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Abstract: A nonlinear filter structure is proposed to estimate the attitude and
position of a vehicle using range measurements only. In the setup adopted, the
vehicle is equipped with an array of beacons that determine their range to a set of
landmarks with known locations. This scenario arises for instance in underwater
acoustic navigation and GPS multiple antenna systems. We consider a simple
discrete time kinematical model of the vehicle, the state of which can be identified
with an element of the Special Euclidean group SE(3). The filter consists of a copy
of the kinematic model of the moving body, plus a correction term which is biased
towards the Maximum Likelihood (ML) estimate of its position and attitude based
on current range measurements. In this sense, the proposed filter belongs to the
class of Recursive Maximum Likelihood estimators and, as verified by simulation
results, outperforms the static ML estimator even when the vehicle is describing
unknown trajectories. In the framework adopted, the estimates evolve naturally
on SE(3), thus eliminating the need for a normalization scheme that is recurrent

in other formulations in flat Euclidean space. Copyright (©2004 IFAC.
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1. INTRODUCTION

Joint attitude and position estimation systems
based on range measurements are becoming pop-
ular and have received the attention of the engi-
neering community as an alternative to more com-
plex, expensive, and sophisticated Inertial Navi-
gation Systems. An advantage of such systems is
that they are drift-less and insensible to magnetic
disturbances. Examples of applications include
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anual funding program through the POS-Conhecimento
Program, in cooperation with FEDER. The work of the
first author was supported by a PhD Scholarship from the
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Fig. 1. GPS multi-antenna attitude/positioning
system.

multiple GPS receiver systems (Figure 1), indoor
wireless network navigation systems, and acous-
tic systems to determine the attitude/position
of a body underwater (Figure 2). See for ex-



Fig. 2. Underwater acoustic attitude/positioning
system with buoys as landmarks.

ample (Vickery, 1998), (Nadler et al., 2000) and
the references therein for some application exam-
ples. Range measurements are usually obtained by
measuring the time it takes an electromagnetic or
acoustic signal to travel between an emitter and
a receiver given that the speed of propagation of
the signals is assumed to be known.

In (Alcocer et al., 2006) the authors derived
a Maximum Likelihood (ML) estimator for the
problem of attitude and position determination
with range-only measurements. Supported on re-
sults on optimization on Riemannian manifolds
(Edelman et al., 1998), (Manton, 2002), gener-
alized intrinsic gradient and Newton algorithms
were derived to solve the problem at hand. The
ML estimator uses observations from a single
epoch. Past information, and the underlying ve-
hicle equations of motion, are not taken into ac-
count in such scenario. This paper presents some
preliminary results in the direction of designing
a estimator that includes information about the
vehicle kinematics.

In the case where measurements of the linear and
angular velocities of a vehicle are available, given
for instance by an inertial navigation system, it is
of great interest to be able to fuse those measure-
ments with range measurements. If no velocity
measurements are available, it is also of interest
to try to estimate the vehicle velocity from range
measurements obtained at different instants of
time. The paper proposes two nonlinear filters to
solve both problems. The filters derived consider
a copy of the vehicle kinematics plus a correction
term ”pointing” in the direction of the Maximum
Likelihood estimate of the current measurements.

2. PROBLEM FORMULATION
2.1 Vehicle model

Let {B} and {Z} denote a body-fixed reference
frame and an inertial frame, respectively. Consider
a simple vehicle discrete time kinematical model
given by

Pk+1 =Pk + Vi
{ (1)

Rk+1 = Rk exp (Sk)

where p € R3 denotes the position of the ori-
gin of {B} expressed in {Z}, and v € R? de-
notes the linear velocity of {B} with respect
to {Z} expressed in {Z}. The rotation ma-
trix from {B} to {Z}, denoted R, is an ele-
ment of the Special Orthogonal group SO(3) =
{X eR¥3 . XTX = Iy, det(X) = +1}, where I
is the 3-dimensional identity matrix and det(:)
stands for the matrix determinant operator. The
pair (p,R) is an element of the Special Euclidean
group SE(3) defined in the sequel as the carte-
sian product R?® x SO(3). The angular velocity
w=[w wsws]" € R3 of {B} with respect to
{Z} expressed in {B} is represented in terms of
the skew-symmetric matrix

