelength and the distance between the USBL sensors.
A Lyapunov based guidance and control law is firstly derived
using the vehicle’s kinematics directly expressed in terms of
the time differences of arrival (TDOAs) obtained from the
USBL data. The resulting control law is then extended for the
dynamics of an underactuated AUV resorting to backstepping
techniques. Afterwards, this strategy is further extended to
the case where known ocean currents affect the vehicle’s
dynamics and almost global asymptotic stability (AGAS) is
achieved in both cases. The implementation of the control
laws also requires the vehicle’s linear velocities, relative
to the water and to the ground, as provided by a Doppler
velocity log, and the vehicle attitude and angular velocities
measured by an Attitude and Heading Reference System
(AHRS).

The paper is organized as follows. In Section II the homing
problem is introduced and the dynamics of the AUV are
briefly described. Section III presents the USBL model,
whereas in Section IV a solution for the control and guidance
problem in the absence of external perturbations is proposed.
This control law is further extended in Section V to the
case where the vehicle dynamics are disturbed by constant
known ocean currents. Simulation’ results are presented and
discussed in Section VI, and finally Section VII summarizes



the main results of the paper.

II. PROBLEM STATEMENT

Let {I} be an inertial coordinate frame, and{B} the
body-fixed coordinate frame, whose origin is located at the
center of mass of the vehicle. Considerp = [x, y, z]T as
the position of the origin of{B}, described in{I}, v =
[u, v, w]T the linear velocity of the vehicle relative to{I},
expressed in body-fixed coordinates, andω = [p, q, r]T the
angular velocity, also expressed in body-fixed coordinates.
The vehicle kinematics can be written as

ṗ = I

BR (λ)v λ̇ = Q(λ)ω (1)

where R = I
BR = ( B

I R )T is the rotation matrix from
{B} to {I}, verifying Ṙ = RS(ω), andS(x) is the skew-
symmetric matrix such thatS(x)y = x×y, with × denoting
the cross product.

The vehicle’s dynamic equations of motion, can be written
in a compact form as
{

Mv̇ = −S(ω)Mv −Dv(v)v − gv(R) + bvuv

Jω̇ = −S(v)Mv − S(ω)Jω −Dω(ω)ω − gω(R) + Bωuω

(2)
where

- M = diag{mu,mv,mw} is a positive definite diagonal
mass matrix;

- J = diag{Jxx, Jyy, Jzz} is a positive definite inertia
matrix;

- uv = τu is the force control input that acts along the
xB axis;

- uω = [τq, τr]T are the torque control inputs that affect
the rotation of the vehicle about theyB and zB axes,
respectively;

- Dv(v) = diag{Xu + X|u|u|u|, Yv + Y|v|v|v|, Zw +
Z|w|w|w|} is the matrix of the linear motion drag
coefficients;

- Dω(ω) = diag{Kp + K|p|p|p|,Mq + M|q|q|q|, Nr +
N|r|r|r|} is the matrix of the rotational motion drag
coefficients;

- bv = [1, 0, 0]T andBω =
[

0 1 0
0 0 1

]T

;

- gv(R) = RT [0, 0, W − B]T represents the gravita-
tional and buoyancy effects,W andB respectively, on
the vehicle’s linear motion;

- gω(R) = S(rB)RT [0, 0, B]T accounts for the effect
of the center of buoyancy displacement relatively to the
center of mass on the vehicle rotational motion.

Assume that the vehicle is neutrally buoyant, i.e.,W = B
and thereforegv(R) = 0. Further consider that the vehicle’s
added masses associated with the sway and heave motions
are similar, that ismv ' mw, which constitutes a reasonable
assumption for most ROV like underwater vehicles.

The homing problem considered in this paper can be stated
as follows:

Problem Statement:Consider an underactuated AUV with
kinematics and dynamics given by(1) and (2), respectively.
Assume that there is a target placed in a fixed position, in
3D, that emits continuously a known acoustic wave. Design
a sensor based integrated guidance and control law to drive

the vehicle towards the target using the time differences of
arrival of the acoustic signal as measured by an USBL sensor
installed on the AUV.

III. USBL MODEL

During the homing approach phase the vehicle is far away
from the acoustic emitter, that is, the distance from the
vehicle to the target is much larger than the distance between
any pair of receivers. Therefore, the plane-wave assumption
is valid. Let ri = [xi, yi, zi]T ∈ R3, i = 1, 2, . . . , N ,
denote the positions of theN acoustic receivers installed on
the USBL sensor and consider a plane-wave traveling along
the opposite direction of the unit vectord = [dx, dy, dz]T ,
as shown in Figure 1. Notice bothri andd are expressed in
the body frame.

