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Abstract - This paper addresses the problem of es-
timating the position and attitude of a rigid body
when the available measurements consist only of dis-
tances (or ranges) between a set of body fired bea-
cons and a set of earth fized landmarks. To this
effect, a Maximum Likelihood (ML) estimator is de-
rived by solving an optimization problem on the Spe-
cial Euclidean group SE(n);n = 2,3 wusing intrinsic
gradient and Newton-like algorithms. The theoret-
ical tools used borrow from optimization theory on
Riemannian manifolds. Supported by recent results
on performance bounds for estimators on Rieman-
nian manifolds, the Intrinsic Variance Lower Bound
(IVLB) is derived for the problem at hand. Simula-
tion results are presented to illustrate the estima-
tor performance and to validate the tightness of the
IVLB in a wide range of signal to noise ratio sce-
narios.
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1 Introduction

Joint attitude and position estimation systems based
on range-only measurements are becoming popular and
have received the attention of the engineering commu-
nity as an alternative to more complex, expensive, and
sophisticated Inertial Navigation Systems. A good fea-
ture of such systems is that they are drift-less and in-
sensitive to magnetic disturbances. Examples of ap-
plications include GPS multi-antenna systems, indoor
navigation systems based on wireless networks, and
acoustic systems to determine the attitude/position of
a body underwater (see Figures 1 and 2). Range mea-
surements are usually obtained by measuring the time
it takes an electromagnetic or acoustic signal to travel
between an emitter and a receiver given that the speed
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of propagation of the signals is assumed to be known.
The range-only positioning problem has been exten-
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Figure 1: GPS multi-antenna attitude/positioning sys-
tem.

Figure 2: Underwater acoustic attitude/positioning
system.

sively treated in the literature, see for example [14] and
the references therein. It is also common to find in the
literature work regarding the problem of estimating the
attitude (that is the relative orientation of a reference
frame with respect to another reference frame) with
vector observations [13], [18]. In some applications,
vector observations can be obtained from range ob-
servations by making the planar waveform assumption
[5]. Despite the fact that the attitude and positioning
problems are strongly coupled, a simultaneous treat-
ment of the problem is seldom encountered (see [4] for
an example with line of sight measurements).



This paper addresses simultaneously the problems
of attitude and position estimation with range-only
measurements. To this effect, a Maximum Likelihood
(ML) estimator is derived by solving an optimization
problem on the Special Euclidean group SE(n);n = 2,3
using intrinsic gradient and Newton-like algorithms.
The rigorous mathematical set-up adopted makes the
algorithms conceptually simple and elegant; further-
more, the algorithms do not require the artificial nor-
malization procedures that are recurrent in other esti-
mation schemes formulated in Euclidean space.

The paper addresses also the problem of deriving
performance bounds for the attitude/position class of
estimators with range- only measurements. Classically
this is done by resorting to the Cramér- Rao Bound
(CRB) which sets a lower bound on the performance
that can be achieved with any unbiased estimator for
a given parameter of interest [16], [8]. The CRB as-
sumes that the parameter space is an Euclidean space
(or some open subset of it). In the problem at hand
however, the parameter space is a Riemannian mani-
fold that can be identified with the Special Euclidean
group of rigid body motions SE(n). This all but pre-
vents the use of the CRB to assess the performance
that can be achieved with the new estimator proposed.
Recently, new performance bounds such as the Intrin-
sic Variance Lower Bound (IVLB) have been derived
for estimators with parameters on Riemannian Mani-
folds which take into account the curvature of the pa-
rameter space and use the intrinsic (geodesic) Rieman-
nian distance instead of the usual Euclidean distance
[20], [19]. The paper shows how to derive the IVLB
for the problem of simultaneous position and attitude
estimation and illustrates the tightness of the bound in
a wide range of signal to noise ratio (SNR) scenarios.

