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ABSTRACT

Early approaches to building mosaics by composing photo-
graphic images, assume the input images have similar expo-
sures. Since this is unlikely to happen in practice, it became
common to compensate for different exposures in the blend-
ing step, after the images have been registered, or aligned [1].
However, registration methods usually assume brightness con-
stancy and fail to align images with different exposures. Re-
cent approaches to this problem lead to computationally com-
plex solutions that require either robust statistics or nonlin-
ear optimization. In this paper we propose a computation-
ally simple method to jointly estimate the registration param-
eters and the parameters describing the exposure correction,
directly from the image intensity values. We obtain closed-
form solutions for the estimates of the exposure parameters.
This enables the derivation of a simple two-step iterative al-
gorithm to minimize the global cost. Our experiments show
that this algorithm succeeds to register real images exhibiting
simultaneously very distinct orientations and exposures.

Index Terms— Image registration, Image restoration

1. INTRODUCTION

Two very distinct approaches to image registration, or align-
ment, have been followed in the past. The so-called feature-
based approaches first attempt to find the correspondences be-
tween feature points, usually intensity corners, see e.g. [2].
Featureless methods avoid this intermediate stage by estimat-
ing the registration parameters directly from image intensity
values, see e.g. [3, 4]. The majority of these methods assume
brightness constancy, i.e., that the input images are equally
exposed. This does not happen in many practical scenarios,
see an illustrative example in Fig. 1. In this paper, we address
the problem of automatically registering this kind of photos.

Naturally, in feature-based based approaches, the most
difficult task is the feature matching step. When the images
have different exposures, feature matching becomes harder,
because local brightness patterns differ from one image to the
other. To address this difficulty, researchers have proposed
time-consuming algorithms that use robust features, such as
Zernike moments, and robust statistics (RANSAC) [5], or

Fig. 1. Two photographs of the same scene. Left: “natural”
orientation and exposure. Right: tilted and mush darker view.

multi-stage processing schemes [6]. Featureless approaches
cope with differently exposed images by capturing the bright-
ness change into the observation model, i.e., by generalizing
the optical flow equation. The joint estimation of the param-
eters describing the geometric registration of the images and
the parameters describing the brightness change, leads to the
use of computationally expensive nonlinear optimization [7].

The approach we propose in this paper is featureless. To
minimize the cost function that arises from Maximum Like-
lihood estimation, we propose an algorithm that exploits the
fact that the observation model is linear in the parameters de-
scribing the brightness change. We obtain closed-form so-
lutions for the estimates of these parameters and incorporate
them into a computationally simple algorithm, where the
brightness parameters and the geometric registration parame-
ters are computed in alternate steps. Experiments show that
our algorithm is able to automatically align real images, even
when they have very distinct orientations and/or exposures.
Paper organization Section 2 briefly overviews the usual ap-
proach to the featureless registration of images. In section 3,
we describe our method to simultaneously perform exposure
correction and registration. Section 4 contains experiments
that demonstrate the effectiveness of our approach and sec-
tion 5 concludes the paper. A MATLAB implementation of
the algorithm we propose in this paper is made available in [8].



2. FEATURELESS REGISTRATION OF IMAGES

Two photographs of the same scene are taken from different
viewpoints. The model underlying the operation of register-
ing, or aligning, the resulting images I1 and I2, simply states
that a pixel x1 = [x1, y1]T in I1 and a pixel x2 = [x2, y2]T

in I2 that “observe” the same point of the scene, are related
by x2=m(θ;x1), where θ is vector collecting a (small) set of
parameters. Thus, the image intensity levels satisfy

I1(x) � I2(m(θ;x)) (1)

and m(θ;x) describes the two-dimensional motion of the
brightness pattern in the image plane, i.e., θ characterizes
the registration of I1 and I2. The dimension of θ depends
on the motion model, which in turn depends on the kind of
camera motions and/or scene geometries allowed, see e.g. [2].
Common choices are the 2-parameter pure translational, the
4-parameter rigid motion (translation, rotation and zoom), the
6-parameter affine, and the 8-parameter projective models.