Fig. 1. Plane Wave and the USBL system

Let ti be the instant of time of arrival of the plane-
wave at ith receiver andVp the velocity of propagation
of the sound in water. Then, assuming that the medium
is homogeneous and neglecting the velocity of the vehicle,
which is a reasonable assumption since‖v‖ << Vp, the time
difference of arrival between receiversi and j satisfies

Vp (ti − tj) = − [dx (xi − xj) + dy (yi − yj) + dz (zi − zj)]
(3)

Denote by∆1 = t1 − t2, ∆2 = t1 − t3, . . . , ∆M =
tN−1− tN all the possible combinations of TDOAs, and let
∆ = [∆1, ∆2, · · · , ∆M ]T . Define also

rx = [x1 − x2, x1 − x3, · · · , xN−1 − xN ]T

ry = [y1 − y2, y1 − y3, · · · , yN−1 − yN ]T

rz = [z1 − z2, z1 − z3, · · · , zN−1 − zN ]T

and HR ∈ RM×3 as HR = [rx, ry, rz]. Then, the
generalization of (3) for all TDOAs yields

∆ = − 1
Vp

HRd (4)

Due to the plane-wave assumption, that assumes the target
at the infinity, the direction of propagation expressed in the
inertial frame is constant. Therefore, the time derivative of
(4) can be written as

∆̇ =
1
Vp

HRS(ω)d



To write the time derivative of the TDOA vector∆ in
closed form, defineHQ ∈ R3×3 as

HQ =
1
Vp

HT
RHR

which is assumed to be non-singular. This turns out to be a
weak hypothesis as it is always true if, at least, 4 receivers
are mounted in noncoplanar positions. In those conditions
HR has maximum rank and so doesHQ. Then,

d = −H−1
Q HT

R∆

and

∆̇ = − 1
Vp

HRS(ω)H−1
Q HT

R∆

which corresponds to a closed form for the dynamics of∆,
assuming the target at the infinity.

IV. CONTROLLER DESIGN

In this section an integrated nonlinear closed loop guid-
ance and control law is derived for the homing problem
stated earlier in Section II. Assuming there are no ocean
currents the idea behind the control strategy proposed here is
to steer the vehicle directly towards the emitter. The synthesis
of the guidance and control law resorts extensively to the
Lyapunov’s direct method and backstepping techniques.

To steer the vehicle towards the target, consider first the
error variable

z1 := ∆ +
1
Vp

rx

As z1 converges to zero, the vehicle aligns itself in the direc-
tion of the target. However, this condition is not sufficient to
ensure the desired behavior of the vehicle during the homing
phase as it can still move away from the target. In order to
avoid that, define a second scalar error variable

z2 := [1, 0, 0]v − Vd

where Vd is a positive constant that corresponds to the
desired velocity during the homing stage. Whenz2 converges
to zero, the surge velocityu converges to the desired velocity
Vd. Since the vehicle is correctly aligned ifz1 is driven
to zero, one could think that ensuring that bothz1 and z2

converge to zero, the vehicle would always approach the
target. However, this is not true as the sway and heave
velocities are left free. Despite that, it will be shown that,
with the control law based upon these two error variables,
these velocities converge to zero, which completes a set of
sufficient conditions that solves the problem at hand.

To synthesize the control law start by defining the Lya-
punov functions

V1 =
1
2
zT
1 HLz1

where

HL =
(
H−1

Q HT
R

)T (
H−1

Q HT
R

)

and

V2 =
1
2
z2
2 (5)

After a few computations, the time derivativėV2 can be
written as

V̇2 = z2[1, 0, 0]M−1bvuv

−z2

(
[1, 0, 0]M−1 [S(ω)Mv + Dv(v)v]

)

Choosing

uv =
[1, 0, 0]M−1 [S(ω)Mv + Dv(v)v + gv(R)]

[1, 0, 0]M−1bv

− k2z2

[1, 0, 0]M−1bv
(6)

where k2 > 0 is a control gain, the time derivative of
(5) becomesV̇2 = −k2z

2
2 which yields global asymptotic

stability of z2. Furthermore the convergence is exponentially
fast.