2 Problem Formulation

Suppose that one is interested in estimating the config-
uration (that is, position and attitude) of a rigid body
in space. Define a reference frame {B} attached to the
rigid body and an Inertial reference frame {Z}. The
position of the origin of {B} with respect to {Z} can
be represented by vector “pp € R", and the relative
orientation between {B} and {Z} can be represented
by a rotation matrix 3R € SO(n), where SO(n) is the
Special Orthogonal group defined as

SO(n) ={R e R™" : RTR =1,, det(R) =1} .
(1)

In the above expression, I,, stands for the n xn identity
matrix and det(-) is the matrix determinant operator.
The configuration of the rigid body can then be iden-
tified with an element of the Special Euclidean group
SE(n) defined as

SE(n):{rg ﬂ :ReSO(n),peR”}. (2)

This paper considers the cases n = 3 and n = 2 cor-
responding to 3-dimensional and 2-dimensional rigid

Figure 3: Geometry of estimation problem

body configurations, respectively. Elements of SE(n)
will be sometimes identified with the pair (R,p) or

with the vector [vec(R)T pT] ’ (where vec(+) is the op-
erator that stacks the columns of a matrix from left to
right) depending on what representation is more suit-
able for the computations.

Suppose the rigid body has p beacons and assume
that the location of the beacons with respect to {B} is
known. The beacons could be GPS antennas, or under-
water acoustic emitters, arranged with a certain known
geometry in the rigid body. Let us further consider
that there are m fixed landmarks distributed in the am-
bient space with known positions. For example, GPS
satellites or surface buoys equipped with hydrophones
(see Figures 1 and 2). Let the positions of the p bea-
cons in the rigid body be denoted by Pb; € R" i €
{1,...,p} and the positions of the m Earth fixed land-
marks be denoted by *p; € R™,j € {1,...,m} (see
Figure 3). To simplify the notation, from now on R,
p, bi, and p; will be used to denote R, *p5, ®b;, and
*p; respectively. Let d;; denote the distance between
the i’th beacon and the j’th landmark. Then

dij = |Rb; + p — p;| = {(p—p;)" (P — P;)

+2(p — pj)T'Rbi + b;Tbl}§ (3)
with i € {1,...,p}, and j € {1,...,m}. The observa-
tions r;;, defined by

(4)

consist of the ranges d;; corrupted by the additive
Gaussian disturbances w;;. Note that the terms bea-
con and landmark are used to illustrate the problem
but they do not impose any particular role (in terms
of emitter /receiver). They should be simply viewed as
range measuring devices.

It is convenient to stack all the 7j elements in a more
compact form by defining the vectors

rij = dij + Wi

a2 [idn - dp) - [ - dynl] €R™, (5)
T R | T
w2 [[wn v wp] e Wi e wpm]}T eR™,

(7)



that are naturally obtained from a matrix with ij el-
ements by applying the vec(-) operator. With this ar-
rangement, the observations can then be written in a
more compact form as

r=d+w, REZE{ww’}eRm™*m (3
where R is the covariance matrix of w. Note that no
assumption is made on the structure of R, thus allow-
ing for very different kind of disturbance scenarios. For
instance, it usually happens that the distances between
an Earth fixed landmark and all the body beacons suf-
fer from highly correlated disturbances. This is due
to the fact that the observations originate from signals
that have traveled almost through the same propaga-
tion channel. In this case, the covariance matrix R is
close to block diagonal.

2.1 ML Estimator Formulation

The Maximum Likelihood (ML) Estimator determines
the pair (R,P)az € SE(n) that maximizes the likeli-
hood function, that is, the probability p (r|R, p) of ob-
taining the observations r given the parameters (R, p)
[16] [8]. According to the Gaussianity assumption on
the disturbances, the likelihood function takes the form

1 1 T—1/.
p(r|R7P)—MeXP{—2(I‘—d) R (r d)(}-)
9

A common practice in Maximum Likelihood Estima-

tion is to work with the log-likelihood function. Ne-
glecting constant terms, the ML estimator can be
found by solving the optimization problem

~ _ _ .
(R,p) a8 g i fR,p)  (10)
where f : SE(n) — R is given by
1 _
fRop) = 3(r-a) R —d) (1)

and, from (3) and (5), d = d(R, p) . Note that the cost
function f is not differentiable when some d;; vanishes,
that is, when the position of a beacon coincides with
the position of a landmark. It is realistic to assume
that this situation never occurs in practice.