0 —W3 W2
S = W3 0 —Ww1 (2)
—W2 W1 0

and in (1), exp(+) denotes the matrix exponential.
For simplicity, and without loss of generality, it is
assumed that the filter sampling interval is equal
to h = 1s. Note that the vehicle model in (1) can
be interpreted as a step of unitary length along the
geodesic emanating from (px,Ry) € SE(3) in the
direction given by the tangent vector (vi, RxSk)
(Murray et al., 1994), (Park, 1995), (Zefran et
al., 1998).

2.2 Observations and the ML Estimate

Suppose that the vehicle has p beacons and as-
sume that the location of the beacons with respect
to {B} is known. The beacons could be GPS
antennas, or acoustic emitters, arranged with a
certain known geometry in the rigid body. Let us
further consider that there are m fixed landmarks
distributed in the ambient space with known posi-
tions. For example, GPS satellites or surface buoys
equipped with hydrophones (see Figures 1 and 2).
Let b; € R3,i € {1,...,p} denote the positions of
the p beacons in the rigid body expressed in {B},
and let p; € R3,j € {1,...,m} denote the posi-
tions of the m Earth fixed landmarks expressed
in {Z} (see Figure 3). Further let d;; denote the
distance between between beacon 7 and landmark
j, defined by

dij = ||Rbi+p —p,l = {(p—p;)" (P — p))
1
+2(p — p;)"Rb; + b b; } 2 (3)

with ¢ € {1,...,p}, and j € {1,...,m}. Assume
the vehicle has access to measurements y;; defined
by

Yij = dij + wij. (4)



Fig. 3. Geometry of estimation problem.

consisting of the ranges d;; corrupted by the
additive Gaussian disturbances w;;. 2

It is convenient to stack all the ij elements in a
more compact form by defining the vectors

T
d2 dy dy - dyy - dip e dpm:| c R

()
and y,w € R™? in a similar way. With this

arrangement, the observations can then be written
in a more compact form as

y=d+w, RE2E{ww’}eR™ ™ (6)

where R is the covariance matrix of w. Note that
no assumption is made on the structure of R,
thus allowing for a number of interesting mission
scenarios and configurations. For instance, the
measurements of the distances between an Earth
fixed landmark and all the body beacons can
suffer from highly correlated disturbances. This
might be due to the fact that the observations
originate from signals that have travelled almost
through the same propagation channel. In those
cases the covariance matrix R is close to block
diagonal.

Given a set of range measurements y correspond-
ing to a fixed instant of time, the Maximum Like-
lihood (ML) estimate is defined as

d)'R ' (y —d),

(7)
where from (3) and (5), d = d(p,R). In (Alcocer
et al., 2006), generalized gradient and Newton
iterative methods to minimize the cost function
in (7) were derived. At each iteration, the algo-
rithms performed a step along a geodesic with
direction given by a gradient or Newton-like tan-
gent vector A = (A,,Ag). That is, A, is some
vector in R?, and A, = RS € R3¥*3, where
R is the current iterate rotation matrix esti-
mate and S is some skew-symmetric matrix. Re-

~ 1
A*7R*) =ar min  =(y —
(p & (p,R)€ SE(3) 2 v

2 Note that the terms beacon and landmark are used
to illustrate the problem but they do not impose any
particular role (in terms of emitter/receiver). They should
be simply viewed as range measuring devices

(vit, RS

Fig. 4. Predict and Update filter steps

call that the geodesic emanating from (p,R) in
the direction A = (A,,Ag) is given by ~(t) =
(p + tAp,Rexp(tRTAR)). In fact, this is true if
we consider SE(3) equipped with its canonical
Riemannian metric, see (Park, 1995) and (Zefran
et al., 1998) for further details. The ML estimator
determines the most probable position and rota-
tion given a set of measurements from a single
instant of time and assuming no prior information.
What happens if, as in our case, the vehicle is not
static but moves along a trajectory? It is expected
that by using some nonlinear filtering scheme
considering past as well as present observations,
an increase in the estimation performance can be
obtained. Next, two nonlinear filters are proposed
that, as verified in simulations, outperform the
static ML estimator when the vehicle is describing
an unknown trajectory.

