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Summary. The paper addresses the problem of making a set of vehicles follow a
a set of given spatial paths at required speeds, while ensuring that they reach and
maintain a desired formation pattern. Problems of this kind arise in a number of
practical applications involving ground and underwater robots. The paper summa-
rizes and brings together in a unified framework previous results obtained by the
authors for wheeled robots and fully actuated underwater vehicles. The decentral-
ized solution proposed does not require the concept of a leader and applies to a
very general class of paths. Furthermore, it addresses explicitly the dynamics of the
vehicles and the constraints imposed by the inter-vehicle bi-directional communi-
cations network. The theoretical machinery used brings together Lyapunov-based
techniques and graph theory. With the set-up proposed, path following (in space)
and inter-vehicle coordination (in time) can be viewed as essentially decoupled. Path
following for each vehicle is formulated in terms of driving a conveniently defined
generalized error vector to zero; vehicle coordination is achieved by adjusting the
speed of each vehicle along its particular path, based on information on the position
and speed of a number of neighboring vehicles, as determined by the communications
topology adopted. The paper presents the problem formulation and summarizes its
solution. Simulations with dynamics models of a wheeled robot and an underwater
vehicle illustrate the efficacy of the solution proposed.

Key words: Coordinated Motion Control, Graph Theory, Path following,
Wheeled Robots

1 Introduction
There is growing interest in the problem of coordinated motion control of

multiple autonomous vehicles. Applications include aircraft and spacecraft
formation flying control (Beard et al., 2001), (Giuletti et al., 2000), (Pratcher
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et al., 2001), (Queiroz et al., 2000), coordinated control of land robots (Desai et
al., 1998), (Ogren et al., 2002) and control of multiple surface and underwater
vehicles (Encarnagao and Pascoal, 2001), (Lapierre et al., 2003a), (Skjetne et
al., 2002), (Skjetne et al., 2003), (Stilwell et al., 2000). The work reported
in the literature is by now quite vast and addresses a large class of topics
that include, among others, leader/follower formation flying, control of the
”center of mass” and radius of dispersion of swarms of vehicles, and attaining
a moving formation. In the latter, the goal is for the vehicles to achieve and
maintain desired relative positions and orientations with respect to each other,
while evolving at a desired formation speed. Central to the problems stated
is the fact that each vehicle can only exchange information with a subset of
the group of vehicles.

At first inspection, the problem of coordinated motion control seems to
fall within the domain of decentralized control. However, as clearly pointed
out in (Fax and Murray, 2002), (Fax and Murray, 2003), it possesses several
unique aspects that are at the root of new challenges to system designers.
Among these, the following are worth stressing:

i) except for some cases in the area of aircraft control, the motion of one
vehicle does not directly affect the motion of the other vehicles, that is, the
vehicles are dynamically decoupled; the only coupling arises naturally out of
the specification of the tasks that they are required to accomplish together.

ii) there are strong practical limitations to the flow of information among
vehicles, which is severely restricted by the nature of the supporting communi-
cations network. In marine robotics, for example, underwater communications
rely on the propagation of acoustic waves. This sets tight limits on the commu-
nication bandwidths that are achievable. Thus, as a rule, possibly no vehicle
will be able to communicate with the entire formation (Fax and Murray, 2003).
Furthermore, a reliable vehicle coordination scheme should exhibit some form
of robustness against certain kinds of vehicle failures or loss of inter-vehicle
communications.

A rigorous methodology to deal with some of the above issues has emerged
from the work reported in (Fax and Murray, 2002), (Fax and Murray, 2003),
which addresses explicitly the topics of information flow and cooperation con-
trol of vehicle formations simultaneously. The methodology proposed builds
on an elegant framework that involves the concept of Graph Laplacian (a
matrix representation of the graph associated with a given communication
network). In particular, the results in (Fax and Murray, 2003) show clearly
how the Graph Laplacian associated with a given inter-vehicle communication
network plays a key role in assessing stability of the behaviour of the vehicles
in a formation. It is however important to point out in that work that: i) the
dynamics of the vehicles are assumed to be linear, time-invariant, and ii) the
information exchanged among vehicles is restricted to linear combinations of
the vehicles’ state variables.

