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Abstract— This paper addresses the problem of estimating
the attitude and the position of a rigid body when the available
measurements consist only of pseudo-ranges between a set of
body fixed beacons and a set of earth fixed landmarks. To this
effect, a Maximum Likelihood (ML) estimator is formulated
as an optimization problem on the parameter space Θ =
SE(3) × R

p corresponding to the attitude and position of the
rigid body as well as a set of biases present in the pseudo-range
equations. Borrowing tools from optimization on Riemannian
manifolds, intrinsic gradient and Newton-like algorithms are
derived to solve the problem. The rigorous mathematical set-
up adopted makes the algorithms conceptually simple and
elegant; furthermore, the algorithms do not require the ar-
tificial normalization procedures that are recurrent in other
estimation schemes formulated in Euclidean space. Supported
by recent results on performance bounds for estimators on
Riemannian manifolds, the Intrinsic Variance Lower Bound
(IVLB) is derived for the problem at hand. Simulation results
are presented to illustrate the estimator performance and to
validate the tightness of the IVLB in a wide range of signal to
noise ratio scenarios.

Index Terms— Navigation systems, attitude/positioning sys-
tems, maximum likelihood estimation, optimization on Rieman-
nian manifolds

I. INTRODUCTION

Joint attitude and position estimation systems based on
pseudo-range measurements are becoming popular and have
received the attention of the research community as an alter-
native to more complex, expensive, and sophisticated Inertial
Navigation Systems. An advantage of such systems is that
they are drift-less and insensible to magnetic disturbances.
Examples of applications include multiple GPS receiver
systems, indoor wireless network positioning systems, and
acoustic systems to determine the attitude/position of a body
underwater. Range measurements are usually obtained by
measuring the time it takes an electromagnetic or acoustic
signal to travel between an emitter and a receiver given
that the speed of propagation of the signals is assumed
to be known. Pseudo-range measurements arise when the
emitter and receiver are not synchronized, resulting in an
unknown bias term in the range measurements. The range
only positioning problem has been extensively treated in the
literature, see for example [1] and the references therein.
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Fig. 1. Geometry of estimation problem.

It is also common to find in the literature work addressing
the problem of estimating the attitude (that is the relative
orientation of a reference frame with respect to another
reference frame) with vector observations [2],[3]. In some
applications, vector observations can be obtained from range
observations by making the planar waveform appoximation
[4],[5]. Despite the fact that the attitude and positioning
problems are strongly coupled, a simultaneous treatment of
the problem is seldom encountered (see [6] for an example
based on line of sight measurements).

This paper addresses the problem of simultaneous attitude
and position estimation with pseudo-range measurements.
To this effect, a Maximum Likelihood (ML) estimator is
formulated by solving an optimization problem on a param-
eter space containing the attitude and the position of the
rigid body as well as a set of bias terms present in the
pseudo-range equations. Intrinsic gradient and Newton-like
algorithms are derived borrowing tools from optimization
on Riemannian manifolds. The rigorous mathematical set-
up adopted makes the algorithms conceptually simple and
elegant. Furthermore, the algorithms do not require artificial
normalization procedures that are recurrent in other estima-
tion schemes formulated in Euclidean space.

II. PROBLEM FORMULATION

Suppose that one is interested in estimating the configura-
tion (that is, position and attitude) of a rigid body in space.
Define a reference frame {B} attached to the rigid body and
an Inertial reference frame {I}. The position of the origin
of {B} with respect to {I} can be represented by vector
p ∈ R

3, and the relative orientation between {B} and {I}



can be represented by a rotation matrix R ∈ SO(3), where
SO(3) is the Special Orthogonal group defined as

SO(3) =
{
R ∈ R

3×3 : RTR = I3, det(R) = 1
}

. (1)

In the above expression I3 stands for the 3 × 3 identity
matrix and det(·) is the matrix determinant operator. The
configuration space of the rigid body can then be identified
with the Special Euclidean group SE(3) = SO(3)×R

3 (as
a set). Elements of SE(3) will be identified with the pair
(R,p) or with the vector

[
vec(R)T pT

]T
(where vec(·) is

the operator that stacks the columns of a matrix from left to
right) depending on what representation is more suitable for
the computations.