The time derivativeV̇1, after some algebraic manipula-
tions, can be written as

V̇1 = ωT S([1, 0, 0]T )H−1
Q HT

R∆

Following the standard backstepping technique it is possible
to regardω as a virtual control input that can be used to
make V̇1 ≤ 0. This is achieved by settingBω

T ω equal to
Bω

T ωd, where

ωd := −K1S([1, 0, 0]T )H−1
Q HT

R∆

andK1 = diag{0, k12, k13} , k12 > 0, k13 > 0, is a control
gain matrix. To accomplish this define a third error variable

z3 = Bω
T (ω − ωd)

and the augmented Lyapunov function

V3 = V1 +
1
2
zT
3 z3 =

1
2
zT
1 HLz1 +

1
2
zT
3 z3

The time derivative ofV3 can be written as

V̇3 = −
[
S([1 0 0]T )H−1

Q HT
R∆

]T

K1

[
S([1 0 0]T )H−1

Q HT
R∆

]

−z3
T Bω

T J−1 [S(v)Mv + S(ω)Jω + Dω(ω)ω + gω(R)]

−zT
3 Bω

T
(
ω̇d − S([1 0 0]T )H−1

Q HT
R∆

)

+z3
T Bω

T J−1Bωuω

Setting

uω =
(
Bω

T J−1Bω

)−1 [
Bω

T (
J−1 [S(v)Mv + S(ω)Jω

+Dω(ω)ω + gω(R)] + ω̇d − S([1 0 0]T )H−1
Q HT

R∆
)

−K3z3] (7)

where K3 is a positive definite control gain matrix, one
obtainsV̇3 ≤ 0, with ω̇d given by

ω̇d = K1S([1 0 0]T )S(ω)H−1
Q HT

R∆

The following theorem states the main result of this
section.

Theorem 1:Consider a vehicle with kinematics and dy-
namics given by equations (1) and (2), respectively, moving
without ocean currents. Then, with the control law (6) and
(7), the error variablez2 converges globally asymptotically to
zero and almost global asymptotic stability is warranted for



the error variablesz1 andz3. Furthermore, the sway, heave
and roll velocities converge to zero, solving the homing
problem stated in Section II.

Proof: Before going into the details a sketch of the
proof is first offered. The convergence of the error variables
in z1, z2 and z3 is a straightforward application of the
Lyapunov’s second method. The analysis of the vehicle’s
equations of motion, whenz1, z2 and z3 converge to zero,
allows to conclude the convergence to zero of the sway,
heave, and roll velocities.

The Lyapunov functionV2 is, by construction, continuous,
radially unbounded and positive definite. With the control
law (6), the time derivativeV̇2 results negative definite.
Therefore, the originz2 = 0 is a global asymptotic stable
equilibrium point. Furthermore, since

V̇2 = −k2z
2
2 = −2k2V2

z2 converges exponentially fast to zero.
The function V3 is, also by construction, continuous,

radially unbounded and positive definite for feasible values
of z1. This can be easily shown as ifV3 is expanded one
obtains

V3 =
1
2

(
d− [1, 0, 0]T

)T (
d− [1, 0, 0]T

)
+

1
2
zT
3 z3

> 0 ∀d 6=[1, 0, 0]T∧z3 6=0⇔z1 6=0∧z3 6=0

Moreover, with the control law (7), the time derivativėV3
results in

V̇3 = −
[
S([1 0 0]T )H−1

Q HT
R∆

]T

K1

[
S([1 0 0]T )H−1

Q HT
R∆

]

−zT
3 K3z3

which is negative semi-definite and it is also straightforward
to show that

V̇3 = 0 ⇔ (z1 = 0, z3 = 0) ∨
(
z1 =

2
Vp

rx, z3 = 0
)

It is now important to prove that the equilibrium point not
coincident with the origin wherėV3 = 0, that corresponds
to the situation where the vehicle is aligned towards the
opposite direction of the target, is an unstable equilibrium
point. To show that consider the function

Vi =
1
2
zT

i HLzi − 1
2
zT
3 z3 (8)

where
zi = ∆− 1

Vp
rx

The time derivative of (8) can be written as

V̇i =
[
S([1 0 0]T )H−1

Q HT
R∆

]
K1

[
S([1 0 0]T )H−1

Q HT
R∆

]

+zT
3 K3z3

SinceVi(0) = 0, Vi(zi, z3) can assume strictly positive
values arbitrarily close to the origin anḋVi is positive definite
in a neighborhood of the origin, then the origin ofVi is
unstable ([17], Theorem 4.4). Therefore, the only stable
equilibrium point of V3 is the origin (0,0). Thus, almost
global asymptotic convergence of the error variables(z1, z3)
to the origin is achieved.