Inspired by the progress in the field, this paper tackles a problem in coor-
dinated vehicle control that departs slightly from mainstream work reported
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in the literature. Specifically, we consider the problem of coordinated path
following where multiple vehicles are required to follow pre-specified spatial
paths while keeping a desired inter-vehicle formation pattern in time. This mis-
sion scenario occurs naturally in underwater robotics (Pascoal et al., 2000).
Namely, in the operation of multiple autonomous underwater vehicles for fast
acoustic coverage of the seabed. In this important case, two or more vehicles
are required to fly above the seabed at the same or different depths, along
geometrically similar spatial paths, and map the seabed using copies of the
same suite of acoustic sensors. By requesting that the vehicles traverse identi-
cal paths so as to make the acoustic beam coverage overlap along the seabed,
large areas can be covered in a short time. This imposes constraints on the
inter-vehicle formation pattern. Similar scenarios can of course be envisioned
for land and air vehicles.

To the best of our knowledge, previous work on coordinated path fol-
lowing control has essentially been restricted to the area of marine robotics.
See for example (Lapierre et al., 2003a), (Lapierre et al., 2003b), (Skjetne et
al., 2002) and the references therein. However, the solutions developed so far
for underactuated vehicles are restricted to two vehicles in a leader-follower
type of formation and lead to complex control laws. Even in the case of fully
actuated vehicles, the solutions presented do not address communication con-
straints explicitly. There is therefore a need to re-examine this problem to try
and arrive at efficient and practical solutions.

A possible strategy is to consider similar problems for wheeled robots in the
hope that the solutions derived for this simpler case may shed some light into
the problem of coordinated path following for the more complex case of air and
marine robots. Preliminary steps in this direction were taken in (Ghabcheloo
et al., 2004a), where the problem of coordinated path following of multiple
wheeled robots was solved by resorting to linearization and gain scheduling
techniques. The solutions obtained are conceptually simple and embody in
themselves a straightforward mechanism that allows for the decoupling of path
following (in space) and vehicle synchronization (in time). The price paid for
the simplicity of the solutions is the lack of global results, that is, attractivity
to so-called trimming paths and to a desired formation pattern can only be
guaranteed locally, when the initial vehicle formation is sufficiently close to
the desired one. The present paper overcomes this limitation and yields global
results that allow for the consideration of arbitrary paths, formation patterns
(compatible with the paths), and initial conditions. The solution adopted
for coordinated path following is well rooted in Lyapunov-based theory and
addresses explicitly the vehicle dynamics as well as the constraints imposed
by the topology of the inter-vehicle communications network. The latter are
tackled in the framework of graph theory (Godsil and Royle, 2001), which
seems to be the tool par excellence to study the impact of communication
topologies on the performance that can be achieved with coordination.

Once again, using this set-up, path following (in space) and inter-vehicle
coordination (in time) are essentially decoupled. Path following for each ve-
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hicle amounts to reducing a conveniently defined error variable to zero. In its
simplest form, vehicle coordination is achieved by adjusting the speed of each
of the vehicles along its path, according to information on the relative position
of the other vehicles, as determined by the communications topology adopted.
No other kinematic or dynamic information is exchanged among the robots.
The coordination system is simple and holds great potential to be extended
and applied to the case of air and marine robots.

The paper is organized as follows. Section 2 introduces the basic nota-
tion required, describes the simplified model of a wheeled robot, and offers a
novel solution to the problem of path following for a single vehicle. The main
contribution of the paper is summarized in Section 3, where a strategy for
multiple vehicle coordination is proposed that builds on Lyapunov and graph
theory. The proofs required are given in Section ??. Section 7?7 examines the
convergence properties of the solutions of the combined path following and
coordination algorithms. Section ?? revisits the coordination problem and pro-
vides added insight into the case where the formation pattern is time-varying.
Section 4 describes the results of simulations. Finally, Section 5 contains the
main conclusions and describes problems that warrant further research.