3. PROPOSED FILTER

Before addressing the pure Range-Only problem
let us consider a frequent and conceptually simpler
problem in which velocity measurements of the
vehicle are assumed to be available.

3.1 Linear and Angular velocity measurements
available

Suppose that we measure not only the ranges y
but also the vehicle linear and angular velocities
v™ and 8™, respectively. Consider the following
filter, which has the usual predict-update cycle
structure found in Kalman Filtering:

Predict cycle:
Prt1 = ﬁz + v
Ryy1 = R;: exp(Sy")
Update cycle:
IA)Z =Dk + kpAp 9)
Ri = Ry exp (kRR}Q AR>
where k,,kr € R are user defined gains. The
correction term A = (Ap,Ag) used in the up-
date step is a tangent vector that ”points to-
wards” the ML estimate of the current set of



measurements (see Figure 4). Ideally, one could
determine the ML estimate (p},R}) at each it-
eration and then define the correction term as
A = (P} — Pk, Relogm(RIR})), where logm(-)
is the log operator on SO(3) (logm in MATLAB)
which returns a skew-symmetric matrix whenever
it is defined (Murray et al., 1994). Note that by
doing this and setting k, = kr = 1 a pure ML
estimator would be obtained. If, on the other
hand, we set k, = kzr = 0 a pure prediction,
or open loop integration of the velocity measure-
ments would be obtained. Between those extreme
values 0 <k, kz < 1 a compromise between pure
ML and pure prediction would be obtained.

Instead of determining the ML estimate at each
iteration, a simplified and computationally sim-
pler version is proposed here, where the correc-
tion terms point towards the ML estimate in an
iterative optimization based sense. That is, we
consider A to be the intrinsic gradient or Newton
descent direction of an ML iterative optimization
scheme. The derivation of the intrinsic gradient
and Newton descent directions are omitted due to
space limitations and can be found in (Alcocer et
al., 2006).

3.2 Range-only measurements

Let us now consider the case in which only range
measurements are available. In addition to the po-
sition and orientation pair (p, R), we will augment
the state of the filter by including the linear and

angular velocities (V,S). The proposed filter has
the form:

Predict cycle:
Pr+1 =P} + Vi
Ris1 = RZ exp(Sk)
Vsl =V

3 _ Q+
Sk+1 =Sy

(10)

Update cycle:
IA);: =Dk + kpAp
R = Ry exp (kRR{AR>
G'Ij =V + kvAp
S = &+ hRTA,

(11)

where k,, kg, ky, ks € R are user defined gains. It
should not be surprising that the same correction
term A = (Ap,Ag) is used both in determin-
ing (p*,R*) and (v©,8F). This is a common
practice when designing Luenberger-like observers
with output error injection. What it is not so
common about the present approach is the way
the correction terms are fed into the filter. Note
that the correction terms are designed to lie on
the tangent space to the current estimate, thus

representing valid ”"movement directions”. Note
also that the filter is composed of a sequence
of geodesic steps which ensure that the iterates
will evolve naturally on SE(3). This eliminates
the need of any normalization scheme. Moreover,
since the filter uses no specific parametrization
for SE(3), some problems such as singularities are
avoided.