In order to determine the ML Estimator the func-
tion f needs to be minimized on the Special Euclidean
group SE(n). At this point, it is not obvious how to
proceed and effectively solve this constrained optimiza-
tion problem. The problem does not admit a closed
form solution so it is necessary to resort to an iterative
scheme.

3 Optimization on Riemannian
Submanifolds

There has been some work on generalizing the classic
gradient and Newton methods to Riemannian mani-
folds [7] [9]. The key ideas involved are to define intrin-
sic gradient and Newton-like directions and to perform

Figure 4: Geometric descent optimization. Intrinsic
gradient or Newton directions followed by geodesic line
searches.

line searches along geodesics, as depicted in Figure 4.
Next, the main tools needed in order to generalize the
gradient and Newton descent methods on an embed-
ded Riemannian sub-manifold are reviewed. In what
follows it is assumed that the reader is familiar with
the concepts of Riemannian geometry [3], [6].

In many cases, such as the one considered in this
paper, the parameter space M can be shown to be an
embedded Riemannian sub-manifold of some ambient
Euclidean space M = R". For instance, when M is
characterized as the regular level set of some smooth
function i.e., M = {z € R" : h(z) = 0}. It turns out
that many intrinsic objects in M, such as intrinsic gra-
dients and Hessians, can be easily obtained from their
corresponding extrinsic objects in M.

Let (M,g) be an embedded Riemannian sub-
manifold of (M ,g). This means that the metric g
of M is the canonical Riemannian metric induced by
the inclusion map i : M — M, ie. gp(u,v) =
Gi(p) i+ (1), 4 (v)) for all u,v € T,M and p € M (where
T,M stands for the tangent space at p) [6]. Let
f: M — Rbea smooth function and let f: M — R,
be the restriction of f to M, that is f = f|y. To
simplify the notation, p will be identified with i(p) and
any tangent vector v € T,M will be identified with
U =1i.(v) € Tp]\7 . The intrinsic gradient of f denoted
by gradf is the unique smooth vector field on M satis-
tying point-wise df (X)|, = gp(X,, gradf],) for all p €
M and all vector fields X € T(M). For each p € M,
the tangent space TPM can be split into the direct sum
T,M = T,M & (T,M)* where (T,M)* is the orthog-
onal complement of T,M in M [6, p.125]. In accor-
dance with the above, the vector field gradﬂp € TPM,
which will be called extrinsic gradient of f, can be
split into the sum gradf|, = (gradf|,)" + (gradf|,)*
where (gradﬂp)T € T,M and (gmdﬂp)L € (T,M)*.
The next propositions summarize fairly well known re-
sults, the proofs of which are straightforward exercises
in Riemannian geometry, but are seldom available in
the literature.

3.1 Intrinsic Gradient

Proposition 1. The intrinsic gradient gradf|, is ex-
actly the projection of the extrinsic gradient gradf|,
onto the tangent space T,M, denoted by (gradf],)".



Proof. From X f|, = X fl,, it follows that

(X, gradf|,) = X fl, = X fl, = (X, gradf],)
= (X, (gradf[,)*) + (X, (gradf],) ")
= (X, (gradf],) ") (12)

which yields the desired result since there is a one to
one correspondence between tangent vectors in T, M

and tangent vectors in Tp/]\Z . U

Proposition 1 gives us a simple methodology to de-
termine the intrinsic gradient of a smooth function de-
fined on a Riemannian submanifold of some Euclidean
space, that is M = R"™ for some n. The extrinsic gra-
dient of f at p can be identified with the vector of
partial derivatives V f |, = [a%lﬂp %ﬂp}r The
intrinsic gradient gradf|, can be identified with the

orthogonal projection of Vﬂp onto the tangent space
T,M, denoted by (Vf1],)".

3.2 Intrinsic Hessian

Consider the Levi-Civita connections V, v on M and
M respectively. The geometries of M and M are re-
lated through the second fundamental form 17 : T, M x
T,M — (T,M)* [6]. The Hessian of a smooth function
f is the smooth 2-tensor field Hessf : T,M xT,M — R,
defined as Hessf(X,Y) = (Vxdf)Y.