2 Path Following

This section describes a novel solution to the problem of path following for a
single wheeled robot, as well as for a single fully actuated marine vehicle. The
solution was first introduced in (Ghabcheloo et al., 2005b) for wheeled robots
and in (Ghabcheloo et al., 2005¢) for marine vehicles. Because of similarities,
we first derive the equations of motion (kinematics and dynamics) for a single
fully actuated marine vehicle and then we simplify them to arrive in the
equations of motion of a wheeled robot. The control laws as well are derived
in the same way.

Consider a fully actuated autonomous underwater vehicle depicted in Fig-
ure 1(a), together a spatial path I" in the  — y plane that must be followed.
The vehicle propeller arrange is such that two forces in surge and sway and a
torque in yaw can be generated independently. The problem of path following
can now be briefly stated as follows:

Given a spatial path I', develop feedback control laws for the surge and sway
forces and (yaw) torque acting on the vehicle so that its center of mass con-
verges asymptotically to the path while its total speed and heading angle track
desired temporal profiles. The latter requirement is equivalent to controlling
the side-slip angle.

Consider Figure 1(a) where P is an arbitrary point on the path to be
followed and @ is the center of the mass of the vehicle. Associated with P,
consider the Serret-Frenet {T}. The signed curvilinear abscissa of P along the
path is denoted by s. Clearly, () can be expressed either as @ = (z,y) in
the inertial reference frame {U}, or as (x.,y.) in {T}. Let OP be the position
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(a) Marine vehicle (b) Wheeled robot

Fig. 1. Frames and error variables

of P in {U} and define two frames with their origin at the center of mass
of the vehicle: i) the body-fized frame denoted {B} with its z-axis along the
main axis of the body, and ii) the flow frame denoted {F} with its z-axis
along the total speed V; of the vehicle. Further let YR, and ¥R denote the
rotation matrices from {T} to {U} and from {F} to {U} parameterized by
v and g, respectively. The yaw angle of the vehicle will be denoted ¢p.
Define the variables u and v as the surge and sway linear speeds, respectively
and r = )5 as the angular speed of the vehicle. From the figure, it follows

that O.Q) = 0P+ YR (Zje ) Taking derivatives and expressing the result in
frame {U} yields

(1) -t (2) 40 () v4n ().
(5)-ta(3)

From the above expression, simple calculations lead to the kinematics of
the vehicle in the (2, ye) coordinates as

where

Te = (yecc(s) - 1)8 + Vi cos 1.
Kinematics y:e = —Tece(5)$ + Vt sin . (2)
Ve =1 —c.(8)§+0
where . = ¢ — ¢ is the error angle, 8 = )p — ¢p is the side-slip angle,
and c.(s) is the path’s curvature at P determined by s, that is ¢ = c.(s)s.
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Notice how the kinematics are driven by V;, r, and the term § that plays the
role of an extra control parameter.

As shown in (Ghabcheloo et al., 2005c) the dynamics of the vehicle can
be rewritten in flow frame in terms of (V, 3,r) as

‘./1_5 = f\/}(‘/hﬁvr) +Tvt
B=fs(Vi,8,7) + 18 (3)
7= fr(‘/;f757r) + erTr

where 7, is the torque control signal, and (7v,,73) are one-to-one functions of
surge and sway forces. With this set-up, the problem of path following can be
mathematically formulated as follows:

Problem 1 [Path following, Marine vehicle] Given a spatial path I’
and desired time profiles Vy(t) and Bq(t) for the wvehicle total speed Vi and
side-slip angle 3, respectively, derive a feedback control law for Tv,, 18, T and
§ to drive e, Ye, Ve, B — Bg and Vi — Vy asymptotically to 0.