4. SIMULATION RESULTS

Simulations were performed to validate the pro-
posed filters. Due to space limitations only the
simulations with the Range-only filter in (10)-(11)
are shown. In order to implement the filter, the
Newton method was chosen to define the correc-
tion term (A,, Ag). We considered an estimation
setup where 8 landmarks were distributed at the
corners of a 100m side cube. The vehicle was
equipped with 3 beacons at positions given by the
columns of 3I3m (where I,, is the n x n identity
matrix). The measurement error covariance was
set to R = 021, with 0 = 0.1m. The filter (10)-
(11) was implemented with user gains k, = 0.3,
kr = 0.3, k, = 0.02, and kg = 0.02. The vehicle
3D trajectory during the simulations is shown in
Figure 5. The actual and estimated vehicle posi-
tion and attitude are shown in Figure 6. Exponen-
tial coordinates are used to represent the vehicle
attitude. That is, the vector 6 = [0 6y 65]" is
used to represent the orthogonal matrix R =
exp {[ 00; 95)3 fogl ] } The actual and estimated
—U2 1
linear and angular velocities are shown in Figure
7. The position and attitude estimation errors are
shown in Figure 8. The attitude estimation errors
are shown as the exponential coordinates of the
error rotation R = RTR. The linear and angular
velocity estimation errors are shown in Figure 9.

5. PERFORMANCE EVALUATION

Given a set of noisy range measurements corre-
sponding to a single epoch, there is a fundamental
limitation on the size of the estimation errors
that can be achieved. When the state space is
Euclidean, the Cramér- Rao Bound (CRB) is the
classic tool to determine such a limitation. When
the state space is not Euclidean, as in our case,
one should resort to generalizations of the CRB
as the Intrinsic Variance Lower Bound (IVLB)
(Xavier and Barroso, 2005). The IVLB uses the
intrinsic (geodesic) Riemannian distance to quan-
tify the estimation errors. More specifically, it sets
a lower bound on the intrinsic variance of unbiased
estimators. Let 6 be the true parameter and 6 an
estimate of it. The intrinsic variance is defined as

var {5} —E {d(@, 9)2} (12)



where d(-) is the intrinsic (geodesic) distance
function. In the case of SE(3) with its canonical
metric, we have (Park, 1995):

dse(3)((P1, R1), (P2, R2)) =
V/dsoto (Ra, R2)? + Ip1 = pafl?, - (13)

where

tr (RTRy) —1
dso(3)(R1, R2) = V2 arccos <r(122)>

(14)

In order to evaluate the performance of the pro-
posed filter one could compare the estimation er-
rors obtained at each iteration with the static ML
estimator and with the IVLB. In order to do so,
100 Monte Carlo simulations were performed with
the vehicle executing the same test trajectory.
That is, at each point of the trajectory, 100 sets
of independent noisy range measurements were
generated with which a static ML estimator and
the proposed filter were run. At each point the
variance of the estimates produced with the ML
estimator and the proposed filter were determined
and compared to the corresponding IVLB, see
Figure 10. Theoretically, if the sample size were
large enough, the variance of the ML could never
go beyond the IVLB. However, in practice this
happens due to a small sample size. On the other
hand, since the filter uses past as well as present
measurements nothing prevents it from attaining
lower variances than the IVLB. In Figure 10 it can
be seen that after a transient, the proposed filter
attains better performance than the ML and the
IVLB.

6. CONCLUSIONS AND FUTURE WORK

The paper proposed two nonlinear filters for the
problem of position and attitude determination
with range-only measurements. The filters consist
of a copy of the vehicle kinematics plus correction
terms pointing towards the ML estimate of the
current set of measurements. Due to the nature of
the correction terms and the use of no particular
parametrization, the iterates evolve naturally on
SE(3) without requiring an extra normalization
scheme and avoiding singularity problems. Sim-
ulation results show that by exploiting past as
well as present measurements the proposed filter
outperforms the static ML estimator when the ve-
hicle is describing an unknown trajectory. Future
work includes formal observability and stability
analysis, and the derivation of design rules for the
filter gains. Note that in order to fully evaluate
the performance of the filters derived, one should
use a generalization of the Posterior CRB (PCRB)
instead of the IVLB only. This issue warrants
further research.
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