Proposition 2. The intrinsic Hessian of the smooth
function f satisfies

Hessf(X,Y) = Hessf(X,Y) + II(X,Y)f  (13)

for any vector fields X, Y on M and local extensions
X,Y on M.

Proof. Under the conditions stated, VxY = 6;(}7 —
II(X,Y) ([6, p.126]). Furthermore, Y (X f) = Y (X f).
As a consequence,

Hessf(X,Y) = (Vxdf)Y =Y(X[) - (VxY)f
=Y(Xf) - (VY - II(X,Y)f
=Y(X[) = (VeV)f + (X, Y)f
=Hessf(X,Y)+1I(X,Y)f (14)

O

Proposition 2 allows us to determine intrinsic Hes-
sians of Riemannian submanifolds of R™ and to extract
from them Newton-like search directions. The extrinsic
Hessian Hessf can be found from the usual matrix of
second order partial derivatives of f. The Newton-like
search direction IV € T}, M is the unique tangent vector
satisfying Hessf (X, N) = —(X, gradf) for all tangent
vectors X € T, M (assuming that Hessf is nonsingular
at p).

Figure 5: Extrinsic and intrinsic gradients.

4 The Geometry of SE(n)

The position and attitude of a rigid body can be
uniquely identified with an element of the Special Eu-
clidean group SE(n), also referred to as the group of
rigid body motions, defined in (2). There are many ref-
erences in the literature about SE(n) and SO(n), the
reader is referred to [3], [10], [11], [12], and [17].

The Special Euclidean group is a d-dimensional
smooth manifold, with d = w Moreover, SE(n)
can be regarded as being embedded in the Euclidean
space of n + 1 square matrices with real entries or in
R" " Let § = (R,p) be an element of SE(n). The
tangent space TpSE(n) can be identified with the linear
subspace

Lo={(RS,v) : S€K(n,R),veR"},  (15)

where K(n,R) stands for the set of n x n skew-
symmetric matrices with real entries (recall that a ma-
trix S is skew-symmetric if S + ST = 0). Recall also
that sometimes it will be convenient to identify Ly with
vectors of the form [vec(RS)” vT]T in R +n,

A Riemannian metric is a smooth assignment of
an inner product to each tangent space. The Spe-
cial Euclidean group can be made an embedded Rie-
mannian submanifold by providing it with the canon-
ical Riemannian metric inherited from its ambient
Euclidean space. Let Ay = [vec(RS;)” vlT]T, and

Ay = [vec(RS)T V;}T be two tangent vectors in Lyg.
Then g(A1,As), also denoted (A7, Ag), becomes

(A1, 82) = A Ag = [vee(S1)" ¥]] HS 2)] .
(16)

Note that the induced Riemannian metric of (16) is
in fact equivalent to the scale-dependent left-invariant
metric of [12] (with ¢ = 2, and d = 1) and to the
canonical product metric on SO(n) x R™ (when SO(n)
is regarded as a Riemannian submanifold of R™*™).
As discussed previously, the geodesics of SE(n) have
a simple closed form expression which can be used
to perform computationally affordable intrinsic line
searches. If the canonical metric (16) is used, the
geodesics of SE(n) can be obtained from those of the
product space SO(n) x R™ as discussed in [12] and [17].



Let 8 = (R,p) € SE(n) and A = (RS,v) € Ly. The
geodesic emanating from 6 in the direction of A is given
by v : R — SE(n),
7(t) = (Rexp (St),p + vi), (17)
where it is easy to verify that v(0) = 6 and §(0) = A.
The second fundamental form can also be simply
computed (see [1] for details). Let A, Ay € Ly be
tangent vectors at some point 6 € SE(3). The second
fundamental form IT : Ly x Ly — Lg can be expressed
in compact form as
I1(Ar, Ag) = (~Rsymm(S7S),0) € L (18)
where symm is the operator that extracts the symmet-
ric part of a matrix, that is symm(A4) = (4 + AT).

5 Intrinsic Gradient and New-
ton algorithms

In order to determine the maximum likelihood (ML)
estimate of the attitude and position of a rigid body,
a constrained optimization problem on the parameter
space SE(n) needs to be solved. The geometric descent
optimization algorithms proposed in this paper are of
an iterative nature. At each iteration a gradient or
Newton-like search direction Dy is determined. Then,
an intrinsic geodesic line search is performed along Dy
to update the estimated parameter.