Driving the speed V; and § to their desired values is trivial to do with
the simple control laws 1, = —fy, + Vv, — ko(Vi = Vy) and 753 = —f5 + B4 —
ko(8 — Ba), which make the errors V; — V4 and 3 — 83 decay exponentially
to zero. Controlling V; and ( is therefore decoupled from the control of the
other variables, and all that remains is to find suitable control laws for 7. and
for $ to drive z., ye, ¥, to zero, no matter what the evolutions of V;(¢) and
are. The only technical assumptions required are that the path be sufficiently
smooth and that lim;_ ., V;(t) # 0. The main result of this Section is stated
next.

Proposition 1 [Path following, Marine vehicle]. Let I" be a path to be
followed by a fully actuated underwater vehicle. Further let the kinematic and
dynamic equations of motion of the vehicle be given by (2) and (3), respec-
tively. Assume Vi(t) is uniformly continuous on [0,00) and lims—,o Vi (t) # 0.
Define o0 = o(y.) = —2asign(V;) arctan ye and ¢ = —B+ coé+ 6 — k1 (e — o)

T

for some k1 > 0 and 0 < ¥, < 7w/2. Let the control laws for 7. and § be given
by

T =me(—fr + ¢ — ka(r — ¢) — (Y — 7)) (4)
$ = Vi cos e + ksxe (5)

for some ko, ks > 0. Then, x,y., and ¥, are driven asymptotically to zero
from any initial condition.

See (Ghabcheloo et al., 2004b) for a proof. Under the above conditions §
tends to V4, that is, the speed of the virtual target approaches V; asymptoti-
cally. Furthermore, r approaches c.§ = ¢.V; as t increases.

Now, consider a wheeled robot of the unicycle type depicted in Figure 1(b),
together a spatial path I" in horizontal plane to be followed. The vehicle has
two identical parallel, nondeformable rear wheels and a steering front wheel.
The contact between the wheels and the ground is pure rolling and non-
slipping. Each rear wheel is powered by a motor which generates a control
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Fig. 2. Coordination: triangle forma- Fig. 3. Coordination: in-line forma-
tion tion

it

torque. This will in turn generate a control force and a control torque applied
to the vehicle. Therefore a wheeled robot is an under actuated vehicle and
only control force Ty, and (yaw) torque 7, are available, however the side-
slip angle is zero and obviously stable. Therefore making V; = u, v = 0, and
8 =0, we get the equations of the kinematics and the dynamics of a wheeled
robot. Notice that the functions fy, and f, are different for wheeled robot
and for a simplified model of a wheeled robot can be considered zero, see for
example (Ghabcheloo et al., 2005b). Furthermore, driving the speed u to the
desired value is trivial (as explained before for marine vehicle) and is therefore
decoupled from the control of the other variables. Therefore the control laws
7. and § for wheeled robot are derived in the same way using those given
in (4) and (5).

3 Coordination

Equipped with the results obtained in the previous section, we now consider
the problem of coordinated path following control that is the main contribu-
tion of the present paper. In the most general set-up, one is given a set of
n > 2 wheeled robots (or fully actuated marine vehicle) and a set of n spatial
paths Iy; k = 1,2,...,n and require that robot k follow path I;. We further
require that the vehicles move along the paths in such a way as to maintain a
desired formation pattern compatible with those paths. The speeds at which
the vehicles are required to travel can be imposed in a number of ways; for
example, by nominating one of the vehicles as a formation leader, assigning it
a desired speed, and having the other vehicles adjust their speeds accordingly.
Figures 2 and 3 show the simple cases where 3 vehicles are required to fol-
low the straight paths or circumferences I5;;7 = 1,2, 3 while keeping a desired
“triangle” or ”in-line” formation pattern.

In the simplest case, the paths I; may be obtained as simple parallel
translations of a ”template” path I'"* — Figure 2. A set of paths can also be
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Fig. 4. Along-path distances: straight Fig. 5. Along-path distances: circum-
lines ferences

obtained by considering the case of scaled circumferences with a common
center and different radii R; — Figure 3.