Suppose the rigid body has p beacons and assume that
the location of the beacons with respect to {B} is known.
The beacons could be GPS antennas, or underwater acoustic
transponders, arranged with a certain known geometry in the
rigid body. Let us further consider that there are m fixed
landmarks distributed in the ambient space with known posi-
tions: for example, GPS satellites or surface buoys equipped
with hydrophones. Let bi ∈ R

3, i ∈ {1, . . . , p} denote the
positions of the p beacons in the rigid body expressed in {B}
and let pj ∈ R

3, j ∈ {1, . . . ,m} denote the positions of the
m landmarks expressed in {I} (see Fig. 1).

Let dij denote the distance between the i’th beacon and
the j’th landmark. Let ci ∈ R; i ∈ {1, · · · , p} be an unknown
beacon dependent bias term. Then the pseudo-ranges are
defined as

ρij = dij + ci = ‖Rbi + p − pj‖ + ci (2)

with i ∈ {1, . . . , p}, j ∈ {1, . . . ,m}, and ‖ · ‖ stands
for the Euclidean norm. The observations yij , defined by
yij = ρij + wij consist of the pseudo-ranges ρij corrupted
by an additive zero mean Gaussian disturbances wij . Note
that the terms beacon and landmark are used to illustrate
the problem but they do not impose any particular role (in
terms of emitter/receiver). They should be simply viewed as
pseudo-range measuring devices.

It is convenient to stack all the ij elements in a more
compact form by defining the vectors

d ,

[
[d11 · · · dp1] · · · [d1m · · · dpm]

]T
∈ R

mp, (3)

and ρ,y,w ∈ R
mp in a similar way. Define also a vector

c = [c1 · · · cp]
T ∈ R

p containing all the bias terms. With
this arrangement, the observations can then be written in a
more compact form as

ρ = d + (1m ⊗ Ip)c (4)

y = ρ + w, E
{
wwT

}
, R ∈ R

mp×mp (5)

where ⊗ denotes the Kronecker product of matrices, 1m is
a m × 1 vector of ones, and R is the covariance matrix
of w. Note that no assumption is made on the structure
of R, thus allowing for a number of interesting mission
scenarios and configurations. For instance, the measurements
of the distances between an Earth fixed landmark and all the

body beacons can suffer from highly correlated disturbances.
This might be due to the fact that the observations originate
from signals that have travelled almost through the same
propagation channel. In these cases the covariance matrix R

is close to being block diagonal.
In order to determine the attitude and the position of the

rigid body from the pseudo-range measurements, the vector
of unknown biases c ∈ R

p needs also to be estimated. It is
common in the literature to avoid estimating the biases by
subtracting pseudo-range equations among them to obtain
range-differences. This approach will not be pursued in this
paper. Instead, an augmented parameter space Θ will be
considered containing the unknown bias terms. The final
parameter space will be defined as the Cartesian product
Θ = SE(3) × R

p = SO(3) × R
3 × R

p.

A. ML Estimator Formulation

The Maximum Likelihood (ML) Estimator determines
the triad (R̂, p̂, ĉ)ML ∈ Θ that maximizes the likelihood

function, that is, the probability p (y|R,p, c) of obtaining
the observations y given the parameters (R,p, c) [7] [8]. Ac-
cording to the Gaussianity assumption on the disturbances,
the ML estimator can be found by solving the optimization
problem

(
R̂, p̂, ĉ

)

ML
= arg min

(R,p,c)∈Θ
f(R,p, c) (6)

where f : Θ → R is given by

f(R,p, c) =
1

2
(y − ρ)T R−1(y − ρ) (7)

and, from (2), ρ = ρ(R,p, c). Note that the cost function f
is not differentiable when some of the ranges dij vanish, that
is, when the position of a beacon coincides with the position
of a landmark. It is realistic to assume that this situation
never occurs in practice.

III. OPTIMIZATION ON RIEMANNIAN
SUBMANIFOLDS

In order to determine the ML Estimator, the function
f needs to be minimized over the parameter space Θ. At
this point, it is not obvious how to continue and effectively
solve this constrained optimization problem. The problem
does not admit a closed form solution so it is necessary to
resort to an iterative scheme. There has been some work
on generalizing the classic gradient descent and Newton
methods to Riemannian manifolds [9] [10]. The key idea
involved in [9] is to generalize the classic gradient and
Newton-like directions and to perform line searches along
geodesics, as depicted in Fig. 2.