5.1 Intrinsic Gradient Direction

According to Proposition 1, the intrinsic gradient of a
smooth function defined on an embedded Riemannian
sub-manifold of some Euclidean space can be found by
determining the extrinsic gradient (which is the usual
vector of partial derivatives as if the function were de-
fined on the ambient space f : R*TDx(+1) _ R
instead of f : SE(n) — R) and projecting it orthogo-
nally onto the tangent space to the constraint surface.
The derivation of the extrinsic gradient for the prob-
lem at hand is done in detail in [1]. Let 8 = (R, p) be
the point in SE(n) at which to evaluate the extrinsic
gradient. Define the matrices

(b @ (p—p1)”

F=|bl@(p-p)" | R, (19)
T ' T
_bp ® (p - pm)
[bfR" +(p—p1)"
C= |b/RT +(p—p;)" | eR™*", (20)

_bgRT + (p - pm)T

and

D = diag(d) = € RmPXmP

P (21)
0 ... dmp
where ® is the Kronecker product of matrices. Then
the extrinsic gradient has the form

__ {(F;TJ DR (r—d) (22)

According to Proposition 1 the intrinsic gradient can
be found by solving the projection problem

gradflg = arg min (Q —Vf|g,Q—Vflg).  (23)
Q€ Lo

Using some algebraic manipulations and the fact that

Q = [vec(RS)T V}T for some skew-symmetric matrix

S and vector v it can be shown that [1] (and [7] for a

similar result):

vec(Gr)] %vec(éR: RGLR)
Gp - Gp

gradflp = {
(24)

5.2 Intrinsic Newton Direction

In this section it is shown how to define an intrinsic
Newton search direction from the intrinsic Hessian de-
scribed in Proposition 2. The derivation of the extrin-
sic Hessian (the usual matrix of second order partial
derivatives) is done in detail in [1]. Given two tan-
gent vectors in the form A; = [vec(RSl)T vl]T and
Ay = [Vec(’RSQ)T VQ]T the extrinsic Hessian becomes
Hessf : Ly x Ly — R, Hessf(A1, Ay) = ATHA,. The
matrix H € R+0)x(0°+n) ig defined as

FT L [ET T pm
H-= { CT] (DRD) [CT} — > aij Hij  (25)
i,j=1

where a;; € R are the entries of the vector

a:=[ay - amp) =R7'(r—d) eR™, (26)
and each of the matrices H;; has the form
Hil gyt
Hij = | % b (27)
with
Hij = g (bi® L) (P —p;) (P - p)) (b} ®I,) (28)
ij
21 1 T T
Hi=—3 {(P -pj)(p—p;) (b; ®1I)
ij
1
+Rbi(p —p;)" (b] © In)} + (b! ®I.)
ij
(29)
1
H === {(®=p)P—P) +Rbi(p—p,)"
ij
+(p—p;)bTRT + ’RbibiTRT} T dl I, (30)
1]



The intrinsic Hessian can be found from the extrinsic
Hessian as described in Proposition 2:

Hessf(A1,A2) = A HA, + TI1(A1, Ay) [ (31)

where the term involving the second fundamental form
can be computed as follows. Let V f|g denote the ex-
trinsic gradient of f evaluated at 6 € SE(n). Then
from (18) and (22)

II(Ay, M) f = (Vflo, TI(A1, Az))

= —vee(Gr)Tvee(R symm(ST Ss)).
(32)

The Newton-like direction is the unique tangent vec-
tor N € Ly satisfying Hessf (X, N) = —(X, gradf|g)
for all X € Ly. The following derivation is done for the
case n = 3 since the case n = 2 can be simply obtained
from it. Consider an orthonormal basis {F,..., Fg}
for the linear subspace Lg. To this effect take an or-
thonormal basis for K (3,R)

Lo =10 L foo0 -1
Si=-—1{1 0 0|, So=—10 0 0],
V20 0 o0 V211 0 o
L Joo o
S3=-—10 0 -1 (33)

V200 1 o

and choose F; as the columns of the matrix

vec(RSy) -+ vec(RS3) | 0

Vo = 0 T3

€ R12%6, (34)