Assuming that separate path following controllers have been implemented
for each vehicle, it now remains to coordinate (that is, synchronize) them in
time so as to achieve a desired formation pattern. As will become clear, this
will be achieved by adjusting the speeds of the vehicles as functions of the
”along-path” distances among them. To better grasp the key ideas involved
in the computation of these distances, consider for example the case of in-
line formations maneuvering along parallel translations of straight lines. For
each robot i, let s; denote the signed curvilinear abscissa of the origin of the
corresponding Serret-Frenet frame {T;} being tracked, as introduced in the
previous section. Since each vehicle’s flow frame {F;} tends asymptotically to
{T,}, it follows that the vehicles are (asymptotically) synchronized if

5i5(t) i=8i(t) —s;(t) = 0,t = o050 =1,..,ni < j < n. (6)

In the case of wheeled robots, notice that body-frame and flow frame are
coincide. This shows that in the case of translated straight lines s; ; is a good
measure of the along-path distances among the robots. Similarly, in the case
of scaled circumferences an appropriate measure of the distances among the
robots is

Si,j ::§if§j;i:1,..,n;i<j§n (7)

where 5; = s;/R;. See Figures 4 and 5.

Notice how the definition of 5; ; relies on a normalization of the lengths of
the circumferences involved and is equivalent to computing the angle between
vectors I; and [; directed from the center of the circumferences to origin of
the Serret-Frenet frames {T;} and {T;}, respectively. In both cases, we say
that the vehicles are coordinated if the corresponding along path distance is
zero, that is, s; —s; = 0 or 5; — 5; = 0. The extension of these concepts to
a more general setting requires that each path I'; be parameterized in terms
of a parameter & that is not necessarily the arc length along the path. An
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Fig. 6. A general coordination scheme

adequate choice of the parameterization will allow for the conclusion that the
vehicles are synchronized iff & = ¢; for all ¢, j. For example, in the case of two
robots following two circumferences with radii R; and Ry while keeping an in-
line formation pattern, §; = s;/R;;¢ = 1,2. This seemingly trivial idea allows
for the study of more elaborate formation patterns. As an example, consider
the problem depicted in Figure 6 where vehicles 1 and 2 must follow paths
I} and I'; while maintaining vehicle 2 ”to-the-left-and-behind” vehicle 1, that
is, along straight lines that make an angle of 135 degrees with the positive
direction of path 7. Let §& = s; and & = $9v/2. Tt is clear the vehicles
are synchronized if & — & = 0. Since the objective of the coordination is to
synchronize §;’s, we sometimes refer to them as coordination states.

The above considerations motivate the mathematical development that
follows. We start by computing the coordination error dynamics, after which
a decentralized feedback control law is derived to drive the coordination error
to zero asymptotically. In the analysis, graph theory - as the mathematical
machinery par excellence to deal with inter-vehicle communication constraints
- will play a key role.

3.1 Coordination error dynamics

To simplify the notation, we adopt a slightly different one in this section. In
the sequel, the dynamics of total speed (3) of the i’th vehicle will be defined
as

v = F (8)

where F; = 7y,, + fv,, and v; stands for the total speed V.

As before, we let the path I'; be parameterized by & and denote by s; =
si(&);1=1,2,...,n the corresponding arc length. We define R;(&;) = 0s;/9&;
and assume that R;(&;) is positive and uniformly bounded for all &;. In partic-
ular, s; is a monotonically increasing function of §;. We further assume that
all R;(&;) is bounded away from 0 and that OR;/9¢; is uniformly bounded.
The symbol R;(.) is motivated by the nomenclature adopted before for the
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case of paths that are nested arcs of circumferences. Using equation (5), it is
straightforward to show that the evolution of §; is given by

&= %(Uz 08 Ye; + k3iTeq) 9)
which can be re-written as
: 1
b= eyt (10)
where 1
d; = m(cos Yei — )i + k3 e (11)