In many cases, such as the one considered in this paper,
the parameter space Θ can be shown to be an embedded
Riemannian submanifold of some ambient Euclidean space
R

n. For instance, when Θ is characterized as the regular level
set of some smooth function i.e., Θ = {x ∈ R

n : h(x) = 0}.
It turns out that many intrinsic objects in Θ, such as intrinsic
gradients and Hessians, can be easily obtained from the
more familiar corresponding extrinsic objects in R

n. In what
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Fig. 2. Geometric descent optimization. Intrinsic gradient or Newton
directions followed by geodesic line searches.

follows it is assumed that the reader is familiar with the
concepts of Riemannian geometry [11], [12].

Let (Θ, g) be an embedded Riemannian submanifold of
R

n. The tangent space at θ ∈ Θ ⊂ R
n, denoted TθΘ, can be

identified with some linear subspace of R
n. This means that

the tangent vectors of Θ, which are usually quite abstract
objects, can be identified with very familiar objects: vectors
in R

n. For each θ ∈ Θ ⊂ R
n, the tangent space TθR

n ≃ R
n

can be split into the direct sum TθΘ ⊕ NθΘ where NθΘ is
the orthogonal complement of the linear subspace TθΘ in
R

n [12, p.125].
Let f̃ : R

n → R be a smooth function and let f :
Θ → R, be the restriction of f̃ to Θ, that is, f = f̃ |Θ.
The extrinsic gradient of f at θ is defined as the usual
vector of partial derivatives ∇f̃ |θ = [ ∂

∂x1
f̃ |θ · · · ∂

∂xn
f̃ |θ]T .

Moreover, according to the above discussion, the extrinsic
gradient can be decomposed as the sum of two vectors in R

n

belonging to TθΘ and NθΘ. The intrinsic gradient of f at θ,
denoted gradf |θ is a tangent vector in TθΘ. It provides a way
of locally approximating functions and obtaining generalized
(intrinsic) gradient descent search directions. The extrinsic
Hessian of f at θ is a map Hessf̃ : R

n × R
n → R that can

be obtained from the usual matrix of second order partial
derivatives of f̃ . The intrinsic Hessian of f at θ is also a
map Hessf : TθΘ × TθΘ → R.

The next propositions summarize fairly well known re-
sults, the proofs of which are straightforward exercises in
Riemannian geometry (see [13] or [14]):

Proposition 1 (Intrinsic Gradient): The intrinsic gradient
of f at θ, denoted gradf |θ ∈ TθΘ, is exactly the projection
of the extrinsic gradient ∇f̃ |θ onto the tangent space TθΘ.

Proposition 2 (Intrinsic Hessian): The intrinsic Hessian
of the smooth function f at θ satisfies

Hessf(∆1,∆2) = Hessf̃(∆1,∆2) + 〈II(∆1,∆2),∇f̃ |θ〉
(8)

for any tangent vectors ∆1,∆2 ∈ TθΘ. In the above expres-
sion, II : TθΘ × TθΘ → NθΘ is the second fundamental
form, which relates the geometries of Θ and R

n [12].
These propositions will provide a simple way of determining
intrinsic gradient descent and Newton-like search directions
for the problem at hand.

IV. THE GEOMETRY OF THE PARAMETER SPACE

The parameter space Θ was defined as the Cartesian
product SO(3)×R

3×R
p. It will be regarded as an embedded

Riemannian submanifold of the ambient Euclidean space
R

3×3 ×R
3 ×R

p. There are many references in the literature
about SE(3) and SO(3), the reader is referred to [15], [16],
[17], and [18].

Let θ = (R,p, c) be an element of Θ. The tangent space
TθΘ can be identified with the linear subspace
{
(RS,v,u) ∈ R

3×3 × R
3 × R

p : S ∈ K(3, R)
}

, (9)

where K(3, R) stands for the set of 3 × 3 skew symmetric
matrices with real entries (recall that a matrix S is skew
symmetric if S + ST = 0). Recall also that sometimes it
will be convenient to identify TθΘ with vectors of the form[
vec(RS)T vT uT

]T
in R

12+p.
A Riemannian metric g is a smooth assignment of an inner

product to each tangent space. The parameter space Θ can
be made an embedded Riemannian submanifold by providing
it with the canonical Riemannian metric inherited from its
ambient Euclidean space. Let two tangent vectors ∆1,∆2 ∈
TθΘ have the form