Assuming that the Hessian is nonsingular, the Newton-
like search direction N € Ly can be found by first
solving the linear system

Hessf(E1, E1) Hessf(E1,Es)| [

Hessf(Es, Es)| |16
(E1, gradfle)

Hessf(Eg, E1)

= : (35)
(Eg, grad fl)
and then taking
6
_|vec(Ng)| _ .
N = { N, } => k. (36)

=1

5.3 Intrinsic geodesic line search

Let 0 = (Rg, pr) € SE(n) be the parameter estimate
at iteration k. Let Dy = (Dr,Dp) € Ly, be the search
direction at iteration k, i.e, Dy = —gradf|s, (gradient
descent) or Dy = N (Newton descent). A line search
can be performed along the geodesic

(1) = (Rexp(RTDxt), p + Dpt). (37)
Ideally, the line search procedure aims at finding the
optimal stepsize t} satisfying

t = argmin f (1)) (38)

This optimization subproblem can be hard to solve.
Alternatively, it is common to obtain an approximate
solution to this problem only, by using for instance
the Armijo rule [2, p.29]. The Armijo rule selects
ty = [p™is, where m; € {0,1,2,...} is the first inte-
ger satisfying

f(Or) = f(y(B™s)) =2 —o ™ s (grad fle,, Dk) (39)
for some constants s > 0, and 3,0 € (0, 1).
5.4 Algorithm implementations: an

outline

The theoretical results of the previous sections lead to
the following implementations of the proposed intrinsic
gradient and Newton algorithms:

1. Start with the initial estimate 6y = (Ro,po) €
SE(n). Set k = 0.

2. Determine a search direction Dy, as follows:

(a) Intrinsic gradient: take Dy = —gradf]q, ac-
cording to (24).

(b) Intrinsic Newton: If (N, gradflg,) < 0 (de-
scent condition) take Dy = N according to
(36), otherwise take Dy, = —gradflg, .

3. Do a line search along the geodesic v (t) (37), us-
ing Armijo rule to determine step size tj.

4. Update estimate 011 = vi(tx). Set k =k + 1.

5. If ||grad fle, || <€, stop. Otherwise return to 2.

6 Simulation Results

Simulations were performed to validate the proposed
algorithms. Eight (m = 8) earth fixed landmarks were
located at the vertices of a 100m side cube centered at
the origin. Three (p = 3) body fixed beacons were lo-
cated at positions [by by bs] = 3 Ism (where I3 is the
3 x 3 identity matrix). The observation error covari-
ance was set to R = 01,,,, with ¢ = 0.1m. In order to
illustrate the attitude estimation errors (Figures 7 and
8) exponential coordinates for SO(3) were used. The

vector s = [s1 s2 s3] is used to denote the orthogonal
0 S1 So

matrix R = exp{[s]}, where [s] = | -s1 0 s3|. In

—S82 —S83 0
the simulations, the actual attitude of the rigid body
was set to R = I3, corresponding to exponential coor-
dinates s = [0 0 0]", and the initial position was set to

p =[000]". The initial attitude estimate was R cor-
responding to exponential coordinates o = [—1 1 2]T,
and the initial position estimate was po = [7 3 1]".

Figure 6 shows the evolution of the cost function to-
gether with the norm of the gradient for the intrin-
sic gradient and Newton methods. Note the quadratic
convergence of the Newton method when close to the
minimum. Figures 7 and 8 show the evolution of the
attitude and position estimation errors for both meth-
ods.



|
—— gradient
—©- Newton

llgrad fi|

10
iteration k
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Note that the cost function has local minima that
depend strongly on the number and geometry of the
beacons and landmarks. This is an important issue,
common in many optimization problems, that prevents

the optimization methods from being global and re-
quires careful initialization schemes.

7 Performance Bounds

When faced with an estimation problem it is of ex-
tremely practical and theoretical importance to derive
a lower bound on the performance of estimators. Per-
formance bounds can be used for instance as a way to
assess if certain specifications on the estimation errors
can be met or as references against to which bench-
mark different estimators.