To complete the stability analysis all that is left to do is
to show that the sway, heave and roll velocities converge to
zero. The dynamics of the sway and heave velocities can be
written as
[

v̇
ẇ

]
=

[
−Yv+Y|v|v|v|

mv

mw
mv

p

−mv
mw

p −Zw+Z|w|w|w|
mw

] [
v
w

]
+

[−mu
mv

ur
mu
mw

uq

]

(9)

Taking the limit of the pitch and yaw velocities whenz =
(z1, z2, z3) converges to zero yields

lim
z→0

[q, r]T = 0T

On the other hand,u converges to the desired velocityVd.
Therefore, the dynamics of the sway and heave velocities can
be regarded as a linear time varying system with an external
disturbance that converges to zero. It can be shown that,
using the assumptionmv = mw, the linear time varying
system (9) is asymptotically stable, for arbitrary values of
p. Therefore, since the external input, here regarded as a
disturbance, converges to zero, so do the sway and heave
velocities.

The roll velocity motion equation is similar to the equation
of a stable pendulum affected by a disturbance that converges
to zero. From [18] one can conclude that this angular velocity
also converges to zero, therefore completing the proof.

V. CONTROL IN THE PRESENCE OF OCEAN CURRENTS

In this section the results from the previous sections are
generalized for the case where known ocean currents are
present. Consider that the vehicle is moving with water
relative velocityvr, expressed in the body-fixed coordinate
frame, and that the water is also moving with constant
velocityvc relatively to the inertial frame, expressed in body-
fixed coordinates. Then, the dynamics of the vehicle can be
rewritten as
{

Mv̇r = −S(ω)Mvr −Dvr (vr)vr + bvuv

Jω̇ = −S(vr)Mvr − S(ω)Jω −Dω(ω)ω − gω(R) + Bωuω

(10)
and the vehicle’s velocity relative to the inertial frame,

expressed in body-fixed coordinates, isv = vr + vc.
Under these conditions it is possible to conclude that the

guidance and control strategy synthesized in Section IV does
not solve the current homing problem, as the new control
objective is to align the velocity of the vehicle relatively to
the inertial frame towards the target instead of thex axis of
the vehicle. Consider the vehicle reference relative velocity
vR := [Vd, 0, 0]T that corresponds to a desired velocity
relative to {I} and expressed in{B} of vd = vR + vc.
The vehicle is moving towards the target when the velocity
vector v is aligned with the direction of the target, which
corresponds to a TDOA vector given by

∆d = − 1
Vp

HRdd

where
dd =

vR + vc

‖vR + vc‖
Obviously the previous statement is only valid ifVd +
Vc cos(θc) > 0, whereVc cos(θc) represents the projection



of the current on the vehicle’sx axis. Otherwise, it would
be impossible for the vehicle to approach the target.

To solve the homing problem in the presence of currents
consider the error variables

z1 := ∆ +
1
Vp

HRdd

and
z2 := [1, 0, 0]vr − Vd

The convergence of the error variablez2 to zero can be
achieved following a similar procedure as the one presented
in Section IV. Defining the Lyapunov function

V2 =
1
2
z2
2

it is straightforward to show that setting

uv =
[1, 0, 0]M−1 [S(ω)Mvr + Dvr

(vr)vr]
[1, 0, 0]M−1bv

− k2z2

[1, 0, 0]M−1bv
(11)

the time derivative ofV2 becomesV̇2 = −k2z
2
2 . Therefore,

z2 converges exponentially to zero.
To drivez1 to zero, consider the same Lyapunov function

as in Section IV,

V1 =
1
2
zT
1 HLz1

Using the fact thatHL is symmetric the time derivative of
V1 is given by

V̇1 = zT
1 HLż1

Since the velocity of the fluid expressed in the inertial
coordinate frame is constant, the time derivative ofvc is
v̇c = −S(ω)vc, and the time derivative ofdd results in

ḋd = −S(ω)dd +
vT

RS(ω)vc

‖vR + vc‖2
dd +

1
‖vR + vc‖S(ω)vR

After straightforward algebraic manipulations the time
derivative ofz1 can be written as

ż1 = − 1
Vp

HR

[
S(ω)H−1

Q HT
R∆ + S(ω)dd

− vT
RS(ω)vc

‖vR + vc‖2
dd − 1

‖vR + vc‖S(ω)vR

]
(12)

Using (12), and after some more algebraic manipulations,
the time derivative ofV1 becomes

V̇1 =
Vd

‖vR + vc‖ωT S([1 0 0]T )ωc

where

ωc = H−1
Q HT

Rz1 − 1
‖vR + vc‖

[(
H−1

Q HT
Rz1

)T

dd

]
vc

Just like in Section IV, it is now possible to regardω as a
virtual control input that one can use to makeV̇1 ≤ 0. This
is achieved by settingBω