In featureless approaches to image registration, the esti-
mate of θ is computed by minimizing the sum of the square
differences between the image intensities, see e.g. [3, 4],

e(θ;x) = I1(x) − I2 (m(θ;x)) , (2)

θ̂ = arg min
θ

∑
x

e2(θ;x) . (3)

The estimate θ̂ in (3) is usually computed by using a Gauss-
Newton method where, in each iteration, a previous guess θ0

is updated, i.e., θ̂ = θ0 + δ̂. In this method, e(x,θ) is ap-
proximated by its first-order truncated Taylor series expan-
sion, e(θ;x) � e(θ0;x) + δT · ∇θ e(θ0;x). Using this ap-
proximation in (3), and making zero the gradient of the cost
function, δ̂ is obtained as the solution of the linear system

Γ (θ0) · δ̂ + γ (θ0) = 0 , (4)

where the matrix Γ(θ0) and the vector γ (θ0) are given by

Γ (θ0) =
∑
x

∇θ e(θ0;x) · ∇T
θ e(θ0;x) , (5)

γ (θ0) =
∑
x

e(θ0;x) ∇θ e(θ0;x) , (6)

see [4]. Note that, from the definition of e(θ;x) in (2), we see
that its gradient ∇θ e(θ0;x) in (5,6) is easily computed from
the image spatial gradient as ∇θ e = −∇θ m · ∇xI2.

3. REGISTRATION AND EXPOSURE CORRECTION:
TWO-STEP ITERATIVE OPTIMIZATION

The method outlined in the previous section avoids the quag-
mire of selecting and matching pointwise features, which made

it very popular in the recent past. However, since its robust-
ness is rooted on the brightness constancy imposed by the
model (1), it can not be used to register images with distinct
exposures. In this case, the image intensity levels are related
by a more general model, which is well approximated by

I1(x) � α I2(m(θ;x)) + β , (7)

where the gain α and offset β account for the change of ex-
posure from image I1 to image I2, see e.g. [9].

To align images I1 and I2 under this scenario, we need to
jointly estimate both the registration parameters in θ and the
exposure parameters α and β. When the observation noise is
white Gaussian, the Maximum Likelihood estimate of these
parameters leads to the joint minimization{

θ̂, α̂, β̂
}

= arg min
θ,α,β

E(θ, α, β) , (8)

where the cost E(θ, α, β) is a generalization of the one in (2,3):

e(θ, α, β;x) = I1(x) − α I2 (m(θ;x)) − β , (9)

E(θ, α, β) =
∑
x

e2(θ, α, β;x) . (10)

Two-step iterative minimization We now address the non-
linear minimization (8). At a first sight, it might seem attrac-
tive to generalize the approach outlined in the previous sec-
tion, i.e., to develop a Gauss-Newton method to estimate the
full set of unknowns {θ, α, β}. This kind of approach was
followed by Y. Altunbasak et al [7] in a framework that in-
cluded as unknowns also the lens distortion parameters and
more general illumination changes. Rather than enlarging the
vector of unknowns of the Gauss-Newton method, in this pa-
per we propose an approach that takes advantage of the fact
that the error (9) is linear in the exposure unknowns {α, β},
leading to a very simple algorithm.

We minimize (8) by using a two-step iterative method,
a strategy that has succeed in several optimization problems,
e.g., Expectation-Maximization algorithms [10]. In one of the
steps, θ is kept fixed and (8) is minimized with respect to (wrt)
α and β, leading to a closed-form solution. In the other step,
α and β are kept fixed and (8) is minimized wrt θ, leading to
the problem addressed in the previous section.
Estimation of α and β for fixed θ From the definition of the
cost E in (9,10), its derivatives wrt to α and β are

∂E

∂α
= −2

∑
x

I2 (m(θ;x)) e(θ, α, β;x) , (11)

∂E

∂β
= −2

∑
x

e(θ, α, β;x) . (12)

The estimates α̂ and β̂ for fixed θ are found by minimizing (8)
wrt α and β, i.e., by making zero the derivatives (11,12):

∂E

∂α
= 0 ⇔

∑
I1I2 − α

∑
I2
2 − β

∑
I2 = 0 , (13)

∂E

∂β
= 0 ⇔

∑
I1 − α

∑
I2 − βN = 0 , (14)



where N is the number of pixels in the region of summation
of the cost E and the dependency on x is omitted for com-
pactness. Since equations (13,14) are linear in α and β, we
get closed-form solutions for the estimates α̂ and β̂:

α̂ =
N

∑
I1I2 −

∑
I1

∑
I2

N
∑

I2
2 − (

∑
I2)

2 , (15)

β̂ =
∑

I1

∑
I2
2 −

∑
I2

∑
I1I2

N
∑

I2
2 − (

∑
I2)

2 . (16)

Estimation of θ for fixed α and β Compensate the exposure
of image I2 according to the current estimates of α and β,
i.e., define an image I′2 related to I2 by I′2(x) = αI2(x) + β.
Minimizing (8) wrt θ is exactly the same as registering im-
ages I1 and I′2 (just note that the error (9) is written in terms
of I′2 as e(θ, α, β;x)=I1(x)−I′2 (m(θ;x)) and compare this
expression to (2)). Thus, we compute θ̂ by using the method
described in the previous section, now with images I1 and I′2.
Coarse-to-fine estimation The truncated Taylor series
involved in the estimation of θ is a good approximation only
when the initial guess θ0 is close to θ̂. To cope with large dis-
placements between the images (positions and orientations),
we use coarse-to-fine estimation, a multiresolution approach
typical of featureless methods, e.g. [3, 4]. Our algorithm
starts with very low resolution versions of the input images
and gradually increases their detail, until the original full res-
olution is reached. Besides being crucial to guarantee good
convergence, this coarse-to-fine estimation also reduces the
computational cost. In fact, since an approximate estimate is
achieved by iterating at very low resolution, i.e., at a low com-
putational cost, the subsequent refinement of that estimate re-
quires only very few iterations at larger resolution levels.
Initialization and stopping criteria According to our expe-
rience, the two-step algorithm coupled with the coarse-to-fine
strategy just described, exhibits good convergence even with
the trivial initialization of guessing that the input images are
equally exposed and aligned. The initial guess is then α0 =1,
β0 =0, and θ0 is such that m(θ0;x)=x. The algorithm stops
when the estimates updates are below a small threshold.

4. EXPERIMENTS

We used the method just described to align the images of
Fig. 1. To illustrate the behavior of the two-step algorithm, we
represent in Fig. 2, from left to right, top to bottom, the evolu-
tion of the registration of the right image according to succes-
sive estimates of the registration parameters in θ and exposure
parameters α and β. The top left image of of Fig. 2 shows the
lower resolution version of the right image of Fig. 1, see how
the orientation and exposure of these images is the same. As
the registration process evolves, the orientation and the expo-
sure of the successive images in Fig. 2 converges to the ones
that best match the left image of Fig. 1. The final result, ob-

tained at the original full resolution, is shown in the bottom
right image of Fig. 2.

Fig. 2. Evolution of the two-step iterative algorithm when
processing the pair of images of Fig. 1. From left to right, top
to bottom, we represent the registration of the right image, at
increasing resolution levels, according to the estimates of the
parameters obtained as the algorithm evolves.

In Fig. 3, we represent the composition of the two images
of Fig. 1, after simultaneous registration and exposure correc-
tion, i.e., the mosaic obtained by merging the left image of
Fig. 1 with the bottom right image of Fig. 2. Two other exam-
ples, represented in Fig. 4, use underwater images in a seabed
mapping application. Due to the low texture of these images,
it would be very hard to compute image-to-image correspon-
dences between pointwise features in an automatic way. Since
our method processes directly the intensity values in the entire
images, it is robust to the absence of highly textured regions



and succeeds to align these underwater images, even when
their brightness changes dramatically from image to image,
as shown by the mosaics in Fig. 4.

The motion model used in the experiments above is the
6-parameter affine. More experimental results, as well as a
MATLAB implementation of the algorithm we propose in this
paper, are available from [8]. In all our experiments, the al-
gorithm converged in less than 15 iterations.

Fig. 3. Composition of the images in Fig. 1, using our method
for simultaneous registration and exposure correction.

5. CONCLUSION

We propose a featureless method to compose, both geometri-
cally and photometrically, a pair of uncalibrated images. This
method is robust because it processes directly all the informa-
tion available, rather than relying on an intermediate feature
matching stage. Our method leads to an iterative algorithm
that estimates, in alternate steps, the geometric and photo-
metric parameters. This algorithm is computationally simple
because one of the steps admits closed-form solution and the
other leads to the well studied and already optimized constant
brightness featureless motion estimation.
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