∆1 =




vec(Ω1)
v1

u1


 , ∆2 =




vec(Ω2)
v2

u2


 . (10)

Then g(∆1,∆2), also denoted 〈∆1,∆2〉, becomes

〈∆1,∆2〉 = ∆T
1 ∆2. (11)

Note that, when restricted to SE(3), the induced Riemannian
metric of (11) is in fact equivalent to the scale-dependent

left-invariant metric of [17] (with c = 2, and d = 1).
With this choice of metric, the geodesics of Θ have a

simple closed form expression (see [17], [18] for a related
discussion). Let θ = (R,p, c) ∈ Θ and ∆ = (Ω,v,u) ∈
TθΘ. The geodesic emanating from θ in the direction of ∆
is given by γ : R → Θ,

γ(t) = (R exp
(
RT Ωt

)
,p + vt, c + ut) (12)

where exp is the matrix exponential. Note that γ(0) = θ and
γ̇(0) = ∆.

The second fundamental form, which will be used to
determine the intrinsic Hessian, can also be simply computed
(see [13] for details). Let ∆1,∆2 ∈ TθΘ be tangent vectors
at some point θ ∈ Θ as in (10). The second fundamental
form II : TθΘ × TθΘ → NθΘ can be found to be

II(∆1,∆2) = (−Rsymm(ΩT
1 Ω2), 0, 0) (13)

where symm is the operator that extracts the symmetric part
of a matrix, that is symm(A) = 1

2 (A + AT ).

V. INTRINSIC GRADIENT AND NEWTON
ALGORITHMS

In order to determine the maximum likelihood (ML)
estimate of the attitude and position of a rigid body, a
constrained optimization problem on the parameter space
Θ needs to be solved. The geometric descent optimization
algorithms proposed in this paper are of iterative nature.
At each iteration a gradient or Newton-like search direction
Dk is determined. Then, an intrinsic geodesic line search is
performed along Dk to update the estimated parameter.



A. Intrinsic gradient and Newton directions

According to Proposition 1, the intrinsic gradient of
a smooth function defined on an embedded Riemannian
submanifold of some Euclidean space can be found by
determining the extrinsic gradient (which is the usual vector
of partial derivatives as if the function were defined on the
ambient Euclidean space f̃ : R

3×3×R
3×R

p → R, instead of
f : Θ → R) and projecting it orthogonally onto the tangent
space of the parameter space. The derivation of the extrinsic
gradient for the problem at hand is done in detail in [13].
Let θ = (R,p, c) be the point in Θ at which to evaluate the
extrinsic gradient. Define the matrices

F =




bT
1 ⊗ (p − p1)

T

...
bT

i ⊗ (p − pj)
T

...
bT

p ⊗ (p − pm)T




,C =




bT
1 RT + (p − p1)

T

...
bT

i RT + (p − pj)
T

...
bT

p RT + (p − pm)T




,

(14)

D = diag(d) =




d11 . . . 0
...

. . .
...

0 . . . dmp


 (15)

where F ∈ R
mp×9, C ∈ R

mp×3, and D ∈ R
mp×mp. Then

the extrinsic gradient has the form

∇f̃ |θ ,




vec(G̃R)

G̃p

G̃c


 = −




FT D−1

CT D−1

(1T
m ⊗ Ip)


R−1(y − ρ). (16)

According to Proposition 1 the intrinsic gradient can be
found by solving the projection problem

gradf |θ = arg min
∆∈TθΘ

〈∆ −∇f̃ |θ,∆ −∇f̃ |θ〉. (17)

Using some algebraic manipulations and the fact that ∆ =
[vec(RS)T vT uT ]T for some skewsymmetric matrix S and
vectors v,u, it can be shown that (see [13] and also [9] for
a related result):

gradf |θ ,




vec(GR)
Gp

Gc


 =




1
2vec(G̃R −RG̃T

R
R)

G̃p

G̃c


 . (18)

The Newton-like search direction is the unique tangent vector
N ∈ TθM satisfying Hessf(X,N) = −〈X, gradf〉 for
all tangent vectors X ∈ TθM (assuming that Hessf is
nonsingular at θ). It can be found by determining the usual
matrix of second order partial derivatives and solving a
certain linear system of equations. Its derivation is omitted
due to space constraints. A similar derivation is done in detail
in [13] and [14].