T ω equal toBω
T ωd,

ωd := −K1S([1, 0, 0]T )ωc

where K1 = diag{0, k12, k13} , k12 > 0, k13 > 0, is a
control gain matrix. To accomplish this, consider a third error
variable defined as

z3 = Bω
T (ω − ωd)

and the augmented Lyapunov function

V3 = V1 +
1
2
zT
3 z3 =

1
2
zT
1 HLz1 +

1
2
zT
3 z3

The time derivative ofV3 can be written as

V̇3 = − Vd

‖vR + vc‖
[
S([1, 0, 0]T )ωc

]T

K1S([1, 0, 0])T ωc

−zT
3 Bω

T (
J−1 [S(v)Mv + S(ω)Jω + Dω(ω)ω + gω(R)]

)

+zT
3 Bω

T

(
−ω̇d +

Vd

‖vR + vc‖S([1, 0, 0]T )ωc

)

+zT
3 Bω

T J−1Bωuω

For the sake of simplicity the derivative ofω is not
presented here. Now, setting

uω =
(
Bω

T J−1Bω

)−1 [
Bω

T (
J−1 [S(v)Mv + S(ω)Jω

+Dω(ω)ω + gω(R)] + ω̇d

− Vd

‖vR + vc‖S([1, 0, 0]T )ωc

)
−K3z3

]
(13)

whereK3 ∈ R2×2 is a positive definite control gain matrix,
V̇3 becomes

V̇3 = − Vd

‖vR + vc‖
[
S([1, 0, 0]T )ωc

]T

K1

[
S([1, 0, 0]T )ωc

]

−zT
3 K3z3

which is negative semi-definite.
The following theorem is the main result of this section.
Theorem 2:Consider a vehicle with kinematics and dy-

namics given by equations (1) and (10), respectively, moving
in the presence of ocean currents. Then, with the control
law (11) and (13), the error variablez2 converges globally
asymptotically to zero and almost global asymptotic stability
is warranted for the error variables inz1 andz3. Furthermore,
the sway, heave and roll velocities converge to zero, solving
the homing problem stated in Section II.

Proof: The proof of convergence of the error variables
z1, z2 andz3 is similar to the one presented in Theorem 1.
When z1, z2 and z3 converge to zero so do the heave and
sway velocities. Using similar arguments as in Theorem 1
the resulting roll motion converges to zero which completes
a set of sufficient conditions that ensures that the proposed
control law solves the homing problem.

VI. SIMULATION RESULTS

To illustrate the performance of the proposed integrated
guidance and control laws a computer simulation is presented
in this section. A simplified model of the SIRENE vehicle
was used, assuming the vehicle is directly actuated in force
and torque [3].

Assume the vehicle has to counteract an ocean current
with velocity [0, −1, 0]T m/s, expressed in the inertial
frame. The vehicle starts at position[0, 0, 50]T m and the



acoustic pinger is located at position[500, 500, 500]T m.
The control parameters were chosen as follows:K1 =
diag(0, 10−4, 10−4), k2 = 0.025 and K3 = diag(40, 40).
The desired velocity was set toVd = 2 m/s, and a semi-
spherical symmetry USBL sensor with seventeen receivers
was placed on the vehicle’s nose. Figure 2 shows the
trajectory described by the vehicle, whereas Figures 3 and 4
display the evolution of the vehicle’s velocities, and control
inputs and Euler angles, respectively. From the figures it
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Fig. 2. Trajectory described by the vehicle in the presence of currents
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Fig. 3. Time evolution of body-fixed velocities of the vehicle in the
presence of currents
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Fig. 4. Time evolution of Euler angles and control inputs in the presence
of currents

can be concluded that the vehicle is driven towards the target
describing a smooth trajectory. The control inputs are smooth
and the resulting angular and lateral velocities converge to
zero, as expected.

VII. C ONCLUSIONS

The paper presented a new homing sensor based integrated
guidance and control law to drive an underactuated AUV to
a fixed target in 3D using the information provided by an
USBL positioning system. The guidance and control laws
were firstly derived for the vehicle’s kinematics expressed
as TDOAs measured by the USBL sensor and then extended
to the dynamics of an AUV resorting to backstepping tech-
niques. Almost global asymptotic stability was achieved for
the guidance and control law in the presence (and absence)
of known ocean currents. Simulation results are presented
and discussed that illustrate the performance of the closed
loop system.
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