Notice from the previous section that d; — 0 asymptotically as ¢t — oo,
if v; is bounded. It can be shown that this assumption is indeed met,
see (Ghabcheloo et al., 2004b). Suppose one vehicle, henceforth referred to
as vehicle L, is elected as a ”leader” and let the corresponding path I’z be
parameterized by its length, that is, {£ = s,. In this case, Ro(§z) = 1. It
is important to point out that £ can always be taken as a ”virtual” vehicle
that is added to the set of ”real” vehicles as an expedient to simplify the
coordination strategy. Let vz = v (¢) be a desired speed profile assigned to
the leader in advance, that is 5 r = vz, and known to all the other vehicles.
Notice now that in the ideal steady situation where the vehicles move along
their respective paths while keeping the desired formation, we have {;—&, =0
and therefore fl =wg for all ¢ = 1,..,n. Thus, v, becomes the desired speed
of each of the vehicles, expressed in §; coordinates. As such, one can proceed
without having to resort to the concept of an actual or virtual leader vehicle,
thus making the coordination scheme truly distributed.

From (10), making d; = 0, it follows that the desired inertial velocities of
vehicles 1 < i < n equal R;(&;)vs(t). This suggests the introduction of the
speed-tracking error vector

Ny = U3 — Ri(&)’l}[), 1 S 7 S n. (12)
Taking into account the vehicle dynamics (8), the derivative of (12) yields

o= fi= Fim S (Ri&)ve) (13)

Using (10), it is also easy to compute the dynamics of the origin of each
Serret-Ferret frame {T,;} as

éi = RLim + v, + d;. (14)

To write the above dynamic equations in vector form, define n = [1;]nx1,

& = Eilnx1, [ = [filnx1, d = [di]lnx1 and C = C(§) = diag[1/R;(&)]nxn to
obtain
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n=f
E=Cn+uvcl+d

where 1 = [1],,x1. In the above, ||d|| — 0 asymptotically as ¢ — co and matrix
C is positive definite and bounded, that is,

0<al <CE®) <cd (16)

(15)

for all t, where ¢; and ¢y are positive scalars and I the identity matrix. Notice
that C is allowed to be (state-driven) time-varying, thus allowing for more
complex formation patterns than those in the motivating examples of the
previous section.

The objective is to derive a control strategy for f to make & = ... =&, or,
equivalently, (§; —¢&;) = 0 for all 4, j. At this point, however, two extremely im-
portant control design constraints must be taken into consideration. The first
type of constraints is imposed by the topology of the inter-vehicle communi-
cations network (that is, by the types of links available for communication).
The second type of constraints arises from the need to drastically reduce the
amount of information that is exchanged over the communications network.
In this paper, it will be assumed that the vehicles only exchange information
on their positions and speeds. The case where only position information is
exchanged leads to more complex coordination control laws and will not be
examined here.

A possible control law is of the form

fi=fini &m;, & 25 € i) (17)
where J; is the index set (of the neighbors) that determines what coordination
states &; and speeds 7;; j # ¢ are transmitted to vehicle 7. With this control
law, each vehicle 4 requires only access to its own speed and coordination
state and to some or all of the coordination states of the remaining vehicles,
as defined by the index set J;. Throughout the paper, we assume that the
communication links are bidirectional, that is, if vehicle ¢ sends information
to j, then j also sends information to i. Formally, i € J; < j € J;. See
(Ghabcheloo et al., 2005b) for the case of unidirectional communication links
where some of the vehicles may only send or receive information. Clearly, the
index sets capture the type of communication structure that is available for
vehicle coordination. This suggests that the vehicles and the data links among
them be viewed as a graph where the vehicles and the data links play the role
of vertices of the graph and edges connecting those vertices, respectively. It is
thus natural that the machinery of graph theory be brought to bear on the
definition of the problem under study.