B. Intrinsic geodesic line search

Let θk ∈ Θ be the parameter estimate at iteration k.
Let Dk = (DR,Dp,Dc) ∈ Tθk

Θ be the search direction
at iteration k, i.e, Dk = −gradf |θk

(gradient descent) or

Dk = N (Newton descent). A line search can be performed
along the geodesic

γk(t) = (R exp(RTDRt),p + Dpt, c + Dct). (19)

Ideally, the line search procedure aims at finding the optimal
stepsize t∗k satisfying

t∗k = arg min
t∈R

f(γk(t)). (20)

This optimization subproblem can be hard to solve. Alterna-
tively, it is common to solve this problem only approximately
using for instance the Armijo rule [19, p.29]. The Armijo
rule selects tk = βmis, where mi ∈ {0, 1, 2, . . .} is the first
integer satisfying

f(θk) − f(γk(βmis)) ≥ −σβmis 〈gradf |θk
,Dk〉 (21)

for some constants s > 0, and β, σ ∈ (0, 1).

C. Algorithm implementations: an outline

The theoretical results of the previous sections lead to the
following implementations of the proposed intrinsic gradient
and Newton algorithms:

1) Start at initial estimate θ0 = (R0,p0, c0) ∈ Θ.

Set k = 0.

2) Determine a search direction Dk:

a) Intrinsic gradient: take Dk = −gradf |θk

according to (18).

b) Intrinsic Newton: If 〈N,∇f |θk
〉 < 0 (descent

condition) take Dk = N , otherwise take

Dk = −gradf |θk
.

3) Line search along the geodesic γk(t) (19), using

Armijo rule to determine step size tk.

4) update estimate θk+1 = γk(tk). Set k = k + 1.

5) If ‖gradf |θk
‖ ≤ ǫ, stop. Otherwise return to 2.

VI. SIMULATION RESULTS

Simulations were performed to validate the proposed
algorithms. A simulation setup was chosen that is similar
to a multi-antenna GPS attitude/positioning system. Four
(m = 4) earth fixed landmarks were located at positions
corresponding to a favorable GPS satellite constellation. That
is,

[p1 p2 p3 p4] = Rsat




0.966 0 0.259 0
−0.483 0.837 0.259 0
0.259 0.259 0.259 1




(22)

where Rsat = 2.656 · 107 m. Three (p = 3) body fixed
beacons were located at positions [b1 b2 b3] = 5 I3 m. The
observation error covariance was set to R = σ2Imp, with
σ = 0.1 m. In order to illustrate the attitude estimation errors
(in Fig. 3 and Fig. 4) exponential coordinates for SO(3)
were used. That is, the vector θ = [θ1 θ2 θ3]

T is used to
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The algorithm has a very slow convergence.

represent the orthogonal matrix R = exp

{[
0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

]}
.

The actual and initial parameters were:

R =




1 0 0
0 1 0
0 0 1


 , R̂0 =




0.032 −0.542 0.704
0.710 0.604 −0.584
−0.363 −0.363 0.404




(23)

p =




0.738
0.358
−0.075


 , p̂0 =




3.991
−2.993
−3.299


 (24)

c =



−160.331
33.937
−13.113


 , ĉ0 =



−164.155
24.403
−10.778


 (25)

Fig. 5 shows the evolution of the cost function together with
the norm of the gradient for the intrinsic gradient and Newton
methods. Fig. 3 and Fig. 4 show the evolution of the attitude,
position, and bias estimation errors for both methods. The
gradient method shows a very poor (linear) convergence rate
whereas the Newton method achieves quadratic convergence
when close to the minimum.

Note that the cost function has local minima that depend
highly on the number and position of the beacons and
landmarks, as well as the intensity of the measurement noise.
This is an important issue, as well as on many optimization
problems, that prevents the methods from being global. Pre-
liminary experiences suggest that local minimum solutions
can be easily detected as they yield final likelihoods some
orders of magnitude different from the global minimum.