A well known performance bound is the Cramér-
Rao Bound (CRB). The CRB sets a lower bound on
the performance of any unbiased estimator for a given
parameter of interest [16], [8]. In the original deriva-
tion, the CRB assumes the parameter space to be an
open subset of an Euclidean space R™. That is, the pa-
rameter space is supposed to have the same n degrees
of freedom as the ambient space. This condition fails if,
as in our case, the parameter space is a d-dimensional
(with d < n) Riemannian submanifold of R™. There
are recent results which extend the CRB to the case
when the parameter space is not an open subset of
some Euclidean space. See for instance [15], [20], [19].
The Intrinsic Variance Lower Bound (IVLB) derived
in [20] sets a lower bound on the intrinsic (geodesic)
performance of unbiased estimators taking values in
a parameter space with the structure of a Riemannian
manifold. The reader is referred to [20], [19] for further
details.

Next, the IVLB for the attitude and position esti-
mation problem with range-only measurements will be
derived. To the best of the authors knowledge this is
the first time that a performance bound of this kind
is derived for the problem at hand. The derivation is
done for the case n = 3, but note that the results can
be applied to the case n = 2 with some minor modifi-
cations. Given two points in SE(3), 6; = (R1, p1) and
02 = (R2,Pp2), the intrinsic (geodesic) Riemannian dis-
tance between 6; and 65 induced by (16) is given by
[12] (see also [10]):

dsg(3y (01, 02) = \/dso(S) (R1,R2)? + [[p1 — p2l|?, (40)

where

tr (R{R2) —1
dsO(B) (RI,RQ) = \/EBICCOS (I‘(12)> (41)

2

is the canonical metric on SO(3) (as a submanifold of
Rnxn).

Let 6 : R™” — SE(3), r — 6(r) be an unbiased atti-
tude and position estimator taking a set of mp ranges
between body fixed beacons and earth fixed landmarks
and delivering a point in SE(3). Let 6 € SE(3) be the
actual parameter. The (extrinsic) Fisher Information
Matrix can be computed as

1(0) = Eg { (Vg log p(|r) (Ve log p(f|r)" }

FT FT

~ |&r| orD) [CT]T (12)



where the fact that Vglogp(d|r) = —Vf|s was used,
since log p(@|r) = — f except for constant terms. Define
a matrix Uy whose columns form an orthonormal basis
for the tangent space Lg as in (34). Define a scalar

No = tr((UQTI(o)Ug)*l). (43)

Furthermore, define the constant C' = é, which is an
upper bound for the sectional curvature of SE(3), and
assume that 0 satisfies the requirements of the IVLB
[20]. Then the (intrinsic) variance of the estimator
defined as

varg {0} = Eq { dueis) (B(v),0)* | (44)
satisfies
A )\90+17\/2>\90+1
>
varg {9} > WP . (45)

Figure 9 shows the derived bound for the same
simulation setup of Section 6 compared with experi-
mental Monte Carlo simulations at different signal to
noise ratio (SNR) conditions, where SNR~ ﬁ, and
R = o1,,,. At each point, the ML Newton descent al-
gorithm was applied to a 100 set of noisy observations,
initialized at the true value of the parameter. The
SNR range plotted corresponds to standard deviations
of ¢ € [1073,1]m. It is hard to distinguish between
the experimental ML performance and the IVLB. This
shows the good performance of the estimator and the
tightness of the derived bound.

Ed[(Q.d).(Qest,dest)

Figure 9: IVLB compared to Monte carlo Newton ML
at different SNR scenarios.

8 Conclusions and Future Work

In this paper intrinsic gradient and Newton like algo-
rithms were derived to solve the problem of simultane-
ous position and attitude estimation with range-only
measurements. The algorithms are relatively simple
and avoid the need for any normalization procedure
since the iterates evolve naturally on the Special Eu-
clidean group. Simulation results show that the pro-
posed algorithms yield good results and attain per-
formances very close to the Intrinsic Variance Lower
bound (IVLB). Future work will include the study of
nonlinear filters which take into account the dynamics
of the rigid body. Another topic of interesting research

is the inclusion of other sensorial data such as bearing
information. Testing the algorithms with real exper-
imental data is also a subject that warrants further
efforts.
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