3.2 Graphs

We summarize below some key concepts and results of graph theory that are
relevant to the paper. See for example (Biggs, 1996), (Godsil and Royle, 2001),
(Balakrishnan and Ranganathan, 2000), and the references therein.
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Basic Concepts and Results

An undirected graph or simply a graph G(V,€) (abbv. G) consists of a set
of vertices V; € V(G) and a set of edges £(G), where an edge {V;,V;} is an
unordered pair of distinct vertices V; and V; in V(G). A simple graph is a
graph with no edges from one vertex to itself. In this paper we only consider
simple graphs, and will refer to them simply as graphs. As stated before, in
the present work the vertices and the edges of a graph represent the vehicles
and the data links among the vehicles, respectively. If {V;,V;} € £(G), then
we say that V; and V; are adjacent or neighbors. A path of length N from V;
to V; in a graph is a sequence of N 4 1 distinct vertices starting with V; and
ending with Vj}, such that two consecutive vertices are adjacent. The graph G
is said to be connected if two arbitrary vertices V; and V; can be joined by a
path of arbitrary length.

The adjacency matrix of a graph G, denoted A, is a square matrix with
rows and columns indexed by the vertices, such that the 7, j-entry of A is 1
it {Vi,V;} € € and zero otherwise. The degree matrix D of a graph G is a
diagonal matrix where the i, i-entry equals the wvalency of vertex V;, that is
|J;] the cardinality of .J;. The Laplacian of a digraph is defined as L = D — A.

Given any arbitrary vector &, if y = L, then the i’th element of y is

yi = Z(fi = &),

JEJ:

that is, y; is a linear combination of the terms (§; —&;), where j spans the set
J; of vehicles that ¢ communicates with. This seemingly trivial point plays a
key role in the computation of a decentralized coordination control law that
takes into consideration the a priori existing communication constraints, as
will become clear later.

3.3 Coordination. Problem formulation and solutions

Equipped with the above machinery we now state the coordination problem
that is the main focus of this section. First, however we comment on the type of
communication constraints considered in the paper. It is assumed that: i) the
communications are bidirectional (L is symmetric) and ii) the communications
graph is connected. Notice that if assumption (ii) is not verified, then there
are two or more clusters of vehicles and no information is exchanged among
the clusters. Clearly, in this situation no coordination is possible.

Problem 2 [Coordination]. Consider the coordination system with
dynamics (15) and assume that d tends asymptotically to 0. Further
assume that each of the n vehicles has access to its own state and
exchanges information on its path parameter (coordination state) &;
and speed n; with some or all of the other vehicles. Let G be a graph
with n vertices and € edges, where the presence of an edge between
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vertex © and j signifies that vehicle i and j communicate through a
bidirectional link. Determine a feedback control law for u such that
lim oo =0 and limy oo (§ — &) =0 foralli,j=1,..,n.

The next proposition offers a solution to the coordination problem, under the
basic assumption that the communications graph G is connected.

Proposition 2 [Solution to the coordination problem]. Con-
sider the coordination problem described before and assume that the
communications graph G is connected. Let L be the Laplacian of G.
Further let A = diagla;]nxn and B = diag[b;]nxn be arbitrary positive
definite diagonal matrices. Then, the control law

f=—(A"'L+ A)Cn — Bsat(n+ A1 L¢), (18)

where sat is the saturation function

T, T > Ty
sat(z) =< . |z| <azpy (19)
T T < — Ty

with x.,, > 0 arbitrary, solves the coordination problem. Namely, the
control law meets the communication constraints and yields input to
state stability (ISS) from the input d to all the states 3.

Because of space limitation, the proof is omitted, see (Ghabcheloo et al.,
2004b). The control law adopted for vehicle ¢ can be written as

i 1 1 1 1
i= 35 T =1 — 5-1;) — bisat(n; + — i S5)) 20
f T jEeJ.(Rin ij) sat(n; + o ;e]@ ). (20)

We recall that J; denotes the set of vehicles (vertices in the graph) that
communicate with vehicle i. Notice how the control input of vehicle i is a
function of its own speed and coordination state as well as of the coordination
states and speeds of the other vehicles included in the index set J;. Clearly,
the control law is decentralized and meets the constraints imposed by the
communications network, as required.