VII. PERFORMANCE BOUNDS

Given a set of noisy pseudo-range measurements, there is
a fundamental limitation on the size of the estimation errors
that can be achieved. When the state space is Euclidean, the
Cramér-Rao Bound (CRB) is the classic tool to determine

0 1 2 3 4 5 6 7
−2

0

2

A
tt

it
u

d
e

 [
e

x
p

.c
o

o
rd

] Newton descent: Estimation errors

 

 

0 1 2 3 4 5 6 7
−10

−5

0

5

P
o

s
it
io

n
 [

m
]

 

 

0 1 2 3 4 5 6 7
−5

0

5

10

Iteration k

B
ia

s
 [

m
]

 

 

θ1

θ2

θ3

p1

p2

p3

c1

c2

c3

Fig. 4. Intrinsic Newton algorithm estimation erros: Attitude, Position and
Bias.

0 5 10 15 20 25 30 35 40 45
10

0

 

 

Gradient

Newton

0 5 10 15 20 25 30 35 40 45

10
−5

10
0

Iteration k

 

 

Gradient

Newton

f
‖

gr
ad

f
| θ

k
‖

Fig. 5. Intrinsic gradient and Newton algorithms: performance evaluation.
Value of the cost function f (top) and norm of the intrinsic gradient
‖gradf |θk

‖ (bottom).

such a limitation [7]. When the state space is not Euclidean,
as in our case, one should resort to generalizations of the
CRB as the Intrinsic Variance Lower Bound (IVLB) [20].
The IVLB uses the intrinsic (geodesic) Riemannian distance
to quantify the estimation errors. More specifically, it sets a
lower bound on the intrinsic variance of unbiased estimators.
Let θ be the true parameter and θ̂ an estimate of it. The
intrinsic variance is defined as

var

{
θ̂
}

= E

{
dΘ(θ̂, θ)2

}
(26)

where dΘ(·) is the intrinsic (geodesic) distance function in
Θ. Considering the canonical metric in (11) it becomes

dΘ(θ1, θ2)
2 = dSO(3)(R1,R2)

2 + ‖p1 − p2‖2 + ‖c1 − c2‖2,
(27)

where θ1 = (R1,p1, c1), θ1 = (R2,p2, c2), and

dSO(3)(R1,R2) =
√

2 arccos

(
tr
(
RT

1 R2

)
− 1

2

)
(28)
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is the canonical metric on SO(3) (as a submanifold of R
n×n)

[17][15].
The (extrinsic) Fisher Information Matrix for the problem

at hand, that is used in the computation of the IVLB (see
[20] and [14] for a similar derivation), can be computed as

I(θ) = Eθ

{
(∇θ log p(θ|y)(∇θ log p(θ|y)T

}

=




FT D−1

CT D−1

(1T
m ⊗ Ip)


R−1




FT D−1

CT D−1

(1T
m ⊗ Ip)




T

. (29)

It can also be used as a measure of the observability of
the problem. Let Uθ ∈ R

12+p×6+p be a matrix whose
columns form an orthonormal basis for TθΘ. If the matrix
UT

θ I(θ)Uθ ∈ R
6+p×6+p is singular or badly conditioned,

this indicates that with the present estimation set up, in
terms of the number of landmarks/beacons and their relative
geometry, it is not possible to determine all of the unknown
parameters.

The IVLB for the same simulation setup of Section VI
is shown in Fig. 6 and compared with experimental Monte
Carlo ML Newton runs at different signal to noise ratio
(SNR) conditions, where SNR≃ 1/σ2, and R = σImp.
At each point, 100 Monte Carlo ML algorithm runs were
performed initialized at the true value of the parameter.
The SNR range plotted corresponds to standard deviations
of σ ∈

[
10−3, 1

]
m. It is hard to distinguish between the

experimental ML performance and the IVLB. This shows
the good performance of the estimator and the tightness of
the derived bound.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper intrinsic gradient and Newton like algo-
rithms were derived to solve the problem of simultaneous
position and attitude estimation with pseudo-range only
measurements. The algorithms are relatively simple and
avoid the need for any normalization procedure since the
iterates evolve naturally on the parameter space. Simulation

results showed that the intrinsic gradient algorithm has a
slow convergence. However, the intrinsic Newton algorithm
converged in a few iterations and attained performances
very close to the Intrinsic Variance Lower bound (IVLB).
Hence, the intrinsic Newton algorithm is suitable for real
time implementation. Future work will include the study of
nonlinear filters which take into account the dynamics of
the rigid body. Another topic of interesting research is the
inclusion of other sensorial data such as bearing, doppler,
and vision information. Testing the algorithms with real
experimental data is also a subject that warrants further
efforts.
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