Matrices A and B play the role of tuning knobs aimed at shaping the
behavior of the coordination system. Notice that the coordination vector &
appears inside the sat function. From the form of control law, it is clear that
the sat function affords the system designer an extra degree of freedom because
as x,, increases, the control activity f becomes more "responsive” to vector
¢ (intuitively, as z,, increases, the coordination dynamics become ”faster”).
Interestingly enough, the introduction of the sat function allows for a simple
proof that V;(¢) remains bounded when the path following and coordination
systems are put together.

3 See (Sontag, 1996) and (Khalil, 2002) for the definition of input to state stability
of a system.
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4 Simulations

This section contains the results of simulations that illustrate the performance
obtained with the coordinated path following control laws developed in the
paper for both wheeled robot and marine vehicle. Figure 7 illustrates the
situation where 3 wheeled robots are required to follow paths that consist
of parallel straight lines and nested arcs of circumferences (C piecewise con-
stant). The figure corresponds to the case of an in-line formation pattern. In
the simulation, vehicle 1 is allowed to communicate with vehicles 2 and 3, but
the last two do not communicate between themselves directly. The reference
speed vz was set to vz = 0.1 [m s™!]. Notice how the vehicles adjust their
speeds to meet the formation requirements. Moreover, the coordination errors
10 =& — & and £33 = & — &3 and the path following errors decay to 0.

Figure 8 illustrates a different kind of coordinated maneuver in the z —y
plane: one robot is required to follow the x—axis, while the other must follow
a sinusoidal path as the two maintain an in-line formation along the y—axis.
In this case, C is time varying. Notice in Figure 8(b) how vehicle 1 adjusts its
speed along the path so as to achieve coordination. As seen in Figures 8(c)
and 8(d), the vehicles converge to the assigned paths and drive the error
between their x—coordinates to 0.

Figure 9 corresponds to a simulation where 3 fully actuated marine ve-
hicles were required to follow 3 straight parallel lines 3 meters apart, in the
horizontal plane. In the simulation, the parameters of the SIRENE AUV were
used (Aguiar, 2002). Moreover, they were required to keep an in-line formation
pattern. As in the first simulation, vehicle 1 is allowed to communicate with
vehicles 2 and 3, but the last two do not communicate between themselves
directly. The reference speed vz was set to vz = 0.2 [m s71] and the initial
states to

(u,v) = (0.1,0), (0.1,0), (0.1,0)[m/s]
(.Z‘, y) = (Oa 7),(0.5,2), (07 _5)[m]
8 =0,0,0;and B4 = 10,0, —10[deg].

Figure 9(a) shows the evolution of the vehicles as they start from the initial
points off the assigned paths and converge to them. Figure 9(b) is a plot of the
vehicle speeds that ensure coordination along the paths. Finally, Figure 9(c)
shows the coordination errors £ — &9, & — &3 and &3 — & decaying to 0 and
Figure 9(d) the side-slip angles converging to the desired values.

Controller parameters were set to

a=2;b=1;k =0.5;ka =0.5; ks = 0.25; ¢, = 7/4, (21)

in all the simulations.

5 Conclusions and suggestions for further research

The paper formulated and presented a solution to the problem of steering
a fleet of wheeled robots along a set of given spatial paths, while keeping a



Coordinated path following 15

desired inter-vehicle formation pattern. The solution adopted for coordinated
path following builds on Lyapunov based techniques and addresses explicitly
the constraints imposed by the topology of the inter-vehicle communications
network. With this set-up, path following (in space) and inter-vehicle coor-
dination (in time) are essentially decoupled. Path following for each vehicle
amounts to reducing a conveniently defined error variable to zero. Vehicle
coordination is achieved by adjusting the speed of each of the vehicles along
its path, according to information on the position of the other vehicles, as
determined by the communications topology adopted. The methodology pro-
posed led to a decentralized control law whereby the exchange of data among
the vehicles is kept at a minimum. Simulations illustrated the efficacy of the
solution proposed. Further work is required to extend the methodology pro-
posed to air and underwater vehicles. Namely, by addressing the problems of
robustness against temporary communication failures.
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